Fall, 2013 CIS 515

Fundamentals of Linear Algebra and Optimization
Jean Gallier

Homework 6

November 26, 2013; Due December 10, 2013
Beginning of class

Problem B1 (20 +o00y/00; =~ 40 pts). (1) Let H be the affine hyperplane in R™ given by
the equation

a1y + -+ ApTy = C,
with a; # 0 for some 7,1 < i < n. The linear hyperplane H, parallel to H is given by the
equation

a1y + -+ apz, =0,
and we say that a vector y € R" is orthogonal (or perpendicular) to H iff y is orthogonal to

Hy. Let h be the intersection of H with the line through the origin and perpendicular to H.
Prove that the coordinates of h are given by
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(2) For any point p € H, prove that ||h|| < ||p||. Thus, it is natural to define the distance
d(O, H) from the origin O to the hyperplane H as d(O, H) = ||h||. Prove that
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(3) Let S be a finite set of n > 3 points in the plane (R?). Prove that if for every pair of
distinct points p;, p; € S, there is a third point p, € S (distinct from p; and p;) such that
Di, Dj, D, belong to the same (affine) line, then all points in S belong to a common (affine)
line.

Hint. Proceed by contradiction and use a minimality argument. This is either oo-hard or
relatively easy, depending how you proceed!

Problem B2 (10 pts). Let A be any real or complex n X n matrix and let || || be any
operator norm.



Prove that for every m > 1,
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If you know some analysis, deduce from the above that the sequence (E,,) of matrices

converges to a limit denoted e, and called the exponential of A.
Problem B3 (90 pts). (The space of closed polygons in R?, after Hausmann and Knutson)

An open polygon P in the plane is a sequence P = (vy,...,v,11) of point v; € R?
called wvertices (with n > 1). A closed polygon, for short a polygon, is an open polygon
P = (vq,...,v,41) such that v, = v;. The sequence of edge vectors (e, .. .,e,) associated
with the open (or closed) polygon P = (vy,...,v,41) is defined by

€; = Ui+1 — Vs, 221,,’”
Thus, a closed or open polygon is also defined by a pair (vq, (e1,...,e,)), with the vertices
given by

Ui+1:vi+€i7 2217,TL

Observe that a polygon (vq, (e1,...,e,)) is closed iff

e+ ---+e,=0.

Since every polygon (vy, (e1,...,€,)) can be translated by —wvy, so that v; = (0,0), we
may assume that our polygons are specified by a sequence of edge vectors.

Recall that the plane R? is isomorphic to C, via the isomorphism
(x,y) — = +1iy.

We will represent each edge vector e by the square of a complex number wy = ap+1b. Thus,
every sequence of complex numbers (wy,...,w,) defines a polygon (namely, (w?, ..., w?)).
This representation is many-to-one: the sequences (fwy, ..., +w,) describe the same poly-
gon. To every sequence of complex numbers (wy,...,w,), we associate the pair of vectors

(a,b), with a,b € R"™, such that if w, = ay + iby, then
a=(ay,...,a,), b=(by,...,b,).

The mapping
(w1, ..., wy) — (a,b)
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is clearly a bijection, so we can also represent polygons by pairs of vectors (a,b) € R" x R™.

(a) Prove that a polygon P represented by a pair of vectors (a,b) € R™ x R™ is closed iff
a-b=0and [lall, = [|b]],-

(b) Given a polygon P represented by a pair of vectors (a,b) € R™ x R", the length [(P)
of the polygon P is defined by I(P) = |w:|* + - - - + |wy|?, with wy, = ax + ibs. Prove that

U(P) = llall; + [1b]l5 -

Deduce from (a) and (b) that every closed polygon of length 2 with n edges is represented
by a n x 2 matrix A such that ATA = 1.

Remark: The space of all a n x 2 real matrices A such that AT A = I is a space known as
the Stiefel manifold S(2,n).
(c) Recall that in R?, the rotation of angle  specified by the matrix
ro= (G arr )
is expressed in terms of complex numbers by the map
2 ze'?

Let P be a polygon represented by a pair of vectors (a,b) € R™ x R™. Prove that the
polygon Ry(P) obtained by applying the rotation Ry to every vertex wi = (ay + ibg)* of P
is specified by the pair of vectors

aq b1
. : a2 b cos(0/2)  sin(6/2)
(cos(0/2)a — sin(0/2)b, sin(0/2)a + cos(0/2)b) = o <_ sin(0/2) cos(0/2))
an by,
(d) The reflection p, about the z-axis corresponds to the map

Z =z,

b5

Prove that the polygon p,(P) obtained by applying the reflection p, to every vertex w? =
(ap + iby)? of P is specified by the pair of vectors

whose matrix is,

ap b

a b2 | /1 0
((I,—b): : : 0 —1/-

a, b,



(e) Let @ € O(2) be any isometry such that det(Q) = —1 (a reflection). Prove that there
is a rotation R_g € SO(2) such that

Q = pz o R_y.

Prove that the isometry ), which is given by the matrix
Q= cosf sinf
- \sinf —cosf)’
is the reflection about the line corresponding to the angle 6/2 (the line of equation y =

tan(0/2)x).

Prove that the polygon Q(P) obtained by applying the reflection ) = p, o R_y to every
vertex wi = (ay, + ibg)? of P, is specified by the pair of vectors

aq b1

as by cos sin
(cos(B/2)a -+ sin(9/2), sin(6/2)a — cos(0/2) = | (Smgg@ _CO(S%%).

an bn

(f) Define an equivalence relation ~ on S(2,n) such that if A;, Ay € S(2,n) are any n x 2
matrices such that A A; = AJ Ay = I, then
Al ~ AQ iff A2 = AIQ for some Q € O<2)

Prove that the quotient G(2,n) = S(2,n)/ ~ is in bijection with the set of all 2-dimensional
subspaces (the planes) of R”. The space G(2,n) is called a Grassmannian manifold.

Prove that up to translations and isometries in O(2) (rotations and reflections), the
n-sided closed polygons of length 2 are represented by planes in G(2,n).

Problem B4 (100 pts). (a) For any matrix

0 —c b
A= ¢ 0 —-a],
-b a 0
if we let 6 = va? + b2 + ¢ and
a’> ab ac
B=|ab b* bc|,
ac be
prove that
A? = —9*I + B,
AB = BA=0.



From the above, deduce that
A% = —9*A.

(b) Prove that the exponential map exp: so(3) — SO(3) is given by
sin 0 (1 — cosf)

expA =e? = cosb I + 7 A+ 7 B,
or, equivalently, by
in ¢ 1 — cosf
&:k+$gA+( gﬁ)ﬁ,ﬁ9¢a

with exp(03) = I3.
(c) Prove that e” is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

(d) Prove that the exponential map exp: s0(3) — SO(3) is surjective. For this, proceed
as follows: Pick any rotation matrix R € SO(3);

(1) The case R = [ is trivial.
(2) If R # I and tr(R) # —1, then

0

T
QSiné’(R R)

-

1+ 2cosé :tr(R)}.

(Recall that tr(R) = ri1 + roe + r33, the trace of the matrix R).

Show that there is a unique skew-symmetric B with corresponding 6 satisfying 0 <
0 < 7 such that e? = R.

(3) If R # I and tr(R) = —1, then prove that the eigenvalues of R are 1,—1, —1, that
R = R", and that R?> = I. Prove that the matrix

S=5(R-1)

is a symmetric matrix whose eigenvalues are —1, —1,0. Thus, S can be diagonalized
with respect to an orthogonal matrix () as

-1 0 0
S=Ql 0 -1 0]|Q".
0 0 0

Prove that there exists a skew symmetric matrix

0 —-d ¢
U=|d 0 -b
—c b 0
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so that

1
U?=95= 5(R—[).
Observe that
—(*+ d?) be bd
U? = be —(b* + d?) cd :
bd cd —(b* + )

and use this to conclude that if U? = S, then b* + ¢® + d*> = 1. Then, show that

0 —d c
exp '{(R)=< 2k+1r| d 0 —b|,keZy,
—c b 0

where (b, ¢, d) is any unit vector such that for the corresponding skew symmetric matrix
U, we have U? = S.
(e) To find a skew symmetric matrix U so that U> = S = L{(R —I) as in (d), we can
solve the system

1
2

b —1 be bd
be -1 cd = 5.
bd cd d*>—1

We immediately get b2, ¢, d?, and then, since one of b, ¢, d is nonzero, say b, if we choose the
positive square root of b?, we can determine ¢ and d from be and bd.

Implement a computer program to solve the above system.

Problem B5 (120 pts). (a) Consider the set of affine maps p of R? defined such that
p(X) =aRX + W,

where R is a rotation matrix (an orthogonal matrix of determinant +1), W is some vector
in R3, and a € R with a > 0. Every such a map can be represented by the 4 x 4 matrix

(0" )
()= () 6)

p(X)=aRX +W.

in the sense that

ift

Prove that these maps form a group, denoted by SIM(3) (the direct affine similitudes
of R3).



(b) Let us now consider the set of 4 x 4 real matrices of the form

r w
2o o)

where I' is a matrix of the form

I'= /\13 + Q,
with
0 —c b
Q=|c¢c 0 —al,
-b a 0
so that
A —c b
'=(c¢ X —-al,
b a A

and W is a vector in R3.

Verify that this set of matrices is a vector space isomorphic to (R7, +). This vector space
is denoted by sim(3).

(c) Given a matrix

as in (b), prove that

where '’ = I5. Prove that

where

V=1I+

(d) Prove that if I' = AI3 4+ Q as in (b), then

V=1 o 1Ftd
= 3+Z(/{;+1)!_ Oe t.

k>1

(e) For any matrix I' = A3 + €2, with

0 —c b
Q=1 ¢ 0 —al,
b a 0



if we let 6 = va? + b? + ¢2, then prove that

A e’\(lg—l— sinQQ+ (1 —cos¥)

; - 92), if 0 40,

and e’ = e 5 if 6 = 0.
Hint. You may use the fact that if AB = BA, then eA™8 = e4eP. In general, eA+8 £ e4eBl

(f) Prove that
1. If 6 =0 and A =0, then

2. If # =0 and X\ # 0, then

3. If 0 # 0 and A = 0, then

N (1 —cos@)Q+ (0 — sin )

2
7B 7 Q.

4. If  # 0 and A\ # 0, then

(er—1) (0(1 — e* cos 0) + e*Asin f)
A o\ + 07)
N ((e>‘ —1) et sin @ et cos ) — 1)) ~

V= Q

Is +

Nz 002 +62) 2(\2 +6?)

Hint. You will need to compute fol e sin Ot dt and fol e cos Ot dt.
(g) Prove that V' is invertible iff A # 0 or 0 # k27, with k € Z — {0}.
Hint. Express the eigenvalues of V' in terms of the eigenvalues of I'.

In the special case where A = 0, show that

1 1 0sin 6
=T -0+ (1 —— | Q% if6 .
v 2 +92( 2(1—0089)) ;16 #0

Hint. Assume that the inverse of V is of the form
Z:[3+(IQ+bQQ,

and show that a,b, are given by a system of linear equations that always has a unique
solution.



(h) Prove that the exponential map exp: sim(3) — SIM(3), given by exp(B) = €, is
surjective. You may use the fact that exp: s0(3) — SO(3) is surjective, proved in another
Problem.

Remark: As in the case of the plane, curves in SIM(3) can be used to describe certain
deformations of bodies in R3.

Problem B6 (40 pts). (1) Consider the matrix

0 0 —as
A= 1 0 —am
0 1 —aq

Prove that the characteristic polynomial x 4(z) = det(zI — A) of A is given by

xa(2) = 22 + a12% + agz + as.

(2) Consider the matrix

00 0 —ay
. 1 00 —das
A= 010 —a9
0 0 1 —aq
Prove that the characteristic polynomial x4(z) = det(zI — A) of A is given by

xa(2) = 24 + a12® + ap2® + asz + ay.

(3) Consider the n x n matrix

0 0 0 0 —ay,
1 0 0 0 —an—
1 0 0 —Ap_2
A= :
0O 0 0 . 0 -—a
o o0 0 - 1 -a

Prove that the characteristic polynomial x 4(z) = det(zI — A) of A is given by
xa(2) = 2"+ a2 M a2 A 2 ay.
Hint. Use induction.

Explain why finding the roots of a polynomial (with real or complex coefficients), and
finding the eigenvalues of a (real or complex) matrix, are equivalent problems, in the sense
that if we have a method for solving one of these problems, then we have a method to solve
the other.

TOTAL: 420 points.



