
Fall, 2018 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 5

November 7, 2018; Due November 26, 2018

Problem B1 (60 pts). (1) Let A be any n× n matrix such that the sum of the entries of
every row of A is the same (say c1), and the sum of entries of every column of A is the same
(say c2). Prove that c1 = c2.

(2) Prove that for any n ≥ 2, the 2n− 2 equations asserting that the sum of the entries
of every row of A is the same, and the sum of entries of every column of A is the same are
lineary independent. For example, when n = 4, we have the following 6 equations

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0.

Hint . Group the equations as above; that is, first list the n− 1 equations relating the rows,
and then list the n− 1 equations relating the columns. Prove that the first n− 1 equations
are linearly independent, and that the last n − 1 equations are also linearly independent.
Then, find a relationship between the two groups of equations that will allow you to prove
that they span subspace V r and V c such that V r ∩ V c = (0).

(3) Now consider magic squares . Such matrices satisfy the two conditions about the sum
of the entries in each row and in each column to be the same number, and also the additional
two constraints that the main descending and the main ascending diagonals add up to this
common number. Traditionally, it is also required that the entries in a magic square are
positive integers, but we will consider generalized magic square with arbitrary real entries.
For example, in the case n = 4, we have the following system of 8 equations:
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a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0.

In general, the equation involving the descending diagonal is

a22 + a33 + · · ·+ ann − a12 − a13 − · · · − a1n = 0 (r)

and the equation involving the ascending diagonal is

an1 + an−12 + · · ·+ a2n−1 − a11 − a12 − · · · − a1n−1 = 0. (c)

Prove that if n ≥ 3, then the 2n equations asserting that a matrix is a generalized magic
square are linearly independent.

Hint . Equations are really linear forms, so find some matrix annihilated by all equations
except equation r, and some matrix annihilated by all equations except equation c.

Problem B2 (30 pts). Let A be an m× n matrix and B be an n×m matrix.

(1) Prove that
det(Im − AB) = det(In −BA).

Hint . Consider the matrices

X =

(
Im A
B In

)
and Y =

(
Im 0
−B In

)
.

(2) Prove that
λn det(λIm − AB) = λm det(λIn −BA).

Hint . Consider the matrices

X =

(
λIm A
B In

)
and Y =

(
Im 0
−B λIn

)
.

Problem B3 (30). Let Z be a q×p real matrix. Prove that if Ip−Z>Z is positive definite,
then the (p+ q)× (p+ q) matrix

S =

(
Ip Z>

Z Iq

)
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is symmetric positive definite.

Problem B4 (120). (1) Prove that the columns of the following n× n matrix are linearly
independent when n ≥ 3:

B =



1 −1 −1 −1 · · · −1 −1
1 −1 1 1 · · · 1 1
1 1 −1 1 · · · 1 1
1 1 1 −1 · · · 1 1
...

...
...

...
...

...
...

1 1 1 1 · · · −1 1
1 1 1 1 · · · 1 −1


In fact, prove that

det(B) = (−1)n(n− 2)2n−1.

(2) Consider the n × n matrices Ri,j defined for all i, j with 1 ≤ i < j ≤ n and n ≥ 3,
such that the only nonzero entries are

Ri,j(i, j) = −1

Ri,j(i, i) = 0

Ri,j(j, i) = 1

Ri,j(j, j) = 0

Ri,j(k, k) = 1, 1 ≤ k ≤ n, k 6= i, j.

For example,

Ri,j =



1
. . .

1
0 0 · · · 0 −1
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

1
. . .

1


Prove that the Ri,j are rotation matrices. Use the matrices Rij to form a basis of the

n× n skew-symmetric matrices.
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(3) Consider the n × n symmetric matrices Si,j defined for all i, j with 1 ≤ i < j ≤ n
and n ≥ 3, such that the only nonzero entries are

Si,j(i, j) = 1

Si,j(i, i) = 0

Si,j(j, i) = 1

Si,j(j, j) = 0

Si,j(k, k) = 1, 1 ≤ k ≤ n, k 6= i, j,

and if i+ 2 ≤ j then Si,j(i+ 1, i+ 1) = −1, else if i > 1 and j = i+ 1 then Si,j(1, 1) = −1,
and if i = 1 and j = 2, then Si,j(3, 3) = −1.

For example,

Si,j =



1
. . .

1
0 0 · · · 0 1
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

1
. . .

1


Note that Si,j has a single diagonal entry equal to −1. Prove that the Si,j are rotations

matrices.

Use (1) together with the Si,j to form a basis of the n× n symmetric matrices.

(4) Prove that if n ≥ 3, the set of all linear combinations of matrices in SO(n) is the
space Mn(R) of all n× n matrices.

Prove that if n ≥ 3 and if a matrix A ∈ Mn(R) commutes with all rotations matrices,
then A commutes with all matrices in Mn(R).

What happens for n = 2?

Prove that if n ≥ 2, the set of all linear combinations of matrices in SU(n) is the space
Mn(C) of all n× n complex matrices.

Extra Credit Problem B5 (100 pts). Give an example of a norm on Cn and of a real
matrix A such that

‖A‖R < ‖A‖ ,
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where ‖−‖R and ‖−‖ are the operator norms associated with the vector norm ‖−‖, as defined
in the notes.

Hint . This can already be done for n = 2.

Problem B6 (30 pts). Let ‖ ‖ be any operator norm. Given an invertible n × n matrix
A, if c = 1/(2 ‖A−1‖), then for every n× n matrix H, if ‖H‖ ≤ c, then A+H is invertible.
Furthermore, show that if ‖H‖ ≤ c, then ‖(A+H)−1‖ ≤ 1/c.

Problem B7 (20 pts). Let A be any m × n matrix and let λ ∈ R be any positive real
number λ > 0.

(1) Prove that A>A+ λIn and AA> + λIm are invertible.

(2) Prove that
A>(AA> + λIm)−1 = (A>A+ λIn)−1A>.

Remark: The expressions above correspond to the matrix for which the function

Φ(x) = (Ax− b)>(Ax− b) + λx>x

achieves a minimum. It shows up in machine learning (kernel methods).

Problem B8 (80 pts). Let A be a real 2× 2 matrix

A =

(
a1 1 a1 2
a2 1 a2 2

)
.

(1) Prove that the squares of the singular values σ1 ≥ σ2 of A are the roots of the
quadratic equation

X2 − tr(A>A)X + | det(A)|2 = 0.

(2) If we let

µ(A) =
a21 1 + a21 2 + a22 1 + a22 2

2|a1 1a2 2 − a1 2a2 1|
,

prove that

cond2(A) =
σ1
σ2

= µ(A) + (µ(A)2 − 1)1/2.

(3) Consider the subset S of 2× 2 invertible matrices whose entries ai j are integers such
that 0 ≤ aij ≤ 100.

Prove that the functions cond2(A) and µ(A) reach a maximum on the set S for the same
values of A.
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Check that for the matrix

Am =

(
100 99
99 98

)
we have

µ(Am) = 19, 603 det(Am) = −1

and
cond2(Am) ≈ 39, 206.

(4) Prove that for all A ∈ S, if | det(A)| ≥ 2 then µ(A) ≤ 10, 000. Conclude that the
maximum of µ(A) on S is achieved for matrices such that det(A) = ±1. Prove that finding
matrices that maximize µ on S is equivalent to finding some integers n1, n2, n3, n4 such that

0 ≤ n4 ≤ n3 ≤ n2 ≤ n1 ≤ 100

n2
1 + n2

2 + n2
3 + n2

4 ≥ 1002 + 992 + 992 + 982 = 39, 206

|n1n4 − n2n3| = 1.

You may use without proof that the fact that the only solution to the above constraints
is the multiset

{100, 99, 99, 98}.

(5) Deduce from part (4) that the matrices in S for which µ has a maximum value are

Am =

(
100 99
99 98

) (
98 99
99 100

) (
99 100
98 99

) (
99 98
100 99

)
and check that µ has the same value for these matrices. Conclude that

max
A∈S

cond2(A) = cond2(Am).

(6) Solve the system (
100 99
99 98

)(
x1
x2

)
=

(
199
197

)
.

Perturb the right-hand side b by

δb =

(
−0.0097
0.0106

)
and solve the new system

Amy = b+ δb

where y = (y1, y2). Check that

δx = y − x =

(
2

−2.0203

)
.
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Compute ‖x‖2, ‖δx‖2, ‖b‖2, ‖δb‖2, and estimate

c =
‖δx‖2
‖x‖2

(
‖δb‖2
‖b‖2

)−1
.

Ckeck that
c ≈ cond2(Am) = 39, 206.

Problem B9 (50 pts). Given any two subspaces V1, V2 of a finite-dimensional vector space
E, prove that

(V1 + V2)
0 = V 0

1 ∩ V 0
2

(V1 ∩ V2)0 = V 0
1 + V 0

2 .

Beware that in the second equation, V1 and V2 are subspaces of E, not E∗.

Hint . To prove the second equation, prove the inclusions V 0
1 +V 0

2 ⊆ (V1∩V2)0 and (V1∩V2)0 ⊆
V 0
1 + V 0

2 . Proving the second inclusion is a little tricky. First, prove that we can pick a
subspace W1 of V1 and a subspace W2 of V2 such that

1. V1 is the direct sum V1 = (V1 ∩ V2)⊕W1.

2. V2 is the direct sum V2 = (V1 ∩ V2)⊕W2.

3. V1 + V2 is the direct sum V1 + V2 = (V1 ∩ V2)⊕W1 ⊕W2.

TOTAL: 420 points + 100 points Extra Credit
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