
Fall, 2015 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 5

November 9, 2015; Due November 24 2015
Beginning of classes

Problem B1 (60 pts). (1) Let A be any n× n matrix such that the sum of the entries of
every row of A is the same (say c1), and the sum of entries of every column of A is the same
(say c2). Prove that c1 = c2.

(2) Prove that for any n ≥ 2, the 2n− 2 equations asserting that the sum of the entries
of every row of A is the same, and the sum of entries of every column of A is the same are
lineary independent. For example, when n = 4, we have the following 6 equations

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0.

Hint . Group the equations as above; that is, first list the n− 1 equations relating the rows,
and then list the n− 1 equations relating the columns. Prove that the first n− 1 equations
are linearly independent, and that the last n − 1 equations are also linearly independent.
Then, find a relationship between the two groups of equations that will allow you to prove
that they span subspace V r and V c such that V r ∩ V c = (0).

(3) Now consider magic squares . Such matrices satisfy the two conditions about the sum
of the entries in each row and in each column to be the same number, and also the additional
two constraints that the main descending and the main ascending diagonals add up to this
common number. Traditionally, it is also required that the entries in a magic square are
positive integers, but we will consider generalized magic square with arbitrary real entries.
For example, in the case n = 4, we have the following system of 8 equations:
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a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0.

In general, the equation involving the descending diagonal is

a22 + a33 + · · ·+ ann − a12 − a13 − · · · − a1n = 0 (r)

and the equation involving the ascending diagonal is

an1 + an−12 + · · ·+ a2n−1 − a11 − a12 − · · · − a1n−1 = 0. (c)

Prove that if n ≥ 3, then the 2n equations asserting that a matrix is a generalized magic
square are linearly independent.

Hint . Equations are really linear forms, so find some matrix annihilated by all equations
except equation r, and some matrix annihilated by all equations except equation c.

Problem B2 (30 pts). Let A be an m× n matrix and B be an n×m matrix.

(1) Prove that
det(Im − AB) = det(In −BA).

Hint . Consider the matrices

X =

(
Im A
B In

)
and Y =

(
Im 0
−B In

)
.

(2) Prove that
λn det(λIm − AB) = λm det(λIn −BA).

Hint . Consider the matrices

X =

(
λIm A
B In

)
and Y =

(
Im 0
−B λIn

)
.

Problem B3 (80 pts). (1) Implement the method for converting a rectangular matrix to
reduced row echelon fom.
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(2) Use the above method to find the inverse of an invertible n×n matrix A, by applying
it to the the n× 2n matrix [AI] obtained by adding the n columns of the identity matrix to
A.

(3) Consider the matrix

A =


1 2 3 4 · · · n
2 3 4 5 · · · n+ 1
3 4 5 6 · · · n+ 2
...

...
...

. . .
...

n n+ 1 n+ 2 n+ 3 · · · 2n− 1

 .

Using your program, find the row reduced echelon form of A for n = 4, . . . , 20.

Also run the Matlab rref function and compare results.

Your program probably disagrees with rref even for small values of n. The problem is
that some pivots are very small and the normalization step (to make the pivot 1) causes
roundoff errors. Use a tolerance parameter to fix this problem.

What can you conjecture about the rank of A?

(4) Prove that the matrix A has the following row reduced form:

R =


1 0 −1 −2 · · · −(n− 2)
0 1 2 3 · · · n− 1
0 0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · 0

 .

Deduce from the above that A has rank 2.

Hint . Some well chosen sequence of row operations.

(5) Use your program to show that if you add any number greater than or equal to
(2/25)n2 to every diagonal entry of A you get an invertible matrix! In fact, running the
Matlab fuction chol should tell you that these matrices are SPD (symmetric, positive defi-
nite).

Remark: The above phenomenon will be explained in Problem B4. If you have a rigorous
and simple explanation for this phenomenon, let me know!

Problem B4 (120 pts). The purpose of this problem is to prove that the characteristic
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polynomial of the matrix

A =


1 2 3 4 · · · n
2 3 4 5 · · · n+ 1
3 4 5 6 · · · n+ 2
...

...
...

. . .
...

n n+ 1 n+ 2 n+ 3 · · · 2n− 1


is

PA(λ) = λn−2
(
λ2 − n2λ− 1

12
n2(n2 − 1)

)
.

(1) Prove that the characteristic polynomial PA(λ) is given by

PA(λ) = λn−2P (λ),

with

P (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −2 −3 −4 · · · −n+ 3 −n+ 2 −n+ 1 −n

−λ− 1 λ− 1 −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2) Prove that the sum of the roots λ1, λ2 of the (degree two) polynomial P (λ) is

λ1 + λ2 = n2.

The problem is thus to compute the product λ1λ2 of these roots. Prove that

λ1λ2 = P (0).
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(3) The problem is now to evaluate dn = P (0), where

dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −2 −3 −4 · · · −n+ 3 −n+ 2 −n+ 1 −n

−1 −1 −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
I suggest the following strategy: cancel out the first entry in row 1 and row 2 by adding a

suitable multiple of row 3 to row 1 and row 2, and then subtract row 2 from row 1. Expand
the determinant according to the first column.

You will notice that the first two entries on row 1 and the first two entries on row 2
change, but the rest of the matrix looks the same, except that the dimension is reduced.

This suggests setting up a recurrence involving the entries uk, vk, xk, yk in the determinant

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk xk −3 −4 · · · −n+ k − 3 −n+ k − 2 −n+ k − 1 −n+ k

vk yk −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

starting with k = 0, with

u0 = −1, v0 = −1, x0 = −2, y0 = −1,

and ending with k = n− 2, so that

dn = Dn−2 =

∣∣∣∣∣∣
un−3 xn−3 −3
vn−3 yn−3 −1

1 −2 1

∣∣∣∣∣∣ =

∣∣∣∣un−2 xn−2
vn−2 yn−2

∣∣∣∣ .
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Prove that we have the recurrence relations
uk+1

vk+1

xk+1

yk+1

 =


2 −2 1 −1
0 2 0 1
−1 1 0 0
0 −1 0 0



uk
vk
xk
yk

+


0
0
−2
−1

 .

These appear to be nasty affine recurrence relations, so we will use the trick to convert
this affine map to a linear map.

(4) Consider the linear map given by
uk+1

vk+1

xk+1

yk+1

1

 =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1



uk
vk
xk
yk
1

 ,

and show that its action on uk, vk, xk, yk is the same as the affine action of part (3).

Use Matlab to find the eigenvalues of the matrix

T =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1

 .

You will be stunned!

Let N be the matrix given by
N = T − I.

Prove that
N4 = 0.

Use this to prove that

T k = I + kN +
1

2
k(k − 1)N2 +

1

6
k(k − 1)(k − 2)N3,

for all k ≥ 0.

(5) Prove that
uk
vk
xk
yk
1

 = T k


−1
−1
−2
−1
1

 =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1


k
−1
−1
−2
−1
1

 ,
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for k ≥ 0.

Prove that

T k =



k + 1 −k(k + 1) k −k2 1
6
(k − 1)k(2k − 7)

0 k + 1 0 k −1
2
(k − 1)k

−k k2 1− k (k − 1)k −1
3
k((k − 6)k + 11)

0 −k 0 1− k 1
2
(k − 3)k

0 0 0 0 1


,

and thus, that 
uk

vk

xk

yk

 =


1
6
(2k3 + 3k2 − 5k − 6)

−1
2
(k2 + 3k + 2)

1
3
(−k3 + k − 6)

1
2
(k2 + k − 2)

 ,

and that ∣∣∣∣uk xk
vk yk

∣∣∣∣ = −1− 7

3
k − 23

12
k2 − 2

3
k3 − 1

12
k4.

As a consequence, prove that amazingly,

dn = Dn−2 = − 1

12
n2(n2 − 1).

(6) Prove that the characteristic polynomial of A is indeed

PA(λ) = λn−2
(
λ2 − n2λ− 1

12
n2(n2 − 1)

)
.

Use the above to show that the two nonzero eigenvalues of A are

λ =
n

2

(
n±
√

3

3

√
4n2 − 1

)
.

The negative eigenvalue λ1 can also be expressed as

λ1 = n2 (3− 2
√

3)

6

√
1− 1

4n2
.

Use this expression to explain the phenomenon in B3(5): If we add any number greater than
or equal to (2/25)n2 to every diagonal entry of A we get an invertible matrix. What about
0.077351n2? Try it!
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Extra Credit Problem B5 (100 pts). Give an example of a norm on Cn and of a real
matrix A such that

‖A‖R < ‖A‖ ,

where ‖−‖R and ‖−‖ are the operator norms associated with the vector norm ‖−‖, as defined
in the notes.

Hint . This can already be done for n = 2.

Problem B6 (30 pts). Let ‖ ‖ be any operator norm. Given an invertible n × n matrix
A, if c = 1/(2 ‖A−1‖), then for every n× n matrix H, if ‖H‖ ≤ c, then A+H is invertible.
Furthermore, show that if ‖H‖ ≤ c, then ‖(A+H)−1‖ ≤ 1/c.

Problem B7 (40 pts). Let A be any m × n matrix and let λ ∈ R be any positive real
number λ > 0.

(1) Prove that A>A+ λIn and AA> + λIm are invertible.

(2) Prove that
A>(AA> + λIm)−1 = (A>A+ λIn)−1A>.

Remark: The expressions above correspond to the matrix for which the function

Φ(x) = (Ax− b)>(Ax− b) + λx>x

achieves a minimum. It shows up in machine learning (kernel methods).

Problem B8 (80 pts). Let A be a real 2× 2 matrix

A =

(
a1 1 a1 2
a2 1 a2 2

)
.

(1) Prove that the squares of the singular values σ1 ≥ σ2 of A are the roots of the
quadratic equation

X2 − tr(A>A)X + | det(A)|2 = 0.

(2) If we let

µ(A) =
a21 1 + a21 2 + a22 1 + a22 2

2|a1 1a2 2 − a1 2a2 1|
,

prove that

cond2(A) =
σ1
σ2

= µ(A) + (µ(A)2 − 1)1/2.

(3) Consider the subset S of 2× 2 invertible matrices whose entries ai j are integers such
that 0 ≤ aij ≤ 100.
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Prove that the functions cond2(A) and µ(A) reach a maximum on the set S for the same
values of A.

Check that for the matrix

Am =

(
100 99
99 98

)
we have

µ(Am) = 19, 603 det(Am) = −1

and
cond2(Am) ≈ 39, 206.

(4) Prove that for all A ∈ S, if | det(A)| ≥ 2 then µ(A) ≤ 10, 000. Conclude that the
maximum of µ(A) on S is achieved for matrices such that det(A) = ±1. Prove that finding
matrices that maximize µ on S is equivalent to finding some integers n1, n2, n3, n4 such that

0 ≤ n4 ≤ n3 ≤ n2 ≤ n1 ≤ 100

n2
1 + n2

2 + n2
3 + n2

4 ≥ 1002 + 992 + 992 + 982 = 39, 206

|n1n4 − n2n3| = 1.

You may use without proof that the fact that the only solution to the above constraints
is the multiset

{100, 99, 99, 98}.

(5) Deduce from part (4) that the matrices in S for which µ has a maximum value are

Am =

(
100 99
99 98

) (
98 99
99 100

) (
99 100
98 99

) (
99 98
100 99

)
and check that µ has the same value for these matrices. Conclude that

max
A∈S

cond2(A) = cond2(Am).

(6) Solve the system (
100 99
99 98

)(
x1
x2

)
=

(
199
197

)
.

Perturb the right-hand side b by

δb =

(
−0.0097
0.0106

)
and solve the new system

Amy = b+ δb
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where y = (y1, y2). Check that

δx = y − x =

(
2

−2.0203

)
.

Compute ‖x‖2, ‖δx‖2, ‖b‖2, ‖δb‖2, and estimate

c =
‖δx‖2
‖x‖2

(
‖δb‖2
‖b‖2

)−1
.

Ckeck that
c ≈ cond2(Am) = 39, 206.

TOTAL: 440 + 100 points.
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