
Fall, 2014 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 5

November 6, 2014; Due November 25 2014
Beginning of classes

Problem B1 (60 pts). (1) Let A be any n× n matrix such that the sum of the entries of
every row of A is the same (say c1), and the sum of entries of every column of A is the same
(say c2). Prove that c1 = c2.

(2) Prove that for any n ≥ 2, the 2n− 2 equations asserting that the sum of the entries
of every row of A is the same, and the sum of entries of every column of A is the same are
lineary independent. For example, when n = 4, we have the following 6 equations

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0.

Hint . Group the equations as above; that is, first list the n− 1 equations relating the rows,
and then list the n− 1 equations relating the columns. Prove that the first n− 1 equations
are linearly independent, and that the last n − 1 equations are also linearly independent.
Then, find a relationship between the two groups of equations that will allow you to prove
that they span subspace V r and V c such that V r ∩ V c = (0).

(3) Now consider magic squares . Such matrices satisfy the two conditions about the sum
of the entries in each row and in each column to be the same number, and also the additional
two constraints that the main descending and the main ascending diagonals add up to this
common number. Traditionally, it is also required that the entries in a magic square are
positive integers, but we will consider generalized magic square with arbitrary real entries.
For example, in the case n = 4, we have the following system of 8 equations:
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a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0.

In general, the equation involving the descending diagonal is

a22 + a33 + · · ·+ ann − a12 − a13 − · · · − a1n = 0 (r)

and the equation involving the ascending diagonal is

an1 + an−12 + · · ·+ a2n−1 − a11 − a12 − · · · − a1n−1 = 0. (c)

Prove that if n ≥ 3, then the 2n equations asserting that a matrix is a generalized magic
square are linearly independent.

Hint . Equations are really linear forms, so find some matrix annihilated by all equations
except equation r, and some matrix annihilated by all equations except equation c.

Problem B2 (30 pts). Let A be an m× n matrix and B be an n×m matrix.

(1) Prove that
det(Im − AB) = det(In −BA).

Hint . Consider the matrices

X =

(
Im A
B In

)
and Y =

(
Im 0
−B In

)
.

(2) Prove that
λn det(λIm − AB) = λm det(λIn −BA).

Hint . Consider the matrices

X =

(
λIm A
B In

)
and Y =

(
Im 0
−B λIn

)
.

Problem B3 (70 pts). Given a field K (say K = R or K = C), given any two polynomials
p(X), q(X) ∈ K[X], we says that q(X) divides p(X) (and that p(X) is a multiple of q(X))
iff there is some polynomial s(X) ∈ K[X] such that

p(X) = q(X)s(X).
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In this case we say that q(X) is a factor of p(X), and if q(X) has degree at least one, we
say that q(X) is a nontrivial factor of p(X).

Let f(X) and g(X) be two polynomials in K[X] with

f(X) = a0X
m + a1X

m−1 + · · ·+ am

of degree m ≥ 1 and
g(X) = b0X

n + b1X
n−1 + · · ·+ bn

of degree n ≥ 1 (with a0, b0 6= 0).

You will need the following result which you need not prove:

Two polynomials f(X) and g(X) with deg(f) = m ≥ 1 and deg(g) = n ≥ 1 have some
common nontrivial factor iff there exist two nonzero polynomials p(X) and q(X) such that

fp = gq,

with deg(p) ≤ n− 1 and deg(q) ≤ m− 1.

(1) Let Pm denote the vector space of all polynomials in K[X] of degree at most m− 1,
and let T : Pn × Pm → Pm+n be the map given by

T (p, q) = fp+ gq, p ∈ Pn, q ∈ Pm,

where f and g are some fixed polynomials of degree m ≥ 1 and n ≥ 1.

Prove that the map T is linear.

(2) Prove that T is not injective iff f and g have a common nontrivial factor.

(3) Prove that f and g have a nontrivial common factor iff R(f, g) = 0, where R(f, g) is
the determinant given by

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · · · · am 0 · · · · · · · · · · · · 0
0 a0 a1 · · · · · · am 0 · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · 0 a0 a1 · · · · · · am
b0 b1 · · · · · · · · · · · · · · · bn 0 · · · 0
0 b0 b1 · · · · · · · · · · · · · · · bn 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 b0 b1 · · · · · · · · · · · · · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The above determinant is called the resultant of f and g.
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Note that the matrix of the resultant is an (n+m)× (n+m) matrix, with the first row
(involving the ais) occuring n times, each time shifted over to the right by one column, and
the (n + 1)th row (involving the bjs) occuring m times, each time shifted over to the right
by one column.

Hint . Express the matrix of T over some suitable basis.

(4) Compute the resultant in the following three cases:

(a) m = n = 1, and write f(X) = aX + b and g(X) = cX + d.

(b) m = 1 and n ≥ 2 arbitrary.

(c) f(X) = aX2 + bX + c and g(X) = 2aX + b.

Extra Credit (40 pts). Compute the resultant of f(X) = X3+pX+q and g(X) = 3X2+p,
and

f(X) = a0X
2 + a1X + a2

g(X) = b0X
2 + b1X + b2.

In the second case, you should get

4R(f, g) = (2a0b2 − a1b1 + 2a2b0)
2 − (4a0a2 − a21)(4b0b2 − b21).

Problem B4 (40 pts). Give an example of a norm on Cn and of a real matrix A such that

‖A‖R < ‖A‖ ,

where ‖−‖R and ‖−‖ are the operator norms associated with the vector norm ‖−‖, as defined
in the notes.

Hint . This can already be done for n = 2.

Problem B5 (30 pts). Let ‖ ‖ be any operator norm. Given an invertible n × n matrix
A, if c = 1/(2 ‖A−1‖), then for every n× n matrix H, if ‖H‖ ≤ c, then A+H is invertible.
Furthermore, show that if ‖H‖ ≤ c, then ‖(A+H)−1‖ ≤ 1/c.

Problem B6 (40 pts). Let A be any m × n matrix and let λ ∈ R be any positive real
number λ > 0.

(1) Prove that A>A+ λIn and AA> + λIm are invertible.

(2) Prove that
A>(AA> + λIm)−1 = (A>A+ λIm)−1A>.
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Remark: The expressions above correspond to the matrix for which the function

Φ(x) = (Ax− b)>(Ax− b) + λx>x

achieves a minimum. It shows up in machine learning (kernel methods).

Problem B7 (80 pts). Let A be a real 2× 2 matrix

A =

(
a1 1 a1 2
a2 1 a2 2

)
.

(1) Prove that the squares of the singular values σ1 ≥ σ2 of A are the roots of the
quadratic equation

X2 − tr(A>A)X + | det(A)|2 = 0.

(2) If we let

µ(A) =
a21 1 + a21 2 + a22 1 + a22 2

2|a1 1a2 2 − a1 2a2 1|
,

prove that

cond2(A) =
σ1
σ2

= µ(A) + (µ(A)2 − 1)1/2.

(3) Consider the subset S of 2× 2 invertible matrices whose entries ai j are integers such
that 0 ≤ aij ≤ 100.

Prove that the functions cond2(A) and µ(A) reach a maximum on the set S for the same
values of A.

Check that for the matrix

Am =

(
100 99
99 98

)
we have

µ(Am) = 19, 603 det(Am) = −1

and
cond2(Am) ≈ 39, 206.

(4) Prove that for all A ∈ S, if | det(A)| ≥ 2 then µ(A) ≤ 10, 000. Conclude that the
maximum of µ(A) on S is achieved for matrices such that det(A) = ±1. Prove that finding
matrices that maximize µ on S is equivalent to finding some integers n1, n2, n3, n4 such that

0 ≤ n4 ≤ n3 ≤ n2 ≤ n1 ≤ 100

n2
1 + n2

2 + n2
3 + n2

4 ≥ 1002 + 992 + 992 + 982 = 39, 206

|n1n4 − n2n3| = 1.
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You may use without proof that the fact that the only solution to the above constraints
is the multiset

{100, 99, 99, 98}.

(5) Deduce from part (4) that the matrices in S for which µ has a maximum value are

Am =

(
100 99
99 98

) (
98 99
99 100

) (
99 100
98 99

) (
99 98
100 99

)
and check that µ has the same value for these matrices. Conclude that

max
A∈S

cond2(A) = cond2(Am).

(6) Solve the system (
100 99
99 98

)(
x1
x2

)
=

(
199
197

)
.

Perturb the right-hand side b by

δb =

(
−0.0097
0.0106

)
and solve the new system

Amy = b+ δb

where y = (y1, y2). Check that

δx = y − x =

(
2

−2.0203

)
.

Compute ‖x‖2, ‖δx‖2, ‖b‖2, ‖δb‖2, and estimate

c =
‖δx‖2
‖x‖2

(
‖δb‖2
‖b‖2

)−1
.

Ckeck that
c ≈ cond2(Am) = 39, 206.

Problem B8 (20 pts). Let ϕ : E × E → R be a bilinear form on a real vector space E of
finite dimension n. Given any basis (e1, . . . , en) of E, let A = (ai j) be the matrix defined
such that

ai j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).
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(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X>AY.

(b) Recall that A is a symmetric matrix if A = A>. Prove that ϕ is symmetric if A is a
symmetric matrix.

(c) If (f1, . . . , fn) is another basis of E and P is the change of basis matrix from (e1, . . . , en)
to (f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis (f1, . . . , fn) is

P>AP.

The common rank of all matrices representing ϕ is called the rank of ϕ.

Problem B9 (40 pts). Let ϕ : E × E → R be a symmetric bilinear form on a real vector
space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal
w.r.t. ϕ if ϕ(x, y) = 0. The main purpose of this problem is to prove that there is a basis of
vectors that are pairwise conjugate w.r.t. ϕ.

(a) Prove that if ϕ(x, x) = 0 for all x ∈ E, then ϕ is identically null on E.

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x, x) 6= 0.

Use induction to prove that there is a basis of vectors (u1, . . . , un) that are pairwise
conjugate w.r.t. ϕ.

Hint . For the induction step, proceed as follows. Let (u1, e2, . . . , en) be a basis of E, with
ϕ(u1, u1) 6= 0. Prove that there are scalars λ2, . . . , λn such that each of the vectors

vi = ei + λiu1

is conjugate to u1 w.r.t. ϕ, where 2 ≤ i ≤ n, and that (u1, v2, . . . , vn) is a basis.

(b) Let (e1, . . . , en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ, and assume
that they are ordered such that

ϕ(ei, ei) =

{
θi 6= 0 if 1 ≤ i ≤ r,
0 if r + 1 ≤ i ≤ n,

where r is the rank of ϕ. Show that the matrix of ϕ w.r.t. (e1, . . . , en) is a diagonal matrix,
and that

ϕ(x, y) =
r∑

i=1

θixiyi,

where x =
∑n

i=1 xiei and y =
∑n

i=1 yiei.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

P>AP = D,
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where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such that
ϕ(ui, ui) > 0 for exactly p vectors of every basis (u1, . . . , un) of vectors that are pairwise
conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . , un), for any x ∈ E, we have

ϕ(x, x) = α1x
2
1 + · · ·+ αpx

2
p − αp+1x

2
p+1 − · · · − αrx

2
r,

where x =
∑n

i=1 xiui, and that in the basis (v1, . . . , vn), for any x ∈ E, we have

ϕ(x, x) = β1y
2
1 + · · ·+ βqy

2
q − βq+1y

2
q+1 − · · · − βry2r ,

where x =
∑n

i=1 yivi, with αi > 0, βi > 0, 1 ≤ i ≤ r.

Assume that p > q and derive a contradiction. First, consider x in the subspace F
spanned by

(u1, . . . , up, ur+1, . . . , un),

and observe that ϕ(x, x) ≥ 0 if x 6= 0. Next, consider x in the subspace G spanned by

(vq+1, . . . , vr),

and observe that ϕ(x, x) < 0 if x 6= 0. Prove that F ∩ G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p ≤ q. Finish the proof.

The pair (p, r − p) is called the signature of ϕ.

(d) A symmetric bilinear form ϕ is definite if for every x ∈ E, if ϕ(x, x) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

TOTAL: 400 + 40 points.
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