
Fall, 2013 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 6

November 26, 2013; Due December 10, 2013
Beginning of class

Problem B1 (20 +∞2/∞1 ≈ 40 pts). (1) Let H be the affine hyperplane in Rn given by
the equation

a1x1 + · · ·+ anxn = c,

with ai 6= 0 for some i, 1 ≤ i ≤ n. The linear hyperplane H0 parallel to H is given by the
equation

a1x1 + · · ·+ anxn = 0,

and we say that a vector y ∈ Rn is orthogonal (or perpendicular) to H iff y is orthogonal to
H0. Let h be the intersection of H with the line through the origin and perpendicular to H.
Prove that the coordinates of h are given by

c

a2
1 + · · ·+ a2

n

(a1, . . . , an).

(2) For any point p ∈ H, prove that ‖h‖ ≤ ‖p‖. Thus, it is natural to define the distance
d(O,H) from the origin O to the hyperplane H as d(O,H) = ‖h‖. Prove that

d(O,H) =
|c|

(a2
1 + · · ·+ a2

n)
1
2

.

(3) Let S be a finite set of n ≥ 3 points in the plane (R2). Prove that if for every pair of
distinct points pi, pj ∈ S, there is a third point pk ∈ S (distinct from pi and pj) such that
pi, pj, pk belong to the same (affine) line, then all points in S belong to a common (affine)
line.

Hint . Proceed by contradiction and use a minimality argument. This is either ∞-hard or
relatively easy, depending how you proceed!

Problem B2 (10 pts). Let A be any real or complex n × n matrix and let ‖ ‖ be any
operator norm.
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Prove that for every m ≥ 1,

‖I‖+
m∑
k=1

∥∥∥∥Akk!

∥∥∥∥ ≤ e‖A‖.

If you know some analysis, deduce from the above that the sequence (Em) of matrices

Em = I +
m∑
k=1

Ak

k!

converges to a limit denoted eA, and called the exponential of A.

Problem B3 (90 pts). (The space of closed polygons in R2, after Hausmann and Knutson)

An open polygon P in the plane is a sequence P = (v1, . . . , vn+1) of point vi ∈ R2

called vertices (with n ≥ 1). A closed polygon, for short a polygon, is an open polygon
P = (v1, . . . , vn+1) such that vn+1 = v1. The sequence of edge vectors (e1, . . . , en) associated
with the open (or closed) polygon P = (v1, . . . , vn+1) is defined by

ei = vi+1 − vi, i = 1, . . . , n.

Thus, a closed or open polygon is also defined by a pair (v1, (e1, . . . , en)), with the vertices
given by

vi+1 = vi + ei, i = 1, . . . , n.

Observe that a polygon (v1, (e1, . . . , en)) is closed iff

e1 + · · ·+ en = 0.

Since every polygon (v1, (e1, . . . , en)) can be translated by −v1, so that v1 = (0, 0), we
may assume that our polygons are specified by a sequence of edge vectors.

Recall that the plane R2 is isomorphic to C, via the isomorphism

(x, y) 7→ x+ iy.

We will represent each edge vector ek by the square of a complex number wk = ak+ibk. Thus,
every sequence of complex numbers (w1, . . . , wn) defines a polygon (namely, (w2

1, . . . , w
2
n)).

This representation is many-to-one: the sequences (±w1, . . . ,±wn) describe the same poly-
gon. To every sequence of complex numbers (w1, . . . , wn), we associate the pair of vectors
(a, b), with a, b ∈ Rn, such that if wk = ak + ibk, then

a = (a1, . . . , an), b = (b1, . . . , bn).

The mapping
(w1, . . . , wn) 7→ (a, b)
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is clearly a bijection, so we can also represent polygons by pairs of vectors (a, b) ∈ Rn ×Rn.

(a) Prove that a polygon P represented by a pair of vectors (a, b) ∈ Rn ×Rn is closed iff
a · b = 0 and ‖a‖2 = ‖b‖2.

(b) Given a polygon P represented by a pair of vectors (a, b) ∈ Rn×Rn, the length l(P )
of the polygon P is defined by l(P ) = |w1|2 + · · ·+ |wn|2, with wk = ak + ibk. Prove that

l(P ) = ‖a‖2
2 + ‖b‖2

2 .

Deduce from (a) and (b) that every closed polygon of length 2 with n edges is represented
by a n× 2 matrix A such that A>A = I.

Remark: The space of all a n× 2 real matrices A such that A>A = I is a space known as
the Stiefel manifold S(2, n).

(c) Recall that in R2, the rotation of angle θ specified by the matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is expressed in terms of complex numbers by the map

z 7→ zeiθ.

Let P be a polygon represented by a pair of vectors (a, b) ∈ Rn × Rn. Prove that the
polygon Rθ(P ) obtained by applying the rotation Rθ to every vertex w2

k = (ak + ibk)
2 of P

is specified by the pair of vectors

(cos(θ/2)a− sin(θ/2)b, sin(θ/2)a+ cos(θ/2)b) =


a1 b1

a2 b2
...

...
an bn


(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
.

(d) The reflection ρx about the x-axis corresponds to the map

z 7→ z,

whose matrix is, (
1 0
0 −1

)
.

Prove that the polygon ρx(P ) obtained by applying the reflection ρx to every vertex w2
k =

(ak + ibk)
2 of P is specified by the pair of vectors

(a,−b) =


a1 b1

a2 b2
...

...
an bn


(

1 0
0 −1

)
.
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(e) Let Q ∈ O(2) be any isometry such that det(Q) = −1 (a reflection). Prove that there
is a rotation R−θ ∈ SO(2) such that

Q = ρx ◦R−θ.

Prove that the isometry Q, which is given by the matrix

Q =

(
cos θ sin θ
sin θ − cos θ

)
,

is the reflection about the line corresponding to the angle θ/2 (the line of equation y =
tan(θ/2)x).

Prove that the polygon Q(P ) obtained by applying the reflection Q = ρx ◦R−θ to every
vertex w2

k = (ak + ibk)
2 of P , is specified by the pair of vectors

(cos(θ/2)a+ sin(θ/2)b, sin(θ/2)a− cos(θ/2)b) =


a1 b1

a2 b2
...

...
an bn


(

cos(θ/2) sin(θ/2)
sin(θ/2) − cos(θ/2)

)
.

(f) Define an equivalence relation ∼ on S(2, n) such that if A1, A2 ∈ S(2, n) are any n×2
matrices such that A>1 A1 = A>2 A2 = I, then

A1 ∼ A2 iff A2 = A1Q for some Q ∈ O(2).

Prove that the quotient G(2, n) = S(2, n)/ ∼ is in bijection with the set of all 2-dimensional
subspaces (the planes) of Rn. The space G(2, n) is called a Grassmannian manifold .

Prove that up to translations and isometries in O(2) (rotations and reflections), the
n-sided closed polygons of length 2 are represented by planes in G(2, n).

Problem B4 (100 pts). (a) For any matrix

A =

 0 −c b
c 0 −a
−b a 0

 ,

if we let θ =
√
a2 + b2 + c2 and

B =

a2 ab ac
ab b2 bc
ac bc c2

 ,

prove that

A2 = −θ2I +B,

AB = BA = 0.
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From the above, deduce that
A3 = −θ2A.

(b) Prove that the exponential map exp: so(3)→ SO(3) is given by

expA = eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2, if θ 6= 0,

with exp(03) = I3.

(c) Prove that eA is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

(d) Prove that the exponential map exp: so(3)→ SO(3) is surjective. For this, proceed
as follows: Pick any rotation matrix R ∈ SO(3);

(1) The case R = I is trivial.

(2) If R 6= I and tr(R) 6= −1, then

exp−1(R) =

{
θ

2 sin θ
(R−RT )

∣∣∣∣ 1 + 2 cos θ = tr(R)

}
.

(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the matrix R).

Show that there is a unique skew-symmetric B with corresponding θ satisfying 0 <
θ < π such that eB = R.

(3) If R 6= I and tr(R) = −1, then prove that the eigenvalues of R are 1,−1,−1, that
R = R>, and that R2 = I. Prove that the matrix

S =
1

2
(R− I)

is a symmetric matrix whose eigenvalues are −1,−1, 0. Thus, S can be diagonalized
with respect to an orthogonal matrix Q as

S = Q

−1 0 0
0 −1 0
0 0 0

Q>.

Prove that there exists a skew symmetric matrix

U =

 0 −d c
d 0 −b
−c b 0


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so that

U2 = S =
1

2
(R− I).

Observe that

U2 =

−(c2 + d2) bc bd
bc −(b2 + d2) cd
bd cd −(b2 + c2)

 ,

and use this to conclude that if U2 = S, then b2 + c2 + d2 = 1. Then, show that

exp−1(R) =

(2k + 1)π

 0 −d c
d 0 −b
−c b 0

 , k ∈ Z

 ,

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix
U , we have U2 = S.

(e) To find a skew symmetric matrix U so that U2 = S = 1
2
(R − I) as in (d), we can

solve the system b2 − 1 bc bd
bc c2 − 1 cd
bd cd d2 − 1

 = S.

We immediately get b2, c2, d2, and then, since one of b, c, d is nonzero, say b, if we choose the
positive square root of b2, we can determine c and d from bc and bd.

Implement a computer program to solve the above system.

Problem B5 (120 pts). (a) Consider the set of affine maps ρ of R3 defined such that

ρ(X) = αRX +W,

where R is a rotation matrix (an orthogonal matrix of determinant +1), W is some vector
in R3, and α ∈ R with α > 0. Every such a map can be represented by the 4× 4 matrix(

αR W
0 1

)
in the sense that (

ρ(X)
1

)
=

(
αR W
0 1

)(
X
1

)
iff

ρ(X) = αRX +W.

Prove that these maps form a group, denoted by SIM(3) (the direct affine similitudes
of R3).
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(b) Let us now consider the set of 4× 4 real matrices of the form

B =

(
Γ W
0 0

)
,

where Γ is a matrix of the form
Γ = λI3 + Ω,

with

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

so that

Γ =

 λ −c b
c λ −a
−b a λ

 ,

and W is a vector in R3.

Verify that this set of matrices is a vector space isomorphic to (R7,+). This vector space
is denoted by sim(3).

(c) Given a matrix

B =

(
Γ W
0 0

)
as in (b), prove that

Bn =

(
Γn Γn−1W
0 0

)
where Γ0 = I3. Prove that

eB =

(
eΓ VW
0 1

)
,

where

V = I3 +
∑
k≥1

Γk

(k + 1)!
.

(d) Prove that if Γ = λI3 + Ω as in (b), then

V = I3 +
∑
k≥1

Γk

(k + 1)!
=

∫ 1

0

eΓtdt.

(e) For any matrix Γ = λI3 + Ω, with

Ω =

 0 −c b
c 0 −a
−b a 0

 ,
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if we let θ =
√
a2 + b2 + c2, then prove that

eΓ = eλeΩ = eλ
(
I3 +

sin θ

θ
Ω +

(1− cos θ)

θ2
Ω2

)
, if θ 6= 0,

and eΓ = eλI3 if θ = 0.

Hint . You may use the fact that if AB = BA, then eA+B = eAeB. In general, eA+B 6= eAeB!

(f) Prove that

1. If θ = 0 and λ = 0, then
V = I3.

2. If θ = 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3;

3. If θ 6= 0 and λ = 0, then

V = I3 +
(1− cos θ)

θ2
Ω +

(θ − sin θ)

θ3
Ω2.

4. If θ 6= 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3 +

(θ(1− eλ cos θ) + eλλ sin θ)

θ(λ2 + θ2)
Ω

+

(
(eλ − 1)

λθ2
− eλ sin θ

θ(λ2 + θ2)
− λ(eλ cos θ − 1)

θ2(λ2 + θ2)

)
Ω2.

Hint . You will need to compute
∫ 1

0
eλt sin θt dt and

∫ 1

0
eλt cos θt dt.

(g) Prove that V is invertible iff λ 6= 0 or θ 6= k2π, with k ∈ Z− {0}.
Hint . Express the eigenvalues of V in terms of the eigenvalues of Γ.

In the special case where λ = 0, show that

V −1 = I − 1

2
Ω +

1

θ2

(
1− θ sin θ

2(1− cos θ)

)
Ω2, if θ 6= 0.

Hint . Assume that the inverse of V is of the form

Z = I3 + aΩ + bΩ2,

and show that a, b, are given by a system of linear equations that always has a unique
solution.
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(h) Prove that the exponential map exp: sim(3) → SIM(3), given by exp(B) = eB, is
surjective. You may use the fact that exp: so(3) → SO(3) is surjective, proved in another
Problem.

Remark: As in the case of the plane, curves in SIM(3) can be used to describe certain
deformations of bodies in R3.

Problem B6 (40 pts). (1) Consider the matrix

A =

0 0 −a3

1 0 −a2

0 1 −a1

 .

Prove that the characteristic polynomial χA(z) = det(zI − A) of A is given by

χA(z) = z3 + a1z
2 + a2z + a3.

(2) Consider the matrix

A =


0 0 0 −a4

1 0 0 −a3

0 1 0 −a2

0 0 1 −a1

 .

Prove that the characteristic polynomial χA(z) = det(zI − A) of A is given by

χA(z) = z4 + a1z
3 + a2z

2 + a3z + a4.

(3) Consider the n× n matrix

A =



0 0 0 · · · 0 −an
1 0 0 · · · 0 −an−1

0 1 0 · · · 0 −an−2
...

. . . . . . . . .
...

...

0 0 0
. . . 0 −a2

0 0 0 · · · 1 −a1


.

Prove that the characteristic polynomial χA(z) = det(zI − A) of A is given by

χA(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an−1z + an.

Hint . Use induction.

Explain why finding the roots of a polynomial (with real or complex coefficients), and
finding the eigenvalues of a (real or complex) matrix, are equivalent problems, in the sense
that if we have a method for solving one of these problems, then we have a method to solve
the other.

TOTAL: 420 points.
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