Fall, 2018 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 6

December 3, 2018; Due December 13, 2018

Problem B1 (30 pts). Let E be a real vector space of finite dimension, $n \geq 1$. Say that two bases, $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, of E have the same orientation $\operatorname{iff} \operatorname{det}(P)>0$, where P the change of basis matrix from $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, namely, the matrix whose j th columns consist of the coordinates of v_{j} over the basis $\left(u_{1}, \ldots, u_{n}\right)$.
(a) Prove that having the same orientation is an equivalence relation with two equivalence classes.

An orientation of a vector space, E, is the choice of any fixed basis, say $\left(e_{1}, \ldots, e_{n}\right)$, of E. Any other basis, $\left(v_{1}, \ldots, v_{n}\right)$, has the same orientation as $\left(e_{1}, \ldots, e_{n}\right)$ (and is said to be positive or direct) iff $\operatorname{det}(P)>0$, else it is said to have the opposite orientation of $\left(e_{1}, \ldots, e_{n}\right)$ (or to be negative or indirect), where P is the change of basis matrix from $\left(e_{1}, \ldots, e_{n}\right)$ to $\left(v_{1}, \ldots, v_{n}\right)$. An oriented vector space is a vector space with some chosen orientation (a positive basis).
(b) Let $B_{1}=\left(u_{1}, \ldots, u_{n}\right)$ and $B_{2}=\left(v_{1}, \ldots, v_{n}\right)$ be two orthonormal bases. For any sequence of vectors, $\left(w_{1}, \ldots, w_{n}\right)$, in E, let $\operatorname{det}_{B_{1}}\left(w_{1}, \ldots, w_{n}\right)$ be the determinant of the matrix whose columns are the coordinates of the w_{j} 's over the basis B_{1} and similarly for $\operatorname{det}_{B_{2}}\left(w_{1}, \ldots, w_{n}\right)$.

Prove that if B_{1} and B_{2} have the same orientation, then

$$
\operatorname{det}_{B_{1}}\left(w_{1}, \ldots, w_{n}\right)=\operatorname{det}_{B_{2}}\left(w_{1}, \ldots, w_{n}\right)
$$

Given any oriented vector space, E, for any sequence of vectors, $\left(w_{1}, \ldots, w_{n}\right)$, in E, the common value, $\operatorname{det}_{B}\left(w_{1}, \ldots, w_{n}\right)$, for all positive orthonormal bases, B, of E is denoted

$$
\lambda_{E}\left(w_{1}, \ldots, w_{n}\right)
$$

and called a volume form of $\left(w_{1}, \ldots, w_{n}\right)$.
(c) Given any Euclidean oriented vector space, E, of dimension n for any $n-1$ vectors, w_{1}, \ldots, w_{n-1}, in E, check that the map

$$
x \mapsto \lambda_{E}\left(w_{1}, \ldots, w_{n-1}, x\right)
$$

is a linear form. Then, prove that there is a unique vector, denoted $w_{1} \times \cdots \times w_{n-1}$, such that

$$
\lambda_{E}\left(w_{1}, \ldots, w_{n-1}, x\right)=\left(w_{1} \times \cdots \times w_{n-1}\right) \cdot x,
$$

for all $x \in E$. The vector $w_{1} \times \cdots \times w_{n-1}$ is called the cross-product of $\left(w_{1}, \ldots, w_{n-1}\right)$. It is a generalization of the cross-product in \mathbb{R}^{3} (when $n=3$).

Problem B2 (50 pts). Given p vectors $\left(u_{1}, \ldots, u_{p}\right)$ in a Euclidean space E of dimension $n \geq p$, the Gram determinant (or Gramian) of the vectors $\left(u_{1}, \ldots, u_{p}\right)$ is the determinant

$$
\operatorname{Gram}\left(u_{1}, \ldots, u_{p}\right)=\left|\begin{array}{cccc}
\left\|u_{1}\right\|^{2} & \left\langle u_{1}, u_{2}\right\rangle & \ldots & \left\langle u_{1}, u_{p}\right\rangle \\
\left\langle u_{2}, u_{1}\right\rangle & \left\|u_{2}\right\|^{2} & \ldots & \left\langle u_{2}, u_{p}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle u_{p}, u_{1}\right\rangle & \left\langle u_{p}, u_{2}\right\rangle & \ldots & \left\|u_{p}\right\|^{2}
\end{array}\right| .
$$

(1) Prove that

$$
\operatorname{Gram}\left(u_{1}, \ldots, u_{n}\right)=\lambda_{E}\left(u_{1}, \ldots, u_{n}\right)^{2} .
$$

Hint. If $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis and A is the matrix of the vectors $\left(u_{1}, \ldots, u_{n}\right)$ over this basis,

$$
\operatorname{det}(A)^{2}=\operatorname{det}\left(A^{\top} A\right)=\operatorname{det}\left(A^{i} \cdot A^{j}\right)
$$

where A^{i} denotes the i th column of the matrix A, and $\left(A^{i} \cdot A^{j}\right)$ denotes the $n \times n$ matrix with entries $A^{i} \cdot A^{j}$.
(2) Prove that

$$
\left\|u_{1} \times \cdots \times u_{n-1}\right\|^{2}=\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}\right)
$$

Hint. Letting $w=u_{1} \times \cdots \times u_{n-1}$, observe that

$$
\lambda_{E}\left(u_{1}, \ldots, u_{n-1}, w\right)=\langle w, w\rangle=\|w\|^{2}
$$

and show that

$$
\begin{aligned}
\|w\|^{4} & =\lambda_{E}\left(u_{1}, \ldots, u_{n-1}, w\right)^{2}=\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}, w\right) \\
& =\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}\right)\|w\|^{2}
\end{aligned}
$$

Problem B3 (20 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a bilinear form on a real vector space E of finite dimension n. Given any basis $\left(e_{1}, \ldots, e_{n}\right)$ of E, let $A=\left(a_{i j}\right)$ be the matrix defined such that

$$
a_{i j}=\varphi\left(e_{i}, e_{j}\right),
$$

$1 \leq i, j \leq n$. We call A the matrix of φ w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$.
(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$, prove that

$$
\varphi(x, y)=X^{\top} A Y
$$

(b) Recall that A is a symmetric matrix if $A=A^{\top}$. Prove that φ is symmetric if A is a symmetric matrix.
(c) If $\left(f_{1}, \ldots, f_{n}\right)$ is another basis of E and P is the change of basis matrix from $\left(e_{1}, \ldots, e_{n}\right)$ to $\left(f_{1}, \ldots, f_{n}\right)$, prove that the matrix of φ w.r.t. the basis $\left(f_{1}, \ldots, f_{n}\right)$ is

$$
P^{\top} A P
$$

The common rank of all matrices representing φ is called the rank of φ.
Problem B4 (50 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a symmetric bilinear form on a real vector space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal w.r.t. φ if $\varphi(x, y)=0$. The main purpose of this problem is to prove that there is a basis of vectors that are pairwise conjugate w.r.t. φ.
(a) Prove that if $\varphi(x, x)=0$ for all $x \in E$, then φ is identically null on E.

Otherwise, we can assume that there is some vector $x \in E$ such that $\varphi(x, x) \neq 0$.
Use induction to prove that there is a basis of vectors $\left(u_{1}, \ldots, u_{n}\right)$ that are pairwise conjugate w.r.t. φ.
Hint. For the induction step, proceed as follows. Let $\left(u_{1}, e_{2}, \ldots, e_{n}\right)$ be a basis of E, with $\varphi\left(u_{1}, u_{1}\right) \neq 0$. Prove that there are scalars $\lambda_{2}, \ldots, \lambda_{n}$ such that each of the vectors

$$
v_{i}=e_{i}+\lambda_{i} u_{1}
$$

is conjugate to u_{1} w.r.t. φ, where $2 \leq i \leq n$, and that $\left(u_{1}, v_{2}, \ldots, v_{n}\right)$ is a basis.
(b) Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of vectors that are pairwise conjugate w.r.t. φ, and assume that they are ordered such that

$$
\varphi\left(e_{i}, e_{i}\right)= \begin{cases}\theta_{i} \neq 0 & \text { if } 1 \leq i \leq r \\ 0 & \text { if } r+1 \leq i \leq n\end{cases}
$$

where r is the rank of φ. Show that the matrix of φ w.r.t. $\left(e_{1}, \ldots, e_{n}\right)$ is a diagonal matrix, and that

$$
\varphi(x, y)=\sum_{i=1}^{r} \theta_{i} x_{i} y_{i}
$$

where $x=\sum_{i=1}^{n} x_{i} e_{i}$ and $y=\sum_{i=1}^{n} y_{i} e_{i}$.
Prove that for every symmetric matrix A, there is an invertible matrix P such that

$$
P^{\top} A P=D,
$$

where D is a diagonal matrix.
(c) Prove that there is an integer $p, 0 \leq p \leq r$ (where r is the rank of φ), such that $\varphi\left(u_{i}, u_{i}\right)>0$ for exactly p vectors of every basis $\left(u_{1}, \ldots, u_{n}\right)$ of vectors that are pairwise conjugate w.r.t. φ (Sylvester's inertia theorem).

Proceed as follows. Assume that in the basis $\left(u_{1}, \ldots, u_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\alpha_{1} x_{1}^{2}+\cdots+\alpha_{p} x_{p}^{2}-\alpha_{p+1} x_{p+1}^{2}-\cdots-\alpha_{r} x_{r}^{2}
$$

where $x=\sum_{i=1}^{n} x_{i} u_{i}$, and that in the basis $\left(v_{1}, \ldots, v_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\beta_{1} y_{1}^{2}+\cdots+\beta_{q} y_{q}^{2}-\beta_{q+1} y_{q+1}^{2}-\cdots-\beta_{r} y_{r}^{2}
$$

where $x=\sum_{i=1}^{n} y_{i} v_{i}$, with $\alpha_{i}>0, \beta_{i}>0,1 \leq i \leq r$.
Assume that $p>q$ and derive a contradiction. First, consider x in the subspace F spanned by

$$
\left(u_{1}, \ldots, u_{p}, u_{r+1}, \ldots, u_{n}\right),
$$

and observe that $\varphi(x, x) \geq 0$ if $x \neq 0$. Next, consider x in the subspace G spanned by

$$
\left(v_{q+1}, \ldots, v_{r}\right)
$$

and observe that $\varphi(x, x)<0$ if $x \neq 0$. Prove that $F \cap G$ is nontrivial (i.e., contains some nonnull vector), and derive a contradiction. This implies that $p \leq q$. Finish the proof.

The pair $(p, r-p)$ is called the signature of φ.
(d) A symmetric bilinear form φ is definite if for every $x \in E$, if $\varphi(x, x)=0$, then $x=0$.

Prove that a symmetric bilinear form is definite iff its signature is either $(n, 0)$ or $(0, n)$. In other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B5 (40 pts). Let H be a symmetric positive definite matrix and let K be any symmetric matrix.
(1) Prove that $H K$ is diagonalizable, with real eigenvalues.
(2) If K is also positive definite, then prove that the eigenvalues of $H K$ are positive.
(3) Prove that the number of positive (resp. negative) eigenvalues of $H K$ is equal to the number of positive (resp. negative) eigenvalues of K.

Let A be any real or complex $n \times n$ matrix. It can be shown that the sequence $\left(E_{m}\right)$ of matrices

$$
E_{m}=I+\sum_{k=1}^{m} \frac{A^{k}}{k!}
$$

converges to a limit denoted

$$
e^{A}=I+\sum_{k=1}^{\infty} \frac{A^{k}}{k!}
$$

and called the exponential of A. You may accept this fact without proof.

Problem B6 (Extra Credit 10 pts).

Let \|\| be any operator norm. Prove that for every $m \geq 1$,

$$
\|I\|+\sum_{k=1}^{m}\left\|\frac{A^{k}}{k!}\right\| \leq e^{\|A\|} .
$$

If you know some analysis, deduce from the above that the sequence $\left(E_{m}\right)$ of matrices

$$
E_{m}=I+\sum_{k=1}^{m} \frac{A^{k}}{k!}
$$

converges to a limit denoted e^{A}, and called the exponential of A.
Problem B7 (100 pts). (a) Let $\mathfrak{s o}(3)$ be the space of 3×3 skew symmetric matrices

$$
\mathfrak{s o}(3)=\left\{\left.\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\} .
$$

For any matrix

$$
A=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right) \in \mathfrak{s o}(3)
$$

if we let $\theta=\sqrt{a^{2}+b^{2}+c^{2}}$ and

$$
B=\left(\begin{array}{lll}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right)
$$

prove that

$$
\begin{aligned}
A^{2} & =-\theta^{2} I+B \\
A B & =B A=0
\end{aligned}
$$

From the above, deduce that

$$
A^{3}=-\theta^{2} A
$$

(b) Prove that the exponential map exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is given by

$$
\exp A=e^{A}=\cos \theta I_{3}+\frac{\sin \theta}{\theta} A+\frac{(1-\cos \theta)}{\theta^{2}} B
$$

or, equivalently, by

$$
e^{A}=I_{3}+\frac{\sin \theta}{\theta} A+\frac{(1-\cos \theta)}{\theta^{2}} A^{2}, \quad \text { if } \theta \neq 0
$$

with $\exp \left(0_{3}\right)=I_{3}$.
(c) Prove that e^{A} is an orthogonal matrix of determinant +1 , i.e., a rotation matrix.
(d) Prove that the exponential map exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is surjective. For this, proceed as follows: Pick any rotation matrix $R \in \mathbf{S O}(3)$;
(1) The case $R=I$ is trivial.
(2) If $R \neq I$ and $\operatorname{tr}(R) \neq-1$, then

$$
\exp ^{-1}(R)=\left\{\left.\frac{\theta}{2 \sin \theta}\left(R-R^{T}\right) \right\rvert\, 1+2 \cos \theta=\operatorname{tr}(R)\right\}
$$

(Recall that $\operatorname{tr}(R)=r_{11}+r_{22}+r_{33}$, the trace of the matrix R).
Show that there is a unique skew-symmetric B with corresponding θ satisfying $0<$ $\theta<\pi$ such that $e^{B}=R$.
(3) If $R \neq I$ and $\operatorname{tr}(R)=-1$, then prove that the eigenvalues of R are $1,-1,-1$, that $R=R^{\top}$, and that $R^{2}=I$. Prove that the matrix

$$
S=\frac{1}{2}(R-I)
$$

is a symmetric matrix whose eigenvalues are $-1,-1,0$. Thus, S can be diagonalized with respect to an orthogonal matrix Q as

$$
S=Q\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) Q^{\top} .
$$

Prove that there exists a skew symmetric matrix

$$
U=\left(\begin{array}{ccc}
0 & -d & c \\
d & 0 & -b \\
-c & b & 0
\end{array}\right)
$$

so that

$$
U^{2}=S=\frac{1}{2}(R-I)
$$

Observe that

$$
U^{2}=\left(\begin{array}{ccc}
-\left(c^{2}+d^{2}\right) & b c & b d \\
b c & -\left(b^{2}+d^{2}\right) & c d \\
b d & c d & -\left(b^{2}+c^{2}\right)
\end{array}\right)
$$

and use this to conclude that if $U^{2}=S$, then $b^{2}+c^{2}+d^{2}=1$. Then, show that

$$
\exp ^{-1}(R)=\left\{(2 k+1) \pi\left(\begin{array}{ccc}
0 & -d & c \\
d & 0 & -b \\
-c & b & 0
\end{array}\right), k \in \mathbb{Z}\right\}
$$

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix U, we have $U^{2}=S$.
(e) To find a skew symmetric matrix U so that $U^{2}=S=\frac{1}{2}(R-I)$ as in (d), we can solve the system

$$
\left(\begin{array}{ccc}
b^{2}-1 & b c & b d \\
b c & c^{2}-1 & c d \\
b d & c d & d^{2}-1
\end{array}\right)=S
$$

We immediately get b^{2}, c^{2}, d^{2}, and then, since one of b, c, d is nonzero, say b, if we choose the positive square root of b^{2}, we can determine c and d from $b c$ and $b d$.

Implement a computer program to solve the above system.
Problem B8 (120 pts). (a) Consider the set of affine maps ρ of \mathbb{R}^{3} defined such that

$$
\rho(X)=\alpha R X+W
$$

where R is a rotation matrix (an orthogonal matrix of determinant +1), W is some vector in \mathbb{R}^{3}, and $\alpha \in \mathbb{R}$ with $\alpha>0$. Every such a map can be represented by the 4×4 matrix

$$
\left(\begin{array}{cc}
\alpha R & W \\
0 & 1
\end{array}\right)
$$

in the sense that

$$
\binom{\rho(X)}{1}=\left(\begin{array}{cc}
\alpha R & W \\
0 & 1
\end{array}\right)\binom{X}{1}
$$

iff

$$
\rho(X)=\alpha R X+W
$$

Prove that these maps form a group, denoted by $\mathbf{S I M}(3)$ (the direct affine similitudes of \mathbb{R}^{3}).
(b) Let us now consider the set of 4×4 real matrices of the form

$$
B=\left(\begin{array}{cc}
\Gamma & W \\
0 & 0
\end{array}\right)
$$

where Γ is a matrix of the form

$$
\Gamma=\lambda I_{3}+\Omega
$$

with

$$
\Omega=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

so that

$$
\Gamma=\left(\begin{array}{ccc}
\lambda & -c & b \\
c & \lambda & -a \\
-b & a & \lambda
\end{array}\right)
$$

and W is a vector in \mathbb{R}^{3}.
Verify that this set of matrices is a vector space isomorphic to $\left(\mathbb{R}^{7},+\right)$. This vector space is denoted by $\mathfrak{s i m}(3)$.
(c) Given a matrix

$$
B=\left(\begin{array}{cc}
\Gamma & W \\
0 & 0
\end{array}\right)
$$

as in (b), prove that

$$
B^{n}=\left(\begin{array}{cc}
\Gamma^{n} & \Gamma^{n-1} W \\
0 & 0
\end{array}\right)
$$

where $\Gamma^{0}=I_{3}$. Prove that

$$
e^{B}=\left(\begin{array}{cc}
e^{\Gamma} & V W \\
0 & 1
\end{array}\right)
$$

where

$$
V=I_{3}+\sum_{k \geq 1} \frac{\Gamma^{k}}{(k+1)!}
$$

(d) Prove that if $\Gamma=\lambda I_{3}+\Omega$ as in (b), then

$$
V=I_{3}+\sum_{k \geq 1} \frac{\Gamma^{k}}{(k+1)!}=\int_{0}^{1} e^{\Gamma t} d t
$$

(e) For any matrix $\Gamma=\lambda I_{3}+\Omega$, with

$$
\Omega=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

if we let $\theta=\sqrt{a^{2}+b^{2}+c^{2}}$, then prove that

$$
e^{\Gamma}=e^{\lambda} e^{\Omega}=e^{\lambda}\left(I_{3}+\frac{\sin \theta}{\theta} \Omega+\frac{(1-\cos \theta)}{\theta^{2}} \Omega^{2}\right), \quad \text { if } \theta \neq 0
$$

and $e^{\Gamma}=e^{\lambda} I_{3}$ if $\theta=0$.
Hint. You may use the fact that if $A B=B A$, then $e^{A+B}=e^{A} e^{B}$. In general, $e^{A+B} \neq e^{A} e^{B}$!
(f) Prove that

1. If $\theta=0$ and $\lambda=0$, then

$$
V=I_{3}
$$

2. If $\theta=0$ and $\lambda \neq 0$, then

$$
V=\frac{\left(e^{\lambda}-1\right)}{\lambda} I_{3}
$$

3. If $\theta \neq 0$ and $\lambda=0$, then

$$
V=I_{3}+\frac{(1-\cos \theta)}{\theta^{2}} \Omega+\frac{(\theta-\sin \theta)}{\theta^{3}} \Omega^{2}
$$

4. If $\theta \neq 0$ and $\lambda \neq 0$, then

$$
\begin{aligned}
V= & \frac{\left(e^{\lambda}-1\right)}{\lambda} I_{3}+\frac{\left(\theta\left(1-e^{\lambda} \cos \theta\right)+e^{\lambda} \lambda \sin \theta\right)}{\theta\left(\lambda^{2}+\theta^{2}\right)} \Omega \\
& +\left(\frac{\left(e^{\lambda}-1\right)}{\lambda \theta^{2}}-\frac{e^{\lambda} \sin \theta}{\theta\left(\lambda^{2}+\theta^{2}\right)}-\frac{\lambda\left(e^{\lambda} \cos \theta-1\right)}{\theta^{2}\left(\lambda^{2}+\theta^{2}\right)}\right) \Omega^{2}
\end{aligned}
$$

Hint. You will need to compute $\int_{0}^{1} e^{\lambda t} \sin \theta t d t$ and $\int_{0}^{1} e^{\lambda t} \cos \theta t d t$.
(g) Prove that V is invertible iff $\lambda \neq 0$ or $\theta \neq k 2 \pi$, with $k \in \mathbb{Z}-\{0\}$.

Hint. Express the eigenvalues of V in terms of the eigenvalues of Γ.
In the special case where $\lambda=0$, show that

$$
V^{-1}=I-\frac{1}{2} \Omega+\frac{1}{\theta^{2}}\left(1-\frac{\theta \sin \theta}{2(1-\cos \theta)}\right) \Omega^{2}, \quad \text { if } \theta \neq 0
$$

Hint. Assume that the inverse of V is of the form

$$
Z=I_{3}+a \Omega+b \Omega^{2}
$$

and show that a, b, are given by a system of linear equations that always has a unique solution.
(h) Prove that the exponential map exp: $\mathfrak{s i m}(3) \rightarrow \mathbf{S I M}(3)$, given by $\exp (B)=e^{B}$, is surjective. You may use the fact that $\exp : \mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is surjective, proved in another Problem.

Remark: Curves in $\operatorname{SIM}(3)$ can be used to describe certain deformations of bodies in \mathbb{R}^{3}.
TOTAL: 410 points+ 10 points Extra credit

