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Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 6

December 3, 2018; Due December 13, 2018

Problem B1 (30 pts). Let E be a real vector space of finite dimension, n ≥ 1. Say that
two bases, (u1, . . . , un) and (v1, . . . , vn), of E have the same orientation iff det(P ) > 0, where
P the change of basis matrix from (u1, . . . , un) and (v1, . . . , vn), namely, the matrix whose
jth columns consist of the coordinates of vj over the basis (u1, . . . , un).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e1, . . . , en), of
E. Any other basis, (v1, . . . , vn), has the same orientation as (e1, . . . , en) (and is said to be
positive or direct) iff det(P ) > 0, else it is said to have the opposite orientation of (e1, . . . , en)
(or to be negative or indirect), where P is the change of basis matrix from (e1, . . . , en) to
(v1, . . . , vn). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) be two orthonormal bases. For any
sequence of vectors, (w1, . . . , wn), in E, let detB1(w1, . . . , wn) be the determinant of the
matrix whose columns are the coordinates of the wj’s over the basis B1 and similarly for
detB2(w1, . . . , wn).

Prove that if B1 and B2 have the same orientation, then

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

Given any oriented vector space, E, for any sequence of vectors, (w1, . . . , wn), in E, the
common value, detB(w1, . . . , wn), for all positive orthonormal bases, B, of E is denoted

λE(w1, . . . , wn)

and called a volume form of (w1, . . . , wn).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n− 1 vectors,
w1, . . . , wn−1, in E, check that the map

x 7→ λE(w1, . . . , wn−1, x)
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is a linear form. Then, prove that there is a unique vector, denoted w1 × · · · × wn−1, such
that

λE(w1, . . . , wn−1, x) = (w1 × · · · × wn−1) · x,

for all x ∈ E. The vector w1 × · · · ×wn−1 is called the cross-product of (w1, . . . , wn−1). It is
a generalization of the cross-product in R3 (when n = 3).

Problem B2 (50 pts). Given p vectors (u1, . . . , up) in a Euclidean space E of dimension
n ≥ p, the Gram determinant (or Gramian) of the vectors (u1, . . . , up) is the determinant

Gram(u1, . . . , up) =

∣∣∣∣∣∣∣∣∣
‖u1‖2 〈u1, u2〉 . . . 〈u1, up〉
〈u2, u1〉 ‖u2‖2 . . . 〈u2, up〉

...
...

. . .
...

〈up, u1〉 〈up, u2〉 . . . ‖up‖2

∣∣∣∣∣∣∣∣∣ .

(1) Prove that
Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . If (e1, . . . , en) is an orthonormal basis and A is the matrix of the vectors (u1, . . . , un)
over this basis,

det(A)2 = det(A>A) = det(Ai · Aj),

where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes the n × n matrix
with entries Ai · Aj.

(2) Prove that
‖u1 × · · · × un−1‖2 = Gram(u1, . . . , un−1).

Hint . Letting w = u1 × · · · × un−1, observe that

λE(u1, . . . , un−1, w) = 〈w,w〉 = ‖w‖2,

and show that

‖w‖4 = λE(u1, . . . , un−1, w)2 = Gram(u1, . . . , un−1, w)

= Gram(u1, . . . , un−1)‖w‖2.

Problem B3 (20 pts). Let ϕ : E × E → R be a bilinear form on a real vector space E of
finite dimension n. Given any basis (e1, . . . , en) of E, let A = (ai j) be the matrix defined
such that

ai j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).
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(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X>AY.

(b) Recall that A is a symmetric matrix if A = A>. Prove that ϕ is symmetric if A is a
symmetric matrix.

(c) If (f1, . . . , fn) is another basis of E and P is the change of basis matrix from (e1, . . . , en)
to (f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis (f1, . . . , fn) is

P>AP.

The common rank of all matrices representing ϕ is called the rank of ϕ.

Problem B4 (50 pts). Let ϕ : E × E → R be a symmetric bilinear form on a real vector
space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal
w.r.t. ϕ if ϕ(x, y) = 0. The main purpose of this problem is to prove that there is a basis of
vectors that are pairwise conjugate w.r.t. ϕ.

(a) Prove that if ϕ(x, x) = 0 for all x ∈ E, then ϕ is identically null on E.

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x, x) 6= 0.

Use induction to prove that there is a basis of vectors (u1, . . . , un) that are pairwise
conjugate w.r.t. ϕ.

Hint . For the induction step, proceed as follows. Let (u1, e2, . . . , en) be a basis of E, with
ϕ(u1, u1) 6= 0. Prove that there are scalars λ2, . . . , λn such that each of the vectors

vi = ei + λiu1

is conjugate to u1 w.r.t. ϕ, where 2 ≤ i ≤ n, and that (u1, v2, . . . , vn) is a basis.

(b) Let (e1, . . . , en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ, and assume
that they are ordered such that

ϕ(ei, ei) =

{
θi 6= 0 if 1 ≤ i ≤ r,
0 if r + 1 ≤ i ≤ n,

where r is the rank of ϕ. Show that the matrix of ϕ w.r.t. (e1, . . . , en) is a diagonal matrix,
and that

ϕ(x, y) =
r∑
i=1

θixiyi,

where x =
∑n

i=1 xiei and y =
∑n

i=1 yiei.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

P>AP = D,

3



where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such that
ϕ(ui, ui) > 0 for exactly p vectors of every basis (u1, . . . , un) of vectors that are pairwise
conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . , un), for any x ∈ E, we have

ϕ(x, x) = α1x
2
1 + · · ·+ αpx

2
p − αp+1x

2
p+1 − · · · − αrx2

r,

where x =
∑n

i=1 xiui, and that in the basis (v1, . . . , vn), for any x ∈ E, we have

ϕ(x, x) = β1y
2
1 + · · ·+ βqy

2
q − βq+1y

2
q+1 − · · · − βry2

r ,

where x =
∑n

i=1 yivi, with αi > 0, βi > 0, 1 ≤ i ≤ r.

Assume that p > q and derive a contradiction. First, consider x in the subspace F
spanned by

(u1, . . . , up, ur+1, . . . , un),

and observe that ϕ(x, x) ≥ 0 if x 6= 0. Next, consider x in the subspace G spanned by

(vq+1, . . . , vr),

and observe that ϕ(x, x) < 0 if x 6= 0. Prove that F ∩ G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p ≤ q. Finish the proof.

The pair (p, r − p) is called the signature of ϕ.

(d) A symmetric bilinear form ϕ is definite if for every x ∈ E, if ϕ(x, x) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B5 (40 pts). Let H be a symmetric positive definite matrix and let K be any
symmetric matrix.

(1) Prove that HK is diagonalizable, with real eigenvalues.

(2) If K is also positive definite, then prove that the eigenvalues of HK are positive.

(3) Prove that the number of positive (resp. negative) eigenvalues of HK is equal to the
number of positive (resp. negative) eigenvalues of K.

Let A be any real or complex n × n matrix. It can be shown that the sequence (Em) of
matrices

Em = I +
m∑
k=1

Ak

k!
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converges to a limit denoted

eA = I +
∞∑
k=1

Ak

k!

and called the exponential of A. You may accept this fact without proof.

Problem B6 (Extra Credit 10 pts).

Let ‖ ‖ be any operator norm. Prove that for every m ≥ 1,

‖I‖+
m∑
k=1

∥∥∥∥Akk!

∥∥∥∥ ≤ e‖A‖.

If you know some analysis, deduce from the above that the sequence (Em) of matrices

Em = I +
m∑
k=1

Ak

k!

converges to a limit denoted eA, and called the exponential of A.

Problem B7 (100 pts). (a) Let so(3) be the space of 3× 3 skew symmetric matrices

so(3) =


 0 −c b
c 0 −a
−b a 0

 ∣∣∣∣ a, b, c ∈ R

 .

For any matrix

A =

 0 −c b
c 0 −a
−b a 0

 ∈ so(3),

if we let θ =
√
a2 + b2 + c2 and

B =

a2 ab ac
ab b2 bc
ac bc c2

 ,

prove that

A2 = −θ2I +B,

AB = BA = 0.

From the above, deduce that
A3 = −θ2A.
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(b) Prove that the exponential map exp: so(3)→ SO(3) is given by

expA = eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2, if θ 6= 0,

with exp(03) = I3.

(c) Prove that eA is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

(d) Prove that the exponential map exp: so(3)→ SO(3) is surjective. For this, proceed
as follows: Pick any rotation matrix R ∈ SO(3);

(1) The case R = I is trivial.

(2) If R 6= I and tr(R) 6= −1, then

exp−1(R) =

{
θ

2 sin θ
(R−RT )

∣∣∣∣ 1 + 2 cos θ = tr(R)

}
.

(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the matrix R).

Show that there is a unique skew-symmetric B with corresponding θ satisfying 0 <
θ < π such that eB = R.

(3) If R 6= I and tr(R) = −1, then prove that the eigenvalues of R are 1,−1,−1, that
R = R>, and that R2 = I. Prove that the matrix

S =
1

2
(R− I)

is a symmetric matrix whose eigenvalues are −1,−1, 0. Thus, S can be diagonalized
with respect to an orthogonal matrix Q as

S = Q

−1 0 0
0 −1 0
0 0 0

Q>.

Prove that there exists a skew symmetric matrix

U =

 0 −d c
d 0 −b
−c b 0


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so that

U2 = S =
1

2
(R− I).

Observe that

U2 =

−(c2 + d2) bc bd
bc −(b2 + d2) cd
bd cd −(b2 + c2)

 ,

and use this to conclude that if U2 = S, then b2 + c2 + d2 = 1. Then, show that

exp−1(R) =

(2k + 1)π

 0 −d c
d 0 −b
−c b 0

 , k ∈ Z

 ,

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix
U , we have U2 = S.

(e) To find a skew symmetric matrix U so that U2 = S = 1
2
(R − I) as in (d), we can

solve the system b2 − 1 bc bd
bc c2 − 1 cd
bd cd d2 − 1

 = S.

We immediately get b2, c2, d2, and then, since one of b, c, d is nonzero, say b, if we choose the
positive square root of b2, we can determine c and d from bc and bd.

Implement a computer program to solve the above system.

Problem B8 (120 pts). (a) Consider the set of affine maps ρ of R3 defined such that

ρ(X) = αRX +W,

where R is a rotation matrix (an orthogonal matrix of determinant +1), W is some vector
in R3, and α ∈ R with α > 0. Every such a map can be represented by the 4× 4 matrix(

αR W
0 1

)
in the sense that (

ρ(X)
1

)
=

(
αR W
0 1

)(
X
1

)
iff

ρ(X) = αRX +W.

Prove that these maps form a group, denoted by SIM(3) (the direct affine similitudes
of R3).
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(b) Let us now consider the set of 4× 4 real matrices of the form

B =

(
Γ W
0 0

)
,

where Γ is a matrix of the form
Γ = λI3 + Ω,

with

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

so that

Γ =

 λ −c b
c λ −a
−b a λ

 ,

and W is a vector in R3.

Verify that this set of matrices is a vector space isomorphic to (R7,+). This vector space
is denoted by sim(3).

(c) Given a matrix

B =

(
Γ W
0 0

)
as in (b), prove that

Bn =

(
Γn Γn−1W
0 0

)
where Γ0 = I3. Prove that

eB =

(
eΓ VW
0 1

)
,

where

V = I3 +
∑
k≥1

Γk

(k + 1)!
.

(d) Prove that if Γ = λI3 + Ω as in (b), then

V = I3 +
∑
k≥1

Γk

(k + 1)!
=

∫ 1

0

eΓtdt.

(e) For any matrix Γ = λI3 + Ω, with

Ω =

 0 −c b
c 0 −a
−b a 0

 ,
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if we let θ =
√
a2 + b2 + c2, then prove that

eΓ = eλeΩ = eλ
(
I3 +

sin θ

θ
Ω +

(1− cos θ)

θ2
Ω2

)
, if θ 6= 0,

and eΓ = eλI3 if θ = 0.

Hint . You may use the fact that if AB = BA, then eA+B = eAeB. In general, eA+B 6= eAeB!

(f) Prove that

1. If θ = 0 and λ = 0, then
V = I3.

2. If θ = 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3;

3. If θ 6= 0 and λ = 0, then

V = I3 +
(1− cos θ)

θ2
Ω +

(θ − sin θ)

θ3
Ω2.

4. If θ 6= 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3 +

(θ(1− eλ cos θ) + eλλ sin θ)

θ(λ2 + θ2)
Ω

+

(
(eλ − 1)

λθ2
− eλ sin θ

θ(λ2 + θ2)
− λ(eλ cos θ − 1)

θ2(λ2 + θ2)

)
Ω2.

Hint . You will need to compute
∫ 1

0
eλt sin θt dt and

∫ 1

0
eλt cos θt dt.

(g) Prove that V is invertible iff λ 6= 0 or θ 6= k2π, with k ∈ Z− {0}.
Hint . Express the eigenvalues of V in terms of the eigenvalues of Γ.

In the special case where λ = 0, show that

V −1 = I − 1

2
Ω +

1

θ2

(
1− θ sin θ

2(1− cos θ)

)
Ω2, if θ 6= 0.

Hint . Assume that the inverse of V is of the form

Z = I3 + aΩ + bΩ2,

and show that a, b, are given by a system of linear equations that always has a unique
solution.
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(h) Prove that the exponential map exp: sim(3) → SIM(3), given by exp(B) = eB, is
surjective. You may use the fact that exp: so(3) → SO(3) is surjective, proved in another
Problem.

Remark: Curves in SIM(3) can be used to describe certain deformations of bodies in R3.

TOTAL: 410 points+ 10 points Extra credit
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