Fall, 2015 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 6

November 24, 2015; Due December 15, 2015

Problem B1 (50). Let Z be a $q \times p$ real matrix. Prove that is $I_{p}-Z^{\top} Z$ is positive definite, then the $(p+q) \times(p+q)$ matrix

$$
S=\left(\begin{array}{cc}
I_{p} & Z^{\top} \\
Z & I_{q}
\end{array}\right)
$$

is symmetric positive definite.
Problem B2 (120). (1) Prove that the columns of the following $n \times n$ matrix are linearly independent when $n \geq 3$:

$$
B=\left(\begin{array}{ccccccc}
1 & -1 & -1 & -1 & \cdots & -1 & -1 \\
1 & -1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 1 & -1 & 1 & \cdots & 1 & 1 \\
1 & 1 & 1 & -1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & \cdots & -1 & 1 \\
1 & 1 & 1 & 1 & \cdots & 1 & -1
\end{array}\right)
$$

In fact, prove that

$$
\operatorname{det}(B)=(-1)^{n}(n-2) 2^{n-1}
$$

(2) Consider the $n \times n$ matrices $R^{i, j}$ defined for all i, j with $1 \leq i<j \leq n$ and $n \geq 3$, such that the only nonzero entries are

$$
\begin{aligned}
R^{i, j}(i, j) & =-1 \\
R^{i, j}(i, i) & =0 \\
R^{i, j}(j, i) & =1 \\
R^{i, j}(j, j) & =0 \\
R^{i, j}(k, k) & =1, \quad 1 \leq k \leq n, k \neq i, j .
\end{aligned}
$$

For example,

$$
R^{i, j}=\left(\begin{array}{ccccccccccc}
1 & & & & & & & & & & \\
\\
& \ddots & & & & & & & & & \\
& & 1 & & & & & & & & \\
& & & 0 & 0 & \cdots & 0 & -1 & & & \\
& & & 0 & 1 & \cdots & 0 & 0 & & & \\
& & & \vdots & \vdots & \ddots & \vdots & \vdots & & & \\
& & & 0 & 0 & \cdots & 1 & 0 & & & \\
& & & 1 & 0 & \cdots & 0 & 0 & & & \\
& & & & & & & & 1 & & \\
& & & & & & & & & \ddots & \\
& & & & & & & & & & 1
\end{array}\right)
$$

Prove that the $R^{i, j}$ are rotation matrices. Use the matrices $R^{i j}$ to form a basis of the $n \times n$ skew-symmetric matrices.
(3) Consider the $n \times n$ symmetric matrices $S^{i, j}$ defined for all i, j with $1 \leq i<j \leq n$ and $n \geq 3$, such that the only nonzero entries are

$$
\begin{aligned}
S^{i, j}(i, j) & =1 \\
S^{i, j}(i, i) & =0 \\
S^{i, j}(j, i) & =1 \\
S^{i, j}(j, j) & =0 \\
S^{i, j}(k, k) & =1, \quad 1 \leq k \leq n, k \neq i, j,
\end{aligned}
$$

and if $i+2 \leq j$ then $S^{i, j}(i+1, i+1)=-1$, else if $i>1$ and $j=i+1$ then $S^{i, j}(1,1)=-1$, and if $i=1$ and $j=2$, then $S^{i, j}(3,3)=-1$.

For example,

$$
S^{i, j}=\left(\begin{array}{ccccccccccc}
1 & & & & & & & & & & \\
& \ddots & & & & & & & & & \\
& & 1 & & & & & & & & \\
& & & 0 & 0 & \cdots & 0 & 1 & & & \\
& & & 0 & -1 & \cdots & 0 & 0 & & & \\
& & & \vdots & \vdots & \ddots & \vdots & \vdots & & & \\
& & & 0 & 0 & \cdots & 1 & 0 & & & \\
& & & 1 & 0 & \cdots & 0 & 0 & & & \\
& & & & & & & & 1 & & \\
& & & & & & & & & \ddots & \\
& & & & & & & & & & 1
\end{array}\right)
$$

Note that $S^{i, j}$ has a single diagonal entry equal to -1 . Prove that the $S^{i, j}$ are rotations matrices.

Use (1) together with the $S^{i, j}$ to form a basis of the $n \times n$ symmetric matrices.
(4) Prove that if $n \geq 3$, the set of all linear combinations of matrices in $\mathbf{S O}(n)$ is the space $\mathrm{M}_{n}(\mathbb{R})$ of all $n \times n$ matrices.

Prove that if $n \geq 3$ and if a matrix $A \in \mathrm{M}_{n}(\mathbb{R})$ commutes with all rotations matrices, then A commutes with all matrices in $\mathrm{M}_{n}(\mathbb{R})$.

What happens for $n=2$?
Prove that if $n \geq 2$, the set of all linear combinations of matrices in $\mathbf{S U}(n)$ is the space $\mathrm{M}_{n}(\mathbb{C})$ of all $n \times n$ complex matrices.

Problem B3 (10 pts). Let A be any real or complex $n \times n$ matrix and let $\|\|$ be any operator norm.

Prove that for every $m \geq 1$,

$$
\|I\|+\sum_{k=1}^{m}\left\|\frac{A^{k}}{k!}\right\| \leq e^{\|A\|} .
$$

If you know some analysis, deduce from the above that the sequence $\left(E_{m}\right)$ of matrices

$$
E_{m}=I+\sum_{k=1}^{m} \frac{A^{k}}{k!}
$$

converges to a limit denoted e^{A}, and called the exponential of A.
Problem B4 (100 pts). (a) For any matrix

$$
A=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

if we let $\theta=\sqrt{a^{2}+b^{2}+c^{2}}$ and

$$
B=\left(\begin{array}{lll}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right),
$$

prove that

$$
\begin{aligned}
A^{2} & =-\theta^{2} I+B \\
A B & =B A=0
\end{aligned}
$$

From the above, deduce that

$$
A^{3}=-\theta^{2} A
$$

(b) Prove that the exponential map exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is given by

$$
\exp A=e^{A}=\cos \theta I_{3}+\frac{\sin \theta}{\theta} A+\frac{(1-\cos \theta)}{\theta^{2}} B
$$

or, equivalently, by

$$
e^{A}=I_{3}+\frac{\sin \theta}{\theta} A+\frac{(1-\cos \theta)}{\theta^{2}} A^{2}, \quad \text { if } \theta \neq 0
$$

with $\exp \left(0_{3}\right)=I_{3}$.
(c) Prove that e^{A} is an orthogonal matrix of determinant +1 , i.e., a rotation matrix.
(d) Prove that the exponential map exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is surjective. For this, proceed as follows: Pick any rotation matrix $R \in \mathbf{S O}(3)$;
(1) The case $R=I$ is trivial.
(2) If $R \neq I$ and $\operatorname{tr}(R) \neq-1$, then

$$
\exp ^{-1}(R)=\left\{\left.\frac{\theta}{2 \sin \theta}\left(R-R^{T}\right) \right\rvert\, 1+2 \cos \theta=\operatorname{tr}(R)\right\}
$$

(Recall that $\operatorname{tr}(R)=r_{11}+r_{22}+r_{33}$, the trace of the matrix R).
Show that there is a unique skew-symmetric B with corresponding θ satisfying $0<$ $\theta<\pi$ such that $e^{B}=R$.
(3) If $R \neq I$ and $\operatorname{tr}(R)=-1$, then prove that the eigenvalues of R are $1,-1,-1$, that $R=R^{\top}$, and that $R^{2}=I$. Prove that the matrix

$$
S=\frac{1}{2}(R-I)
$$

is a symmetric matrix whose eigenvalues are $-1,-1,0$. Thus, S can be diagonalized with respect to an orthogonal matrix Q as

$$
S=Q\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) Q^{\top} .
$$

Prove that there exists a skew symmetric matrix

$$
U=\left(\begin{array}{ccc}
0 & -d & c \\
d & 0 & -b \\
-c & b & 0
\end{array}\right)
$$

so that

$$
U^{2}=S=\frac{1}{2}(R-I)
$$

Observe that

$$
U^{2}=\left(\begin{array}{ccc}
-\left(c^{2}+d^{2}\right) & b c & b d \\
b c & -\left(b^{2}+d^{2}\right) & c d \\
b d & c d & -\left(b^{2}+c^{2}\right)
\end{array}\right)
$$

and use this to conclude that if $U^{2}=S$, then $b^{2}+c^{2}+d^{2}=1$. Then, show that

$$
\exp ^{-1}(R)=\left\{(2 k+1) \pi\left(\begin{array}{ccc}
0 & -d & c \\
d & 0 & -b \\
-c & b & 0
\end{array}\right), k \in \mathbb{Z}\right\}
$$

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix U, we have $U^{2}=S$.
(e) To find a skew symmetric matrix U so that $U^{2}=S=\frac{1}{2}(R-I)$ as in (d), we can solve the system

$$
\left(\begin{array}{ccc}
b^{2}-1 & b c & b d \\
b c & c^{2}-1 & c d \\
b d & c d & d^{2}-1
\end{array}\right)=S
$$

We immediately get b^{2}, c^{2}, d^{2}, and then, since one of b, c, d is nonzero, say b, if we choose the positive square root of b^{2}, we can determine c and d from $b c$ and $b d$.

Implement a computer program to solve the above system.
Problem B5 (120 pts). (a) Consider the set of affine maps ρ of \mathbb{R}^{3} defined such that

$$
\rho(X)=\alpha R X+W
$$

where R is a rotation matrix (an orthogonal matrix of determinant +1), W is some vector in \mathbb{R}^{3}, and $\alpha \in \mathbb{R}$ with $\alpha>0$. Every such a map can be represented by the 4×4 matrix

$$
\left(\begin{array}{cc}
\alpha R & W \\
0 & 1
\end{array}\right)
$$

in the sense that

$$
\binom{\rho(X)}{1}=\left(\begin{array}{cc}
\alpha R & W \\
0 & 1
\end{array}\right)\binom{X}{1}
$$

iff

$$
\rho(X)=\alpha R X+W .
$$

Prove that these maps form a group, denoted by SIM(3) (the direct affine similitudes of \mathbb{R}^{3}).
(b) Let us now consider the set of 4×4 real matrices of the form

$$
B=\left(\begin{array}{cc}
\Gamma & W \\
0 & 0
\end{array}\right)
$$

where Γ is a matrix of the form

$$
\Gamma=\lambda I_{3}+\Omega
$$

with

$$
\Omega=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

so that

$$
\Gamma=\left(\begin{array}{ccc}
\lambda & -c & b \\
c & \lambda & -a \\
-b & a & \lambda
\end{array}\right)
$$

and W is a vector in \mathbb{R}^{3}.
Verify that this set of matrices is a vector space isomorphic to $\left(\mathbb{R}^{7},+\right)$. This vector space is denoted by $\mathfrak{s i m}(3)$.
(c) Given a matrix

$$
B=\left(\begin{array}{cc}
\Gamma & W \\
0 & 0
\end{array}\right)
$$

as in (b), prove that

$$
B^{n}=\left(\begin{array}{cc}
\Gamma^{n} & \Gamma^{n-1} W \\
0 & 0
\end{array}\right)
$$

where $\Gamma^{0}=I_{3}$. Prove that

$$
e^{B}=\left(\begin{array}{cc}
e^{\Gamma} & V W \\
0 & 1
\end{array}\right)
$$

where

$$
V=I_{3}+\sum_{k \geq 1} \frac{\Gamma^{k}}{(k+1)!}
$$

(d) Prove that if $\Gamma=\lambda I_{3}+\Omega$ as in (b), then

$$
V=I_{3}+\sum_{k \geq 1} \frac{\Gamma^{k}}{(k+1)!}=\int_{0}^{1} e^{\Gamma t} d t
$$

(e) For any matrix $\Gamma=\lambda I_{3}+\Omega$, with

$$
\Omega=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

if we let $\theta=\sqrt{a^{2}+b^{2}+c^{2}}$, then prove that

$$
e^{\Gamma}=e^{\lambda} e^{\Omega}=e^{\lambda}\left(I_{3}+\frac{\sin \theta}{\theta} \Omega+\frac{(1-\cos \theta)}{\theta^{2}} \Omega^{2}\right), \quad \text { if } \theta \neq 0
$$

and $e^{\Gamma}=e^{\lambda} I_{3}$ if $\theta=0$.
Hint. You may use the fact that if $A B=B A$, then $e^{A+B}=e^{A} e^{B}$. In general, $e^{A+B} \neq e^{A} e^{B}$!
(f) Prove that

1. If $\theta=0$ and $\lambda=0$, then

$$
V=I_{3}
$$

2. If $\theta=0$ and $\lambda \neq 0$, then

$$
V=\frac{\left(e^{\lambda}-1\right)}{\lambda} I_{3}
$$

3. If $\theta \neq 0$ and $\lambda=0$, then

$$
V=I_{3}+\frac{(1-\cos \theta)}{\theta^{2}} \Omega+\frac{(\theta-\sin \theta)}{\theta^{3}} \Omega^{2}
$$

4. If $\theta \neq 0$ and $\lambda \neq 0$, then

$$
\begin{aligned}
V= & \frac{\left(e^{\lambda}-1\right)}{\lambda} I_{3}+\frac{\left(\theta\left(1-e^{\lambda} \cos \theta\right)+e^{\lambda} \lambda \sin \theta\right)}{\theta\left(\lambda^{2}+\theta^{2}\right)} \Omega \\
& +\left(\frac{\left(e^{\lambda}-1\right)}{\lambda \theta^{2}}-\frac{e^{\lambda} \sin \theta}{\theta\left(\lambda^{2}+\theta^{2}\right)}-\frac{\lambda\left(e^{\lambda} \cos \theta-1\right)}{\theta^{2}\left(\lambda^{2}+\theta^{2}\right)}\right) \Omega^{2}
\end{aligned}
$$

Hint. You will need to compute $\int_{0}^{1} e^{\lambda t} \sin \theta t d t$ and $\int_{0}^{1} e^{\lambda t} \cos \theta t d t$.
(g) Prove that V is invertible iff $\lambda \neq 0$ or $\theta \neq k 2 \pi$, with $k \in \mathbb{Z}-\{0\}$.

Hint. Express the eigenvalues of V in terms of the eigenvalues of Γ.
In the special case where $\lambda=0$, show that

$$
V^{-1}=I-\frac{1}{2} \Omega+\frac{1}{\theta^{2}}\left(1-\frac{\theta \sin \theta}{2(1-\cos \theta)}\right) \Omega^{2}, \quad \text { if } \theta \neq 0
$$

Hint. Assume that the inverse of V is of the form

$$
Z=I_{3}+a \Omega+b \Omega^{2}
$$

and show that a, b, are given by a system of linear equations that always has a unique solution.
(h) Prove that the exponential map $\exp : \mathfrak{s i m}(3) \rightarrow \mathbf{S I M}(3)$, given by $\exp (B)=e^{B}$, is surjective. You may use the fact that exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is surjective, proved in another Problem.

Remark: Curves in $\operatorname{SIM}(3)$ can be used to describe certain deformations of bodies in \mathbb{R}^{3}.
Problem B6 (30 pts). Let E be a real vector space of finite dimension, $n \geq 1$. Say that two bases, $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, of E have the same orientation $\operatorname{iff} \operatorname{det}(P)>0$, where P the change of basis matrix from $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, namely, the matrix whose j th columns consist of the coordinates of v_{j} over the basis $\left(u_{1}, \ldots, u_{n}\right)$.
(a) Prove that having the same orientation is an equivalence relation with two equivalence classes.

An orientation of a vector space, E, is the choice of any fixed basis, say $\left(e_{1}, \ldots, e_{n}\right)$, of E. Any other basis, $\left(v_{1}, \ldots, v_{n}\right)$, has the same orientation as $\left(e_{1}, \ldots, e_{n}\right)$ (and is said to be positive or direct) iff $\operatorname{det}(P)>0$, else it is said to have the opposite orientation of $\left(e_{1}, \ldots, e_{n}\right)$ (or to be negative or indirect), where P is the change of basis matrix from $\left(e_{1}, \ldots, e_{n}\right)$ to $\left(v_{1}, \ldots, v_{n}\right)$. An oriented vector space is a vector space with some chosen orientation (a positive basis).
(b) Let $B_{1}=\left(u_{1}, \ldots, u_{n}\right)$ and $B_{2}=\left(v_{1}, \ldots, v_{n}\right)$ be two orthonormal bases. For any sequence of vectors, $\left(w_{1}, \ldots, w_{n}\right)$, in E, let $\operatorname{det}_{B_{1}}\left(w_{1}, \ldots, w_{n}\right)$ be the determinant of the matrix whose columns are the coordinates of the w_{j} 's over the basis B_{1} and similarly for $\operatorname{det}_{B_{2}}\left(w_{1}, \ldots, w_{n}\right)$.

Prove that if B_{1} and B_{2} have the same orientation, then

$$
\operatorname{det}_{B_{1}}\left(w_{1}, \ldots, w_{n}\right)=\operatorname{det}_{B_{2}}\left(w_{1}, \ldots, w_{n}\right) .
$$

Given any oriented vector space, E, for any sequence of vectors, $\left(w_{1}, \ldots, w_{n}\right)$, in E, the common value, $\operatorname{det}_{B}\left(w_{1}, \ldots, w_{n}\right)$, for all positive orthonormal bases, B, of E is denoted

$$
\lambda_{E}\left(w_{1}, \ldots, w_{n}\right)
$$

and called a volume form of $\left(w_{1}, \ldots, w_{n}\right)$.
(c) Given any Euclidean oriented vector space, E, of dimension n for any $n-1$ vectors, w_{1}, \ldots, w_{n-1}, in E, check that the map

$$
x \mapsto \lambda_{E}\left(w_{1}, \ldots, w_{n-1}, x\right)
$$

is a linear form. Then, prove that there is a unique vector, denoted $w_{1} \times \cdots \times w_{n-1}$, such that

$$
\lambda_{E}\left(w_{1}, \ldots, w_{n-1}, x\right)=\left(w_{1} \times \cdots \times w_{n-1}\right) \cdot x
$$

for all $x \in E$. The vector $w_{1} \times \cdots \times w_{n-1}$ is called the cross-product of $\left(w_{1}, \ldots, w_{n-1}\right)$. It is a generalization of the cross-product in \mathbb{R}^{3} (when $n=3$).

Problem B7 (40 pts). Given p vectors $\left(u_{1}, \ldots, u_{p}\right)$ in a Euclidean space E of dimension $n \geq p$, the Gram determinant (or Gramian) of the vectors $\left(u_{1}, \ldots, u_{p}\right)$ is the determinant

$$
\operatorname{Gram}\left(u_{1}, \ldots, u_{p}\right)=\left|\begin{array}{cccc}
\left\|u_{1}\right\|^{2} & \left\langle u_{1}, u_{2}\right\rangle & \ldots & \left\langle u_{1}, u_{p}\right\rangle \\
\left\langle u_{2}, u_{1}\right\rangle & \left\|u_{2}\right\|^{2} & \ldots & \left\langle u_{2}, u_{p}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle u_{p}, u_{1}\right\rangle & \left\langle u_{p}, u_{2}\right\rangle & \ldots & \left\|u_{p}\right\|^{2}
\end{array}\right| .
$$

(1) Prove that

$$
\operatorname{Gram}\left(u_{1}, \ldots, u_{n}\right)=\lambda_{E}\left(u_{1}, \ldots, u_{n}\right)^{2}
$$

Hint. If $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis and A is the matrix of the vectors $\left(u_{1}, \ldots, u_{n}\right)$ over this basis,

$$
\operatorname{det}(A)^{2}=\operatorname{det}\left(A^{\top} A\right)=\operatorname{det}\left(A^{i} \cdot A^{j}\right)
$$

where A^{i} denotes the i th column of the matrix A, and $\left(A^{i} \cdot A^{j}\right)$ denotes the $n \times n$ matrix with entries $A^{i} \cdot A^{j}$.
(2) Prove that

$$
\left\|u_{1} \times \cdots \times u_{n-1}\right\|^{2}=\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}\right) .
$$

Hint. Letting $w=u_{1} \times \cdots \times u_{n-1}$, observe that

$$
\lambda_{E}\left(u_{1}, \ldots, u_{n-1}, w\right)=\langle w, w\rangle=\|w\|^{2}
$$

and show that

$$
\begin{aligned}
\|w\|^{4} & =\lambda_{E}\left(u_{1}, \ldots, u_{n-1}, w\right)^{2}=\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}, w\right) \\
& =\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}\right)\|w\|^{2}
\end{aligned}
$$

TOTAL: 470 points.

