
Fall, 2013 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 5

November 7, 2013; Due November 26, 2013
Beginning of classes

Problem B1 (60 pts). (1) Let A be any n× n matrix such that the sum of the entries of
every row of A is the same (say c1), and the sum of entries of every column of A is the same
(say c2). Prove that c1 = c2.

(2) Prove that for any n ≥ 2, the 2n− 2 equations asserting that the sum of the entries
of every row of A is the same, and the sum of entries of every column of A is the same are
lineary independent. For example, when n = 4, we have the following 6 equations

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0.

Hint . Group the equations as above; that is, first list the n− 1 equations relating the rows,
and then list the n− 1 equations relating the columns. Prove that the first n− 1 equations
are linearly independent, and that the last n − 1 equations are also linearly independent.
Then, find a relationship between the two groups of equations that will allow you to prove
that they span subspace V r and V c such that V r ∩ V c = (0).

(3) Now consider magic squares . Such matrices satisfy the two conditions about the sum
of the entries in each row and in each column to be the same number, and also the additional
two constraints that the main descending and the main ascending diagonals add up to this
common number. Traditionally, it is also required that the entries in a magic square are
positive integers, but we will consider generalized magic square with arbitrary real entries.
For example, in the case n = 4, we have the following system of 8 equations:
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a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0.

In general, the equation involving the descending diagonal is

a22 + a33 + · · ·+ ann − a12 − a13 − · · · − a1n = 0 (r)

and the equation involving the ascending diagonal is

an1 + an−12 + · · ·+ a2n−1 − a11 − a12 − · · · − a1n−1 = 0. (c)

Prove that if n ≥ 3, then the 2n equations asserting that a matrix is a generalized magic
square are linearly independent.

Hint . Equations are really linear forms, so find some matrix annihilated by all equations
except equation r, and some matrix annihilated by all equations except equation c.

Problem B2 (120 pts). (Affine frames and affine maps) For any vector u ∈ Rn, let
û ∈ Rn+1 be the vector defined by

ûi =

{
ui if 1 ≤ i ≤ n,

1 if i = n+ 1.

(1) For any m+ 1 vectors (u0, u1, . . . , um) with ui ∈ Rn and m ≤ n, prove that if the m
vectors (u1 − u0, . . . , um − u0) are linearly independent, then the m+ 1 vectors (û0, . . . , ûm)
are linearly independent.

(2) Prove that if the m + 1 vectors (û0, . . . , ûm) are linearly independent, then for any
choice of i, with 0 ≤ i ≤ m, the m vectors uj − ui for j ∈ {0, . . . ,m} with j − i 6= 0 are
linearly independent.

Any m+ 1 vectors (u0, u1, . . . , um) such that the m+ 1 vectors (û0, . . . , ûm) are linearly
independent are said to be affinely independent .

From (1) and (2), the vector (u0, u1, . . . , um) are affinely independent iff for any any choice
of i, with 0 ≤ i ≤ m, the m vectors uj − ui for j ∈ {0, . . . ,m} with j − i 6= 0 are linearly
independent. If m = n, we say that n+ 1 affinely independent vectors (u0, u1, . . . , un) form
an affine frame of Rn.
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(3) if (u0, u1, . . . , un) is an affine frame of Rn, then prove that for every vector v ∈ Rn,
there is a unique (n+ 1)-tuple (λ0, λ1, . . . , λn) ∈ Rn+1, with λ0 +λ1 + · · ·+λn = 1, such that

v = λ0u0 + λ1u1 + · · ·+ λnun.

The scalars (λ0, λ1, . . . , λn) are called the barycentric (or affine) coordinates of v w.r.t. the
affine frame (u0, u1, . . . , un).

If we write ei = ui − u0, for i = 1, . . . , n, then prove that we have

v = u0 + λ1e1 + · · ·+ λnen,

and since (e1, . . . , en) is a basis of Rn (by (1) & (2)), the n-tuple (λ1, . . . , λn) consists of the
standard coordinates of v − u0 over the basis (e1, . . . , en).

Conversely, for any vector u0 ∈ Rn and for any basis (e1, . . . , en) of Rn, let ui = u0 + ei
for i = 1, . . . , n. Prove that (u0, u1, . . . , un) is an affine frame of Rn, and for any v ∈ Rn, if

v = u0 + x1e1 + · · ·+ xnen,

with (x1, . . . , xn) ∈ Rn (unique), then

v = (1− (x1 + · · ·+ xx))u0 + x1u1 + · · ·+ xnun,

so that (1− (x1 + · · ·+xx)), x1, · · · , xn), are the barycentric coordinates of v w.r.t. the affine
frame (u0, u1, . . . , un).

The above shows that there is a one-to-one correspondence between affine frames (u0, . . .,
un) and pairs (u0, (e1, . . . , en)), with (e1, . . . , en) a basis. Given an affine frame (u0, . . . , un),
we obtain the basis (e1, . . . , en) with ei = ui−u0, for i = 1, . . . , n; given the pair (u0, (e1, . . .,
en)) where (e1, . . . , en) is a basis, we obtain the affine frame (u0, . . . , un), with ui = u0 + ei,
for i = 1, . . . , n. There is also a one-to-one correspondence between barycentric coordinates
w.r.t. the affine frame (u0, . . . , un) and standard coordinates w.r.t. the basis (e1, . . . , en).
The barycentric cordinates (λ0, λ1, . . . , λn) (with λ0 + λ1 + · · · + λn = 1) yield the stan-
dard coordinates (λ1, . . . , λn); the standard coordinates (x1, . . . , xn) yield the barycentric
coordinates (1− (x1 + · · ·+ xn), x1, . . . , xn).

(4) Let (u0, . . . , un) be any affine frame in Rn and let (v0, . . . , vn) be any vectors in Rm.
Prove that there is a unique affine map f : Rn → Rm such that

f(ui) = vi, i = 0, . . . , n.

(5) Let (a0, . . . , an) be any affine frame in Rn and let (b0, . . . , bn) be any n+ 1 points in
Rn. Prove that the (n + 1) × (n + 1) matrix A corresponding to the unique affine map f
such that

f(ai) = bi, i = 0, . . . , n,
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is given by

A =
(
b̂0 b̂1 · · · b̂n

) (
â0 â1 · · · ân

)−1
.

In the special case where (a0, . . . , an) is the canonical affine frame with ai = ei+1 for
i = 0, . . . , n− 1 and an = (0, . . . , 0) (where ei is the ith canonical basis vector), show that

(
â0 â1 · · · ân

)
=


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
1 1 · · · 1 1


and

(
â0 â1 · · · ân

)−1
=


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
−1 −1 · · · −1 1

 .

For example, when n = 2, if we write ai = (xi, yi), then we have

A =

x1 x2 x3
y1 y2 y3
1 1 1

 1 0 0
0 1 0
−1 −1 1

 =

x1 − x3 x2 − x3 x3
y1 − y3 y2 − y3 y3

0 0 1

 .

(6) Recall that a nonempty affine subspace A of Rn is any nonempty subset of Rn closed
under affine combinations. For any affine map f : Rn → Rm, for any affine subspace U of
Rn, and any affine subspace V of Rm, prove that f(U) is an affine subspace of Rm, and that
f−1(V ) is an affine subspace of Rn.

Problem B3 (40 pts). Give an example of a norm on Cn and of a real matrix A such that

‖A‖R < ‖A‖ ,

where ‖−‖R and ‖−‖ are the operator norms associated with the vector norm ‖−‖, as defined
in the notes.

Hint . This can already be done for n = 2.

Problem B4 (40 pts). Let A be an n×n matrix which is strictly row diagonally dominant,
which means that

|ai i| >
∑
j 6=i

|ai j|,

for i = 1, . . . , n, and let

δ = min
i

{
|ai i| −

∑
j 6=i

|ai j|
}
.
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The fact that A is strictly row diagonally dominant is equivalent to the condition δ > 0.

(1) For any nonzero vector v, prove that

‖Av‖∞ ≥ ‖v‖∞ δ.

Use the above to prove that A is invertible.

(2) Prove that ∥∥A−1∥∥∞ ≤ δ−1.

Hint . Prove that

sup
v 6=0

‖A−1v‖∞
‖v‖∞

= sup
w 6=0

‖w‖∞
‖Aw‖∞

.

Problem B5 (80 pts). Let A be a real 2× 2 matrix

A =

(
a1 1 a1 2
a2 1 a2 2

)
.

(1) Prove that the squares of the singular values σ1 ≥ σ2 of A are the roots of the
quadratic equation

X2 − tr(A>A)X + | det(A)|2 = 0.

(2) If we let

µ(A) =
a21 1 + a21 2 + a22 1 + a22 2

2|a1 1a2 2 − a1 2a2 1|
,

prove that

cond2(A) =
σ1
σ2

= µ(A) + (µ(A)2 − 1)1/2.

(3) Consider the subset S of 2× 2 invertible matrices whose entries ai j are integers such
that 0 ≤ aij ≤ 100.

Prove that the functions cond2(A) and µ(A) reach a maximum on the set S for the same
values of A.

Check that for the matrix

Am =

(
100 99
99 98

)
we have

µ(Am) = 19, 603 det(Am) = −1

and
cond2(Am) ≈ 39, 206.
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(4) Prove that for all A ∈ S, if | det(A)| ≥ 2 then µ(A) ≤ 10, 000. Conclude that the
maximum of µ(A) on S is achieved for matrices such that det(A) = ±1. Prove that finding
matrices that maximize µ on S is equivalent to finding some integers n1, n2, n3, n4 such that

0 ≤ n4 ≤ n3 ≤ n2 ≤ n1 ≤ 100

n2
1 + n2

2 + n2
3 + n2

4 ≥ 1002 + 992 + 992 + 982 = 39, 206

|n1n4 − n2n3| = 1.

You may use without proof that the fact that the only solution to the above constraints
is the multiset

{100, 99, 99, 98}.

(5) Deduce from part (4) that the matrices in S for which µ has a maximum value are

Am =

(
100 99
99 98

) (
98 99
99 100

) (
99 100
98 99

) (
99 98
100 99

)
and check that µ has the same value for these matrices. Conclude that

max
A∈S

cond2(A) = cond2(Am).

(6) Solve the system (
100 99
99 98

)(
x1
x2

)
=

(
199
197

)
.

Perturb the right-hand side b by

δb =

(
−0.0097
0.0106

)
and solve the new system

Amy = b+ δb

where y = (y1, y2). Check that

δx = y − x =

(
2

−2.0203

)
.

Compute ‖x‖2, ‖δx‖2, ‖b‖2, ‖δb‖2, and estimate

c =
‖δx‖2
‖x‖2

(
‖δb‖2
‖b‖2

)−1
.

Ckeck that
c ≈ cond2(Am) = 39, 206.
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Problem B6 (20 pts). Let E be a real vector space of finite dimension, n ≥ 1. Say that
two bases, (u1, . . . , un) and (v1, . . . , vn), of E have the same orientation iff det(P ) > 0, where
P the change of basis matrix from (u1, . . . , un) and (v1, . . . , vn), namely, the matrix whose
jth columns consist of the coordinates of vj over the basis (u1, . . . , un).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e1, . . . , en), of
E. Any other basis, (v1, . . . , vn), has the same orientation as (e1, . . . , en) (and is said to be
positive or direct) iff det(P ) > 0, else it is said to have the opposite orientation of (e1, . . . , en)
(or to be negative or indirect), where P is the change of basis matrix from (e1, . . . , en) to
(v1, . . . , vn). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) be two orthonormal bases. For any
sequence of vectors, (w1, . . . , wn), in E, let detB1(w1, . . . , wn) be the determinant of the
matrix whose columns are the coordinates of the wj’s over the basis B1 and similarly for
detB2(w1, . . . , wn).

Prove that if B1 and B2 have the same orientation, then

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

Given any oriented vector space, E, for any sequence of vectors, (w1, . . . , wn), in E, the
common value, detB(w1, . . . , wn), for all positive orthonormal bases, B, of E is denoted

λE(w1, . . . , wn)

and called a volume form of (w1, . . . , wn).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n− 1 vectors,
w1, . . . , wn−1, in E, check that the map

x 7→ λE(w1, . . . , wn−1, x)

is a linear form. Then, prove that there is a unique vector, denoted w1 × · · · × wn−1, such
that

λE(w1, . . . , wn−1, x) = (w1 × · · · × wn−1) · x,
for all x ∈ E. The vector w1 × · · · ×wn−1 is called the cross-product of (w1, . . . , wn−1). It is
a generalization of the cross-product in R3 (when n = 3).

Problem B7 (40 pts). Given p vectors (u1, . . . , up) in a Euclidean space E of dimension
n ≥ p, the Gram determinant (or Gramian) of the vectors (u1, . . . , up) is the determinant

Gram(u1, . . . , up) =

∣∣∣∣∣∣∣∣∣
‖u1‖2 〈u1, u2〉 . . . 〈u1, up〉
〈u2, u1〉 ‖u2‖2 . . . 〈u2, up〉

...
...

. . .
...

〈up, u1〉 〈up, u2〉 . . . ‖up‖2

∣∣∣∣∣∣∣∣∣ .
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(1) Prove that
Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . If (e1, . . . , en) is an orthonormal basis and A is the matrix of the vectors (u1, . . . , un)
over this basis,

det(A)2 = det(A>A) = det(Ai · Aj),

where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes the n × n matrix
with entries Ai · Aj.

(2) Prove that
‖u1 × · · · × un−1‖2 = Gram(u1, . . . , un−1).

Hint . Letting w = u1 × · · · × un−1, observe that

λE(u1, . . . , un−1, w) = 〈w,w〉 = ‖w‖2,

and show that

‖w‖4 = λE(u1, . . . , un−1, w)2 = Gram(u1, . . . , un−1, w)

= Gram(u1, . . . , un−1)‖w‖2.

TOTAL: 400 points.
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