
Fall, 2020 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 4

October 20, 2020; Due November 2 2020

Problem B1 (30 pts). Let A be an m× n matrix and B be an n×m matrix.

(1) Prove that
det(Im − AB) = det(In −BA).

Hint . Consider the matrices

X =

(
Im A
B In

)
and Y =

(
Im 0
−B In

)
.

(2) Prove that
λn det(λIm − AB) = λm det(λIn −BA).

Hint . Consider the matrices

X =

(
λIm A
B In

)
and Y =

(
Im 0
−B λIn

)
.

Conclude that the matrices AB an BA have exactly the same lists of nonzero eigenvalues.

Problem B2 (20 pts). Let A be any m × n matrix and let λ ∈ R be any positive real
number λ > 0.

(1) Prove that A>A+ λIn and AA> + λIm are invertible.

(2) Prove that
A>(AA> + λIm)−1 = (A>A+ λIn)−1A>.

Remark: The expressions above correspond to the matrix for which the function

Φ(x) = (Ax− b)>(Ax− b) + λx>x

achieves a minimum. It shows up in machine learning (kernel methods).

Problem B3 (30 pts). Let E be a real vector space of finite dimension, n ≥ 1. Say that
two bases, (u1, . . . , un) and (v1, . . . , vn), of E have the same orientation iff det(P ) > 0, where
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P the change of basis matrix from (u1, . . . , un) and (v1, . . . , vn), namely, the matrix whose
jth columns consist of the coordinates of vj over the basis (u1, . . . , un).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e1, . . . , en), of
E. Any other basis, (v1, . . . , vn), has the same orientation as (e1, . . . , en) (and is said to be
positive or direct) iff det(P ) > 0, else it is said to have the opposite orientation of (e1, . . . , en)
(or to be negative or indirect), where P is the change of basis matrix from (e1, . . . , en) to
(v1, . . . , vn). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) be two orthonormal bases. For any
sequence of vectors, (w1, . . . , wn), in E, let detB1(w1, . . . , wn) be the determinant of the
matrix whose columns are the coordinates of the wj’s over the basis B1 and similarly for
detB2(w1, . . . , wn).

Prove that if B1 and B2 have the same orientation, then

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

Given any oriented vector space, E, for any sequence of vectors, (w1, . . . , wn), in E, the
common value, detB(w1, . . . , wn), for all positive orthonormal bases, B, of E is denoted

λE(w1, . . . , wn)

and called a volume form of (w1, . . . , wn).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n− 1 vectors,
w1, . . . , wn−1, in E, check that the map

x 7→ λE(w1, . . . , wn−1, x)

is a linear form. Then, prove that there is a unique vector, denoted w1 × · · · × wn−1, such
that

λE(w1, . . . , wn−1, x) = (w1 × · · · × wn−1) · x,
for all x ∈ E. The vector w1 × · · · ×wn−1 is called the cross-product of (w1, . . . , wn−1). It is
a generalization of the cross-product in R3 (when n = 3).

Problem B4 (50 pts). Given p vectors (u1, . . . , up) in a Euclidean space E of dimension
n ≥ p, the Gram determinant (or Gramian) of the vectors (u1, . . . , up) is the determinant

Gram(u1, . . . , up) =

∣∣∣∣∣∣∣∣∣
‖u1‖2 〈u1, u2〉 . . . 〈u1, up〉
〈u2, u1〉 ‖u2‖2 . . . 〈u2, up〉

...
...

. . .
...

〈up, u1〉 〈up, u2〉 . . . ‖up‖2

∣∣∣∣∣∣∣∣∣ .
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(1) Prove that
Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . If (e1, . . . , en) is an orthonormal basis and A is the matrix of the vectors (u1, . . . , un)
over this basis,

det(A)2 = det(A>A) = det(Ai · Aj),

where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes the n × n matrix
with entries Ai · Aj.

(2) Prove that
‖u1 × · · · × un−1‖2 = Gram(u1, . . . , un−1).

Hint . Letting w = u1 × · · · × un−1, observe that

λE(u1, . . . , un−1, w) = 〈w,w〉 = ‖w‖2,

and show that

‖w‖4 = λE(u1, . . . , un−1, w)2 = Gram(u1, . . . , un−1, w)

= Gram(u1, . . . , un−1)‖w‖2.

Problem B5 (20 pts). Let ϕ : E × E → R be a bilinear form on a real vector space E of
finite dimension n. Given any basis (e1, . . . , en) of E, let A = (ai j) be the matrix defined
such that

ai j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).

(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X>AY.

(b) Recall that A is a symmetric matrix if A = A>. Prove that ϕ is symmetric if A is a
symmetric matrix.

(c) If (f1, . . . , fn) is another basis of E and P is the change of basis matrix from (e1, . . . , en)
to (f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis (f1, . . . , fn) is

P>AP.

The common rank of all matrices representing ϕ is called the rank of ϕ.

Problem B6 (60 pts). Let ϕ : E × E → R be a symmetric bilinear form on a real vector
space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal
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w.r.t. ϕ if ϕ(x, y) = 0. The main purpose of this problem is to prove that there is a basis of
vectors that are pairwise conjugate w.r.t. ϕ.

(a) Prove that if ϕ(x, x) = 0 for all x ∈ E, then ϕ is identically null on E.

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x, x) 6= 0.

Use induction to prove that there is a basis of vectors (u1, . . . , un) that are pairwise
conjugate w.r.t. ϕ.

Hint . For the induction step, proceed as follows. Let (u1, e2, . . . , en) be a basis of E, with
ϕ(u1, u1) 6= 0. Prove that there are scalars λ2, . . . , λn such that each of the vectors

vi = ei + λiu1

is conjugate to u1 w.r.t. ϕ, where 2 ≤ i ≤ n, and that (u1, v2, . . . , vn) is a basis.

(b) Let (e1, . . . , en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ, and assume
that they are ordered such that

ϕ(ei, ei) =

{
θi 6= 0 if 1 ≤ i ≤ r,
0 if r + 1 ≤ i ≤ n,

where r is the rank of ϕ. Show that the matrix of ϕ w.r.t. (e1, . . . , en) is a diagonal matrix,
and that

ϕ(x, y) =
r∑

i=1

θixiyi,

where x =
∑n

i=1 xiei and y =
∑n

i=1 yiei.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

P>AP = D,

where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such that
ϕ(ui, ui) > 0 for exactly p vectors of every basis (u1, . . . , un) of vectors that are pairwise
conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . , un), for any x ∈ E, we have

ϕ(x, x) = α1x
2
1 + · · ·+ αpx

2
p − αp+1x

2
p+1 − · · · − αrx

2
r,

where x =
∑n

i=1 xiui, and that in the basis (v1, . . . , vn), for any x ∈ E, we have

ϕ(x, x) = β1y
2
1 + · · ·+ βqy

2
q − βq+1y

2
q+1 − · · · − βry2r ,

where x =
∑n

i=1 yivi, with αi > 0, βi > 0, 1 ≤ i ≤ r.
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Assume that p > q and derive a contradiction. First, consider x in the subspace F
spanned by

(u1, . . . , up, ur+1, . . . , un),

and observe that ϕ(x, x) ≥ 0 if x 6= 0. Next, consider x in the subspace G spanned by

(vq+1, . . . , vr),

and observe that ϕ(x, x) < 0 if x 6= 0. Prove that F ∩ G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p ≤ q. Finish the proof.

The pair (p, r − p) is called the signature of ϕ.

(d) A symmetric bilinear form ϕ is definite if for every x ∈ E, if ϕ(x, x) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B7 (20 +∞2/∞1 ≈ 50 pts). (1) Let H be the affine hyperplane in Rn given by
the equation

a1x1 + · · ·+ anxn = c,

with ai 6= 0 for some i, 1 ≤ i ≤ n. The linear hyperplane H0 parallel to H is given by the
equation

a1x1 + · · ·+ anxn = 0,

and we say that a vector y ∈ Rn is orthogonal (or perpendicular) to H iff y is orthogonal to
H0. Let h be the intersection of H with the line through the origin and perpendicular to H.
Prove that the coordinates of h are given by

c

a21 + · · ·+ a2n
(a1, . . . , an).

(2) For any point p ∈ H, prove that ‖h‖ ≤ ‖p‖. Thus, it is natural to define the distance
d(O,H) from the origin O to the hyperplane H as d(O,H) = ‖h‖. Prove that

d(O,H) =
|c|

(a21 + · · ·+ a2n)
1
2

.

(3) Let S be a finite set of n ≥ 3 points in the plane (R2). Prove that if for every pair of
distinct points pi, pj ∈ S, there is a third point pk ∈ S (distinct from pi and pj) such that
pi, pj, pk belong to the same (affine) line, then all points in S belong to a common (affine)
line.

Hint . Proceed by contradiction and use a minimality argument. This is either ∞-hard or
relatively easy, depending how you proceed!
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Problem B8 (Extra Credit 60 pts). (1) Let A be any n× n matrix such that the sum
of the entries of every row of A is the same (say c1), and the sum of entries of every column
of A is the same (say c2). Prove that c1 = c2.

(2) Prove that for any n ≥ 2, the 2n− 2 equations asserting that the sum of the entries
of every row of A is the same, and the sum of entries of every column of A is the same are
lineary independent. For example, when n = 4, we have the following 6 equations

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0.

Hint . Group the equations as above; that is, first list the n− 1 equations relating the rows,
and then list the n− 1 equations relating the columns. Prove that the first n− 1 equations
are linearly independent, and that the last n − 1 equations are also linearly independent.
Then, find a relationship between the two groups of equations that will allow you to prove
that they span subspace V r and V c such that V r ∩ V c = (0).

(3) Now consider magic squares . Such matrices satisfy the two conditions about the sum
of the entries in each row and in each column to be the same number, and also the additional
two constraints that the main descending and the main ascending diagonals add up to this
common number. Traditionally, it is also required that the entries in a magic square are
positive integers, but we will consider generalized magic square with arbitrary real entries.
For example, in the case n = 4, we have the following system of 8 equations:

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0.

In general, the equation involving the descending diagonal is

a22 + a33 + · · ·+ ann − a12 − a13 − · · · − a1n = 0 (r)
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and the equation involving the ascending diagonal is

an1 + an−12 + · · ·+ a2n−1 − a11 − a12 − · · · − a1n−1 = 0. (c)

Prove that if n ≥ 3, then the 2n equations asserting that a matrix is a generalized magic
square are linearly independent.

Hint . Equations are really linear forms, so find some matrix annihilated by all equations
except equation r, and some matrix annihilated by all equations except equation c.

TOTAL: 260 + 60 points.
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