Fall, 2020 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 5

November 2, 2020; Due November 16, 2020

Problem B1 (40 pts). Let H be a symmetric positive definite matrix and let K be any symmetric matrix.
(1) Prove that $H K$ is diagonalizable, with real eigenvalues.
(2) If K is also positive definite, then prove that the eigenvalues of $H K$ are positive.
(3) Prove that the number of positive (resp. negative) eigenvalues of $H K$ is equal to the number of positive (resp. negative) eigenvalues of K.

Let A be any real or complex $n \times n$ matrix. It can be shown that the sequence $\left(E_{m}\right)$ of matrices

$$
E_{m}=I+\sum_{k=1}^{m} \frac{A^{k}}{k!}
$$

converges to a limit denoted

$$
e^{A}=I+\sum_{k=1}^{\infty} \frac{A^{k}}{k!}
$$

and called the exponential of A. You may accept this fact without proof.
Problem B2 (Extra Credit 10 pts).
Let || \| be any operator norm. Prove that for every $m \geq 1$,

$$
\|I\|+\sum_{k=1}^{m}\left\|\frac{A^{k}}{k!}\right\| \leq e^{\|A\|} .
$$

If you know some analysis, deduce from the above that the sequence $\left(E_{m}\right)$ of matrices

$$
E_{m}=I+\sum_{k=1}^{m} \frac{A^{k}}{k!}
$$

converges to a limit denoted e^{A}, and called the exponential of A.

Problem B3 (100 pts). (a) Let $\mathfrak{s o (3)}$ be the space of 3×3 skew symmetric matrices

$$
\mathfrak{s o}(3)=\left\{\left.\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\} .
$$

For any matrix

$$
A=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right) \in \mathfrak{s o}(3)
$$

if we let $\theta=\sqrt{a^{2}+b^{2}+c^{2}}$ and

$$
B=\left(\begin{array}{lll}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right),
$$

prove that

$$
\begin{aligned}
A^{2} & =-\theta^{2} I+B \\
A B & =B A=0
\end{aligned}
$$

From the above, deduce that

$$
A^{3}=-\theta^{2} A
$$

(b) Prove that the exponential map exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is given by

$$
\exp A=e^{A}=\cos \theta I_{3}+\frac{\sin \theta}{\theta} A+\frac{(1-\cos \theta)}{\theta^{2}} B
$$

or, equivalently, by

$$
e^{A}=I_{3}+\frac{\sin \theta}{\theta} A+\frac{(1-\cos \theta)}{\theta^{2}} A^{2}, \quad \text { if } \theta \neq 0
$$

with $\exp \left(0_{3}\right)=I_{3}$.
(c) Prove that e^{A} is an orthogonal matrix of determinant +1 , i.e., a rotation matrix.
(d) Prove that the exponential map exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is surjective. For this, proceed as follows: Pick any rotation matrix $R \in \mathbf{S O}(3)$;
(1) The case $R=I$ is trivial.
(2) If $R \neq I$ and $\operatorname{tr}(R) \neq-1$, then

$$
\exp ^{-1}(R)=\left\{\left.\frac{\theta}{2 \sin \theta}\left(R-R^{T}\right) \right\rvert\, 1+2 \cos \theta=\operatorname{tr}(R)\right\}
$$

(Recall that $\operatorname{tr}(R)=r_{11}+r_{22}+r_{33}$, the trace of the matrix R).
Show that there is a unique skew-symmetric B with corresponding θ satisfying $0<$ $\theta<\pi$ such that $e^{B}=R$.
(3) If $R \neq I$ and $\operatorname{tr}(R)=-1$, then prove that the eigenvalues of R are $1,-1,-1$, that $R=R^{\top}$, and that $R^{2}=I$. Prove that the matrix

$$
S=\frac{1}{2}(R-I)
$$

is a symmetric matrix whose eigenvalues are $-1,-1,0$. Thus, S can be diagonalized with respect to an orthogonal matrix Q as

$$
S=Q\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) Q^{\top}
$$

Prove that there exists a skew symmetric matrix

$$
U=\left(\begin{array}{ccc}
0 & -d & c \\
d & 0 & -b \\
-c & b & 0
\end{array}\right)
$$

so that

$$
U^{2}=S=\frac{1}{2}(R-I)
$$

Observe that

$$
U^{2}=\left(\begin{array}{ccc}
-\left(c^{2}+d^{2}\right) & b c & b d \\
b c & -\left(b^{2}+d^{2}\right) & c d \\
b d & c d & -\left(b^{2}+c^{2}\right)
\end{array}\right)
$$

and use this to conclude that if $U^{2}=S$, then $b^{2}+c^{2}+d^{2}=1$. Then, show that

$$
\exp ^{-1}(R)=\left\{(2 k+1) \pi\left(\begin{array}{ccc}
0 & -d & c \\
d & 0 & -b \\
-c & b & 0
\end{array}\right), k \in \mathbb{Z}\right\}
$$

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix U, we have $U^{2}=S$.
(e) To find a skew symmetric matrix U so that $U^{2}=S=\frac{1}{2}(R-I)$ as in (d), we can solve the system

$$
\left(\begin{array}{ccc}
b^{2}-1 & b c & b d \\
b c & c^{2}-1 & c d \\
b d & c d & d^{2}-1
\end{array}\right)=S
$$

We immediately get b^{2}, c^{2}, d^{2}, and then, since one of b, c, d is nonzero, say b, if we choose the positive square root of b^{2}, we can determine c and d from $b c$ and $b d$.

Implement a computer program to solve the above system.

Problem B4 (120 pts). (a) Consider the set of affine maps ρ of \mathbb{R}^{3} defined such that

$$
\rho(X)=\alpha R X+W,
$$

where R is a rotation matrix (an orthogonal matrix of determinant +1), W is some vector in \mathbb{R}^{3}, and $\alpha \in \mathbb{R}$ with $\alpha>0$. Every such a map can be represented by the 4×4 matrix

$$
\left(\begin{array}{cc}
\alpha R & W \\
0 & 1
\end{array}\right)
$$

in the sense that

$$
\binom{\rho(X)}{1}=\left(\begin{array}{cc}
\alpha R & W \\
0 & 1
\end{array}\right)\binom{X}{1}
$$

iff

$$
\rho(X)=\alpha R X+W
$$

Prove that these maps form a group, denoted by SIM(3) (the direct affine similitudes of \mathbb{R}^{3}).
(b) Let us now consider the set of 4×4 real matrices of the form

$$
B=\left(\begin{array}{cc}
\Gamma & W \\
0 & 0
\end{array}\right)
$$

where Γ is a matrix of the form

$$
\Gamma=\lambda I_{3}+\Omega
$$

with

$$
\Omega=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

so that

$$
\Gamma=\left(\begin{array}{ccc}
\lambda & -c & b \\
c & \lambda & -a \\
-b & a & \lambda
\end{array}\right)
$$

and W is a vector in \mathbb{R}^{3}.
Verify that this set of matrices is a vector space isomorphic to $\left(\mathbb{R}^{7},+\right)$. This vector space is denoted by $\mathfrak{s i m}(3)$.
(c) Given a matrix

$$
B=\left(\begin{array}{cc}
\Gamma & W \\
0 & 0
\end{array}\right)
$$

as in (b), prove that

$$
B^{n}=\left(\begin{array}{cc}
\Gamma^{n} & \Gamma^{n-1} W \\
0 & 0
\end{array}\right)
$$

where $\Gamma^{0}=I_{3}$. Prove that

$$
e^{B}=\left(\begin{array}{cc}
e^{\Gamma} & V W \\
0 & 1
\end{array}\right)
$$

where

$$
V=I_{3}+\sum_{k \geq 1} \frac{\Gamma^{k}}{(k+1)!}
$$

(d) Prove that if $\Gamma=\lambda I_{3}+\Omega$ as in (b), then

$$
V=I_{3}+\sum_{k \geq 1} \frac{\Gamma^{k}}{(k+1)!}=\int_{0}^{1} e^{\Gamma t} d t
$$

(e) For any matrix $\Gamma=\lambda I_{3}+\Omega$, with

$$
\Omega=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

if we let $\theta=\sqrt{a^{2}+b^{2}+c^{2}}$, then prove that

$$
e^{\Gamma}=e^{\lambda} e^{\Omega}=e^{\lambda}\left(I_{3}+\frac{\sin \theta}{\theta} \Omega+\frac{(1-\cos \theta)}{\theta^{2}} \Omega^{2}\right), \quad \text { if } \theta \neq 0
$$

and $e^{\Gamma}=e^{\lambda} I_{3}$ if $\theta=0$.
Hint. You may use the fact that if $A B=B A$, then $e^{A+B}=e^{A} e^{B}$. In general, $e^{A+B} \neq e^{A} e^{B}$!
(f) Prove that

1. If $\theta=0$ and $\lambda=0$, then

$$
V=I_{3}
$$

2. If $\theta=0$ and $\lambda \neq 0$, then

$$
V=\frac{\left(e^{\lambda}-1\right)}{\lambda} I_{3}
$$

3. If $\theta \neq 0$ and $\lambda=0$, then

$$
V=I_{3}+\frac{(1-\cos \theta)}{\theta^{2}} \Omega+\frac{(\theta-\sin \theta)}{\theta^{3}} \Omega^{2}
$$

4. If $\theta \neq 0$ and $\lambda \neq 0$, then

$$
\begin{aligned}
V= & \frac{\left(e^{\lambda}-1\right)}{\lambda} I_{3}+\frac{\left(\theta\left(1-e^{\lambda} \cos \theta\right)+e^{\lambda} \lambda \sin \theta\right)}{\theta\left(\lambda^{2}+\theta^{2}\right)} \Omega \\
& +\left(\frac{\left(e^{\lambda}-1\right)}{\lambda \theta^{2}}-\frac{e^{\lambda} \sin \theta}{\theta\left(\lambda^{2}+\theta^{2}\right)}-\frac{\lambda\left(e^{\lambda} \cos \theta-1\right)}{\theta^{2}\left(\lambda^{2}+\theta^{2}\right)}\right) \Omega^{2}
\end{aligned}
$$

Hint. You will need to compute $\int_{0}^{1} e^{\lambda t} \sin \theta t d t$ and $\int_{0}^{1} e^{\lambda t} \cos \theta t d t$.
(g) Prove that V is invertible iff $\lambda \neq 0$ or $\theta \neq k 2 \pi$, with $k \in \mathbb{Z}-\{0\}$.

Hint. Express the eigenvalues of V in terms of the eigenvalues of Γ.
In the special case where $\lambda=0$, show that

$$
V^{-1}=I-\frac{1}{2} \Omega+\frac{1}{\theta^{2}}\left(1-\frac{\theta \sin \theta}{2(1-\cos \theta)}\right) \Omega^{2}, \quad \text { if } \theta \neq 0 .
$$

Hint. Assume that the inverse of V is of the form

$$
Z=I_{3}+a \Omega+b \Omega^{2},
$$

and show that a, b, are given by a system of linear equations that always has a unique solution.
(h) Prove that the exponential map exp: $\mathfrak{s i m}(3) \rightarrow \mathbf{S I M}(3)$, given by $\exp (B)=e^{B}$, is surjective. You may use the fact that exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is surjective, proved in another Problem.

Remark: Curves in $\operatorname{SIM}(3)$ can be used to describe certain deformations of bodies in \mathbb{R}^{3}.
TOTAL: 260 points +10 points Extra credit

