
Fall, 2015 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 6

November 24, 2015; Due December 15, 2015

Problem B1 (50). Let Z be a q×p real matrix. Prove that is Ip−Z>Z is positive definite,
then the (p+ q)× (p+ q) matrix

S =

(
Ip Z>

Z Iq

)
is symmetric positive definite.

Problem B2 (120). (1) Prove that the columns of the following n× n matrix are linearly
independent when n ≥ 3:

B =



1 −1 −1 −1 · · · −1 −1
1 −1 1 1 · · · 1 1
1 1 −1 1 · · · 1 1
1 1 1 −1 · · · 1 1
...

...
...

...
...

...
...

1 1 1 1 · · · −1 1
1 1 1 1 · · · 1 −1


In fact, prove that

det(B) = (−1)n(n− 2)2n−1.

(2) Consider the n × n matrices Ri,j defined for all i, j with 1 ≤ i < j ≤ n and n ≥ 3,
such that the only nonzero entries are

Ri,j(i, j) = −1

Ri,j(i, i) = 0

Ri,j(j, i) = 1

Ri,j(j, j) = 0

Ri,j(k, k) = 1, 1 ≤ k ≤ n, k 6= i, j.
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For example,

Ri,j =



1
. . .

1
0 0 · · · 0 −1
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

1
. . .

1


Prove that the Ri,j are rotation matrices. Use the matrices Rij to form a basis of the

n× n skew-symmetric matrices.

(3) Consider the n × n symmetric matrices Si,j defined for all i, j with 1 ≤ i < j ≤ n
and n ≥ 3, such that the only nonzero entries are

Si,j(i, j) = 1

Si,j(i, i) = 0

Si,j(j, i) = 1

Si,j(j, j) = 0

Si,j(k, k) = 1, 1 ≤ k ≤ n, k 6= i, j,

and if i+ 2 ≤ j then Si,j(i+ 1, i+ 1) = −1, else if i > 1 and j = i+ 1 then Si,j(1, 1) = −1,
and if i = 1 and j = 2, then Si,j(3, 3) = −1.

For example,

Si,j =



1
. . .

1
0 0 · · · 0 1
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

1
. . .

1


Note that Si,j has a single diagonal entry equal to −1. Prove that the Si,j are rotations

matrices.
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Use (1) together with the Si,j to form a basis of the n× n symmetric matrices.

(4) Prove that if n ≥ 3, the set of all linear combinations of matrices in SO(n) is the
space Mn(R) of all n× n matrices.

Prove that if n ≥ 3 and if a matrix A ∈ Mn(R) commutes with all rotations matrices,
then A commutes with all matrices in Mn(R).

What happens for n = 2?

Prove that if n ≥ 2, the set of all linear combinations of matrices in SU(n) is the space
Mn(C) of all n× n complex matrices.

Problem B3 (10 pts). Let A be any real or complex n × n matrix and let ‖ ‖ be any
operator norm.

Prove that for every m ≥ 1,

‖I‖+
m∑
k=1

∥∥∥∥Akk!

∥∥∥∥ ≤ e‖A‖.

If you know some analysis, deduce from the above that the sequence (Em) of matrices

Em = I +
m∑
k=1

Ak

k!

converges to a limit denoted eA, and called the exponential of A.

Problem B4 (100 pts). (a) For any matrix

A =

 0 −c b
c 0 −a
−b a 0

 ,

if we let θ =
√
a2 + b2 + c2 and

B =

a2 ab ac
ab b2 bc
ac bc c2

 ,

prove that

A2 = −θ2I +B,

AB = BA = 0.

From the above, deduce that
A3 = −θ2A.
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(b) Prove that the exponential map exp: so(3)→ SO(3) is given by

expA = eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2, if θ 6= 0,

with exp(03) = I3.

(c) Prove that eA is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

(d) Prove that the exponential map exp: so(3)→ SO(3) is surjective. For this, proceed
as follows: Pick any rotation matrix R ∈ SO(3);

(1) The case R = I is trivial.

(2) If R 6= I and tr(R) 6= −1, then

exp−1(R) =

{
θ

2 sin θ
(R−RT )

∣∣∣∣ 1 + 2 cos θ = tr(R)

}
.

(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the matrix R).

Show that there is a unique skew-symmetric B with corresponding θ satisfying 0 <
θ < π such that eB = R.

(3) If R 6= I and tr(R) = −1, then prove that the eigenvalues of R are 1,−1,−1, that
R = R>, and that R2 = I. Prove that the matrix

S =
1

2
(R− I)

is a symmetric matrix whose eigenvalues are −1,−1, 0. Thus, S can be diagonalized
with respect to an orthogonal matrix Q as

S = Q

−1 0 0
0 −1 0
0 0 0

Q>.

Prove that there exists a skew symmetric matrix

U =

 0 −d c
d 0 −b
−c b 0


4



so that

U2 = S =
1

2
(R− I).

Observe that

U2 =

−(c2 + d2) bc bd
bc −(b2 + d2) cd
bd cd −(b2 + c2)

 ,

and use this to conclude that if U2 = S, then b2 + c2 + d2 = 1. Then, show that

exp−1(R) =

(2k + 1)π

 0 −d c
d 0 −b
−c b 0

 , k ∈ Z

 ,

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix
U , we have U2 = S.

(e) To find a skew symmetric matrix U so that U2 = S = 1
2
(R − I) as in (d), we can

solve the system b2 − 1 bc bd
bc c2 − 1 cd
bd cd d2 − 1

 = S.

We immediately get b2, c2, d2, and then, since one of b, c, d is nonzero, say b, if we choose the
positive square root of b2, we can determine c and d from bc and bd.

Implement a computer program to solve the above system.

Problem B5 (120 pts). (a) Consider the set of affine maps ρ of R3 defined such that

ρ(X) = αRX +W,

where R is a rotation matrix (an orthogonal matrix of determinant +1), W is some vector
in R3, and α ∈ R with α > 0. Every such a map can be represented by the 4× 4 matrix(

αR W
0 1

)
in the sense that (

ρ(X)
1

)
=

(
αR W
0 1

)(
X
1

)
iff

ρ(X) = αRX +W.

Prove that these maps form a group, denoted by SIM(3) (the direct affine similitudes
of R3).
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(b) Let us now consider the set of 4× 4 real matrices of the form

B =

(
Γ W
0 0

)
,

where Γ is a matrix of the form
Γ = λI3 + Ω,

with

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

so that

Γ =

 λ −c b
c λ −a
−b a λ

 ,

and W is a vector in R3.

Verify that this set of matrices is a vector space isomorphic to (R7,+). This vector space
is denoted by sim(3).

(c) Given a matrix

B =

(
Γ W
0 0

)
as in (b), prove that

Bn =

(
Γn Γn−1W
0 0

)
where Γ0 = I3. Prove that

eB =

(
eΓ VW
0 1

)
,

where

V = I3 +
∑
k≥1

Γk

(k + 1)!
.

(d) Prove that if Γ = λI3 + Ω as in (b), then

V = I3 +
∑
k≥1

Γk

(k + 1)!
=

∫ 1

0

eΓtdt.

(e) For any matrix Γ = λI3 + Ω, with

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

6



if we let θ =
√
a2 + b2 + c2, then prove that

eΓ = eλeΩ = eλ
(
I3 +

sin θ

θ
Ω +

(1− cos θ)

θ2
Ω2

)
, if θ 6= 0,

and eΓ = eλI3 if θ = 0.

Hint . You may use the fact that if AB = BA, then eA+B = eAeB. In general, eA+B 6= eAeB!

(f) Prove that

1. If θ = 0 and λ = 0, then
V = I3.

2. If θ = 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3;

3. If θ 6= 0 and λ = 0, then

V = I3 +
(1− cos θ)

θ2
Ω +

(θ − sin θ)

θ3
Ω2.

4. If θ 6= 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3 +

(θ(1− eλ cos θ) + eλλ sin θ)

θ(λ2 + θ2)
Ω

+

(
(eλ − 1)

λθ2
− eλ sin θ

θ(λ2 + θ2)
− λ(eλ cos θ − 1)

θ2(λ2 + θ2)

)
Ω2.

Hint . You will need to compute
∫ 1

0
eλt sin θt dt and

∫ 1

0
eλt cos θt dt.

(g) Prove that V is invertible iff λ 6= 0 or θ 6= k2π, with k ∈ Z− {0}.
Hint . Express the eigenvalues of V in terms of the eigenvalues of Γ.

In the special case where λ = 0, show that

V −1 = I − 1

2
Ω +

1

θ2

(
1− θ sin θ

2(1− cos θ)

)
Ω2, if θ 6= 0.

Hint . Assume that the inverse of V is of the form

Z = I3 + aΩ + bΩ2,

and show that a, b, are given by a system of linear equations that always has a unique
solution.
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(h) Prove that the exponential map exp: sim(3) → SIM(3), given by exp(B) = eB, is
surjective. You may use the fact that exp: so(3) → SO(3) is surjective, proved in another
Problem.

Remark: Curves in SIM(3) can be used to describe certain deformations of bodies in R3.

Problem B6 (30 pts). Let E be a real vector space of finite dimension, n ≥ 1. Say that
two bases, (u1, . . . , un) and (v1, . . . , vn), of E have the same orientation iff det(P ) > 0, where
P the change of basis matrix from (u1, . . . , un) and (v1, . . . , vn), namely, the matrix whose
jth columns consist of the coordinates of vj over the basis (u1, . . . , un).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e1, . . . , en), of
E. Any other basis, (v1, . . . , vn), has the same orientation as (e1, . . . , en) (and is said to be
positive or direct) iff det(P ) > 0, else it is said to have the opposite orientation of (e1, . . . , en)
(or to be negative or indirect), where P is the change of basis matrix from (e1, . . . , en) to
(v1, . . . , vn). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) be two orthonormal bases. For any
sequence of vectors, (w1, . . . , wn), in E, let detB1(w1, . . . , wn) be the determinant of the
matrix whose columns are the coordinates of the wj’s over the basis B1 and similarly for
detB2(w1, . . . , wn).

Prove that if B1 and B2 have the same orientation, then

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

Given any oriented vector space, E, for any sequence of vectors, (w1, . . . , wn), in E, the
common value, detB(w1, . . . , wn), for all positive orthonormal bases, B, of E is denoted

λE(w1, . . . , wn)

and called a volume form of (w1, . . . , wn).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n− 1 vectors,
w1, . . . , wn−1, in E, check that the map

x 7→ λE(w1, . . . , wn−1, x)

is a linear form. Then, prove that there is a unique vector, denoted w1 × · · · × wn−1, such
that

λE(w1, . . . , wn−1, x) = (w1 × · · · × wn−1) · x,
for all x ∈ E. The vector w1 × · · · ×wn−1 is called the cross-product of (w1, . . . , wn−1). It is
a generalization of the cross-product in R3 (when n = 3).
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Problem B7 (40 pts). Given p vectors (u1, . . . , up) in a Euclidean space E of dimension
n ≥ p, the Gram determinant (or Gramian) of the vectors (u1, . . . , up) is the determinant

Gram(u1, . . . , up) =

∣∣∣∣∣∣∣∣∣
‖u1‖2 〈u1, u2〉 . . . 〈u1, up〉
〈u2, u1〉 ‖u2‖2 . . . 〈u2, up〉

...
...

. . .
...

〈up, u1〉 〈up, u2〉 . . . ‖up‖2

∣∣∣∣∣∣∣∣∣ .

(1) Prove that
Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . If (e1, . . . , en) is an orthonormal basis and A is the matrix of the vectors (u1, . . . , un)
over this basis,

det(A)2 = det(A>A) = det(Ai · Aj),

where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes the n × n matrix
with entries Ai · Aj.

(2) Prove that
‖u1 × · · · × un−1‖2 = Gram(u1, . . . , un−1).

Hint . Letting w = u1 × · · · × un−1, observe that

λE(u1, . . . , un−1, w) = 〈w,w〉 = ‖w‖2,

and show that

‖w‖4 = λE(u1, . . . , un−1, w)2 = Gram(u1, . . . , un−1, w)

= Gram(u1, . . . , un−1)‖w‖2.

TOTAL: 470 points.
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