Fall, 2015 CIS 515

Fundamentals of Linear Algebra and Optimization
Jean Gallier

Homework 6

November 24, 2015; Due December 15, 2015

Problem B1 (50). Let Z be a g X p real matrix. Prove that is I, — Z ' Z is positive definite,
then the (p + ¢) x (p + ¢) matrix
I, 77
g —
zZ 1,

Problem B2 (120). (1) Prove that the columns of the following n x n matrix are linearly
independent when n > 3:

is symmetric positive definite.

1 -1 -1 =1 -+ -1 -1
1 -1 1 1 1 1
1 1 -1 1 1 1
p—|1 1 1 -1 1 1
11 1 1 -1 1
11 1 1 1 -1

In fact, prove that
det(B) = (—=1)"(n — 2)2" 1.

(2) Consider the n x n matrices R% defined for all 4,7 with 1 <i < j < n and n > 3,
such that the only nonzero entries are

RY(i,j) = —1

R™(i,i) =0

RY(j,i) =1

RY(j,j) =0

R(kk)=1, 1<k<nk#i,j



For example,

1
1
0 0 0 —1
01 0 0
Ri,j — . .
00 - 1 0
10 0

1

Prove that the R* are rotation matrices. Use the matrices RY to form a basis of the
n X n skew-symmetric matrices.

(3) Consider the n x n symmetric matrices S* defined for all 7,7 with 1 < i < j <n
and n > 3, such that the only nonzero entries are

S (4, j)—l

S5 (4,4) =

S”(],z)zl

S™(j,5) =0

SH(k k) =1, 1<k<n,k#i,j,

and if i + 2 < j then S™(i +1,i + —1 else1fz>1andj—z—|—1thenS”(1 1) =—1,
3

and if i = 1 and j = 2, then S™/(

For example,

1)
3) =

1
1
0 0 01
0 -1 0
Si"j: .
0 0 10
1 0 0 0

1

Note that S has a single diagonal entry equal to —1. Prove that the S%/ are rotations
matrices.



Use (1) together with the S™ to form a basis of the n X n symmetric matrices.

(4) Prove that if n > 3, the set of all linear combinations of matrices in SO(n) is the
space M,,(R) of all n x n matrices.

Prove that if n > 3 and if a matrix A € M, (R) commutes with all rotations matrices,
then A commutes with all matrices in M, (R).

What happens for n = 27

Prove that if n > 2, the set of all linear combinations of matrices in SU(n) is the space
M,,(C) of all n x n complex matrices.

Problem B3 (10 pts). Let A be any real or complex n X n matrix and let || || be any
operator norm.

Prove that for every m > 1,

Ak
el lIAl
k! H s e

-+
k=1

If you know some analysis, deduce from the above that the sequence (E,,) of matrices

converges to a limit denoted e?, and called the exponential of A.

Problem B4 (100 pts). (a) For any matrix

—c b
A= ¢ 0 —-a],
-b a 0
if we let 6 = Va2 + b2 + 2 and
a’ ab ac
B=\|ab b bec|,
ac bc
prove that
A? = —9*I + B,

AB = BA=0.

From the above, deduce that
A% = —9*A.



(b) Prove that the exponential map exp: so(3) — SO(3) is given by

: 1_
expA = et =cosOI; + SIEHA—I— ( 9(;089>B,

or, equivalently, by

ind (1 —cosf)
A_ g, sinb,
€ 3+ 0 + 02

A% if 0 #£0,

with exp(03) = Is.
(c) Prove that e” is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

(d) Prove that the exponential map exp: s0(3) — SO(3) is surjective. For this, proceed
as follows: Pick any rotation matrix R € SO(3);

(1) The case R = [ is trivial.
(2) If R # I and tr(R) # —1, then

exp” () = {2 sign 0 (R-R)

1+2cosé :tr(R)}.

(Recall that tr(R) = ri1 + roe + r33, the trace of the matrix R).

Show that there is a unique skew-symmetric B with corresponding 6 satisfying 0 <
0 < 7 such that e = R.

(3) If R # I and tr(R) = —1, then prove that the eigenvalues of R are 1,—1,—1, that
R =R", and that R? = I. Prove that the matrix

sz%m—n

is a symmetric matrix whose eigenvalues are —1,—1,0. Thus, S can be diagonalized
with respect to an orthogonal matrix () as

-1 0 0
S=Ql 0 -1 0]|Q".
0 0 0

Prove that there exists a skew symmetric matrix

0 —-d c
U=|d 0 -b
—c b 0



so that

1
U?=95= 5(R—[).
Observe that
—(*+ d?) be bd
U? = be —(b* + d?) cd :
bd cd —(b* + )

and use this to conclude that if U? = S, then b* + ¢® + d*> = 1. Then, show that

0 —d c
exp '{(R)=< 2k+1r| d 0 —b|,keZy,
—c b 0

where (b, ¢, d) is any unit vector such that for the corresponding skew symmetric matrix
U, we have U? = S.
(e) To find a skew symmetric matrix U so that U> = S = L{(R —I) as in (d), we can
solve the system

1
2

b —1 be bd
be -1 cd = 5.
bd cd d*>—1

We immediately get b2, ¢, d?, and then, since one of b, ¢, d is nonzero, say b, if we choose the
positive square root of b?, we can determine ¢ and d from be and bd.

Implement a computer program to solve the above system.

Problem B5 (120 pts). (a) Consider the set of affine maps p of R? defined such that
p(X) =aRX + W,

where R is a rotation matrix (an orthogonal matrix of determinant +1), W is some vector
in R3, and a € R with a > 0. Every such a map can be represented by the 4 x 4 matrix

(0" )
()= () 6)

p(X)=aRX +W.

in the sense that

ift

Prove that these maps form a group, denoted by SIM(3) (the direct affine similitudes
of R3).



(b) Let us now consider the set of 4 x 4 real matrices of the form

r w
2o o)

where I' is a matrix of the form

I'= /\13 + Q,
with
0 —c b
Q=|c¢c 0 —al,
-b a 0
so that
A —c b
'=(c¢ X —-al,
b a A

and W is a vector in R3.

Verify that this set of matrices is a vector space isomorphic to (R7, +). This vector space
is denoted by sim(3).

(c) Given a matrix

as in (b), prove that

where '’ = I5. Prove that

where

V=1I+

(d) Prove that if I' = AI3 4+ Q as in (b), then

V=1 o 1Ftd
= 3+Z(/{;+1)!_ Oe t.

k>1

(e) For any matrix I' = A3 + €2, with

0 —c b
Q=1 ¢ 0 —al,
b a 0



if we let 6 = va? + b? + ¢2, then prove that

A e’\(lg—l— sinQQ+ (1 —cos¥)

; - 92), if 0 40,

and e’ = e 5 if 6 = 0.
Hint. You may use the fact that if AB = BA, then eA™8 = e4eP. In general, eA+8 £ e4eBl

(f) Prove that
1. If 6 =0 and A =0, then

2. If # =0 and X\ # 0, then

3. If 0 # 0 and A = 0, then

N (1 —cos@)Q+ (0 — sin )

2
7B 7 Q.

4. If  # 0 and A\ # 0, then

(er—1) (0(1 — e* cos 0) + e*Asin f)
A o\ + 07)
N ((e>‘ —1) et sin @ et cos ) — 1)) ~

V= Q

Is +

Nz 002 +62) 2(\2 +6?)

Hint. You will need to compute fol e sin Ot dt and fol e cos Ot dt.
(g) Prove that V' is invertible iff A # 0 or 0 # k27, with k € Z — {0}.
Hint. Express the eigenvalues of V' in terms of the eigenvalues of I'.

In the special case where A = 0, show that

1 1 0sin 6
=T -0+ (1 —— | Q% if6 .
v 2 +92( 2(1—0089)) ;16 #0

Hint. Assume that the inverse of V is of the form
Z:[3+(IQ+bQQ,

and show that a,b, are given by a system of linear equations that always has a unique
solution.



(h) Prove that the exponential map exp: sim(3) — SIM(3), given by exp(B) = €, is
surjective. You may use the fact that exp: s0(3) — SO(3) is surjective, proved in another
Problem.

Remark: Curves in SIM(3) can be used to describe certain deformations of bodies in R3.

Problem B6 (30 pts). Let E be a real vector space of finite dimension, n > 1. Say that
two bases, (ug,...,u,) and (v1,...,v,), of E have the same orientation iff det(P) > 0, where
P the change of basis matrix from (us,...,u,) and (vy,...,v,), namely, the matrix whose
Jjth columns consist of the coordinates of v; over the basis (ug, ..., u,).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, F, is the choice of any fixed basis, say (ey,...,e,), of
E. Any other basis, (vy,...,v,), has the same orientation as (ey, ..., e,) (and is said to be
positive or direct) iff det(P) > 0, else it is said to have the opposite orientation of (e, ..., ey)
(or to be negative or indirect), where P is the change of basis matrix from (eq,...,e,) to
(v1,...,v,). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let By = (uy,...,u,) and By = (vy,...,v,) be two orthonormal bases. For any
sequence of vectors, (wy,...,w,), in E, let detp, (wy,...,w,) be the determinant of the
matrix whose columns are the coordinates of the w;’s over the basis B; and similarly for
detp, (w1, ..., wy,).

Prove that if B; and B, have the same orientation, then

detp, (wq,...,w,) = detp,(wq,...,w,).
Given any oriented vector space, E, for any sequence of vectors, (wy,...,w,), in E, the
common value, detg(wy, ..., w,), for all positive orthonormal bases, B, of E is denoted
Ap(wy, ..., wy)
and called a volume form of (wy, ..., wy,).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n — 1 vectors,
wi, ..., W,_1, in E, check that the map

x = Ag(wy, ..., Wy_1,T)
is a linear form. Then, prove that there is a unique vector, denoted w; X --- X w,_1, such
that
Ap(wy, ..., w1, 2) = (W X -+ X Wy_1) - @,
for all x € E. The vector wy X - -+ X w,_; is called the cross-product of (wy, ..., w,_1). It is

a generalization of the cross-product in R?® (when n = 3).

8



Problem B7 (40 pts). Given p vectors (uq,...,u,) in a Euclidean space E of dimension

n > p, the Gram determinant (or Gramian) of the vectors (us,...,u,) is the determinant
HU1”2 <U1,u§> <u1aup>
U, U u oo (ug,u
Gram(uy, ..., u,) = < 2, 2 2|| < 2. 2 :
: : -
(up, wr)  (up,uz) o |[wy]

(1) Prove that
Gram(uy, ..., up) = Ap(u, ..., uy)%

Hint. If (eq,...,e,) is an orthonormal basis and A is the matrix of the vectors (uy, ..., u,)

over this basis, o
det(A)? = det(ATA) = det(A" - A7),

where A* denotes the ith column of the matrix A, and (A’ - A’) denotes the n x n matrix
with entries A - A7,

(2) Prove that
|uy X -+ Xty ||* = Gram(uy, . . ., Up_1).

Hint. Letting w = uy X --- X u,_1, observe that

)\E(ula s 7un717w> = <w7w> = HwH27
and show that
HU}”4 = )‘E(ula co 7un*17w>2 = Gram(u17 ceey Un—1, ’LU)
= Gram(uy, ..., up_1)|lwl|?.

TOTAL: 470 points.



