Fall, 2020 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 4

October 20, 2020; Due November 22020

Problem B1 ($\mathbf{3 0} \mathbf{~ p t s) . ~ L e t ~} A$ be an $m \times n$ matrix and B be an $n \times m$ matrix.
(1) Prove that

$$
\operatorname{det}\left(I_{m}-A B\right)=\operatorname{det}\left(I_{n}-B A\right)
$$

Hint. Consider the matrices

$$
X=\left(\begin{array}{cc}
I_{m} & A \\
B & I_{n}
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{cc}
I_{m} & 0 \\
-B & I_{n}
\end{array}\right)
$$

(2) Prove that

$$
\lambda^{n} \operatorname{det}\left(\lambda I_{m}-A B\right)=\lambda^{m} \operatorname{det}\left(\lambda I_{n}-B A\right)
$$

Hint. Consider the matrices

$$
X=\left(\begin{array}{cc}
\lambda I_{m} & A \\
B & I_{n}
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{cc}
I_{m} & 0 \\
-B & \lambda I_{n}
\end{array}\right)
$$

Conclude that the matrices $A B$ an $B A$ have exactly the same lists of nonzero eigenvalues.
Problem B2 (20 pts). Let A be any $m \times n$ matrix and let $\lambda \in \mathbb{R}$ be any positive real number $\lambda>0$.
(1) Prove that $A^{\top} A+\lambda I_{n}$ and $A A^{\top}+\lambda I_{m}$ are invertible.
(2) Prove that

$$
A^{\top}\left(A A^{\top}+\lambda I_{m}\right)^{-1}=\left(A^{\top} A+\lambda I_{n}\right)^{-1} A^{\top}
$$

Remark: The expressions above correspond to the matrix for which the function

$$
\Phi(x)=(A x-b)^{\top}(A x-b)+\lambda x^{\top} x
$$

achieves a minimum. It shows up in machine learning (kernel methods).
Problem B3 (30 pts). Let E be a real vector space of finite dimension, $n \geq 1$. Say that two bases, $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, of E have the same orientation $\operatorname{iff} \operatorname{det}(P)>0$, where
P the change of basis matrix from $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, namely, the matrix whose j th columns consist of the coordinates of v_{j} over the basis $\left(u_{1}, \ldots, u_{n}\right)$.
(a) Prove that having the same orientation is an equivalence relation with two equivalence classes.

An orientation of a vector space, E, is the choice of any fixed basis, say $\left(e_{1}, \ldots, e_{n}\right)$, of E. Any other basis, $\left(v_{1}, \ldots, v_{n}\right)$, has the same orientation as $\left(e_{1}, \ldots, e_{n}\right)$ (and is said to be positive or direct) iff $\operatorname{det}(P)>0$, else it is said to have the opposite orientation of $\left(e_{1}, \ldots, e_{n}\right)$ (or to be negative or indirect), where P is the change of basis matrix from $\left(e_{1}, \ldots, e_{n}\right)$ to $\left(v_{1}, \ldots, v_{n}\right)$. An oriented vector space is a vector space with some chosen orientation (a positive basis).
(b) Let $B_{1}=\left(u_{1}, \ldots, u_{n}\right)$ and $B_{2}=\left(v_{1}, \ldots, v_{n}\right)$ be two orthonormal bases. For any sequence of vectors, $\left(w_{1}, \ldots, w_{n}\right)$, in E, let $\operatorname{det}_{B_{1}}\left(w_{1}, \ldots, w_{n}\right)$ be the determinant of the matrix whose columns are the coordinates of the w_{j} 's over the basis B_{1} and similarly for $\operatorname{det}_{B_{2}}\left(w_{1}, \ldots, w_{n}\right)$.

Prove that if B_{1} and B_{2} have the same orientation, then

$$
\operatorname{det}_{B_{1}}\left(w_{1}, \ldots, w_{n}\right)=\operatorname{det}_{B_{2}}\left(w_{1}, \ldots, w_{n}\right)
$$

Given any oriented vector space, E, for any sequence of vectors, $\left(w_{1}, \ldots, w_{n}\right)$, in E, the common value, $\operatorname{det}_{B}\left(w_{1}, \ldots, w_{n}\right)$, for all positive orthonormal bases, B, of E is denoted

$$
\lambda_{E}\left(w_{1}, \ldots, w_{n}\right)
$$

and called a volume form of $\left(w_{1}, \ldots, w_{n}\right)$.
(c) Given any Euclidean oriented vector space, E, of dimension n for any $n-1$ vectors, w_{1}, \ldots, w_{n-1}, in E, check that the map

$$
x \mapsto \lambda_{E}\left(w_{1}, \ldots, w_{n-1}, x\right)
$$

is a linear form. Then, prove that there is a unique vector, denoted $w_{1} \times \cdots \times w_{n-1}$, such that

$$
\lambda_{E}\left(w_{1}, \ldots, w_{n-1}, x\right)=\left(w_{1} \times \cdots \times w_{n-1}\right) \cdot x
$$

for all $x \in E$. The vector $w_{1} \times \cdots \times w_{n-1}$ is called the cross-product of $\left(w_{1}, \ldots, w_{n-1}\right)$. It is a generalization of the cross-product in \mathbb{R}^{3} (when $n=3$).

Problem B4 (50 pts). Given p vectors $\left(u_{1}, \ldots, u_{p}\right)$ in a Euclidean space E of dimension $n \geq p$, the Gram determinant (or Gramian) of the vectors $\left(u_{1}, \ldots, u_{p}\right)$ is the determinant

$$
\operatorname{Gram}\left(u_{1}, \ldots, u_{p}\right)=\left|\begin{array}{cccc}
\left\|u_{1}\right\|^{2} & \left\langle u_{1}, u_{2}\right\rangle & \ldots & \left\langle u_{1}, u_{p}\right\rangle \\
\left\langle u_{2}, u_{1}\right\rangle & \left\|u_{2}\right\|^{2} & \ldots & \left\langle u_{2}, u_{p}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle u_{p}, u_{1}\right\rangle & \left\langle u_{p}, u_{2}\right\rangle & \ldots & \left\|u_{p}\right\|^{2}
\end{array}\right| .
$$

(1) Prove that

$$
\operatorname{Gram}\left(u_{1}, \ldots, u_{n}\right)=\lambda_{E}\left(u_{1}, \ldots, u_{n}\right)^{2} .
$$

Hint. If $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis and A is the matrix of the vectors $\left(u_{1}, \ldots, u_{n}\right)$ over this basis,

$$
\operatorname{det}(A)^{2}=\operatorname{det}\left(A^{\top} A\right)=\operatorname{det}\left(A^{i} \cdot A^{j}\right)
$$

where A^{i} denotes the i th column of the matrix A, and $\left(A^{i} \cdot A^{j}\right)$ denotes the $n \times n$ matrix with entries $A^{i} \cdot A^{j}$.
(2) Prove that

$$
\left\|u_{1} \times \cdots \times u_{n-1}\right\|^{2}=\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}\right) .
$$

Hint. Letting $w=u_{1} \times \cdots \times u_{n-1}$, observe that

$$
\lambda_{E}\left(u_{1}, \ldots, u_{n-1}, w\right)=\langle w, w\rangle=\|w\|^{2}
$$

and show that

$$
\begin{aligned}
\|w\|^{4} & =\lambda_{E}\left(u_{1}, \ldots, u_{n-1}, w\right)^{2}=\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}, w\right) \\
& =\operatorname{Gram}\left(u_{1}, \ldots, u_{n-1}\right)\|w\|^{2}
\end{aligned}
$$

Problem B5 (20 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a bilinear form on a real vector space E of finite dimension n. Given any basis $\left(e_{1}, \ldots, e_{n}\right)$ of E, let $A=\left(a_{i j}\right)$ be the matrix defined such that

$$
a_{i j}=\varphi\left(e_{i}, e_{j}\right),
$$

$1 \leq i, j \leq n$. We call A the matrix of φ w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$.
(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$, prove that

$$
\varphi(x, y)=X^{\top} A Y
$$

(b) Recall that A is a symmetric matrix if $A=A^{\top}$. Prove that φ is symmetric if A is a symmetric matrix.
(c) If $\left(f_{1}, \ldots, f_{n}\right)$ is another basis of E and P is the change of basis matrix from $\left(e_{1}, \ldots, e_{n}\right)$ to $\left(f_{1}, \ldots, f_{n}\right)$, prove that the matrix of φ w.r.t. the basis $\left(f_{1}, \ldots, f_{n}\right)$ is

$$
P^{\top} A P
$$

The common rank of all matrices representing φ is called the rank of φ.
Problem B6 (60 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a symmetric bilinear form on a real vector space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal
w.r.t. φ if $\varphi(x, y)=0$. The main purpose of this problem is to prove that there is a basis of vectors that are pairwise conjugate w.r.t. φ.
(a) Prove that if $\varphi(x, x)=0$ for all $x \in E$, then φ is identically null on E.

Otherwise, we can assume that there is some vector $x \in E$ such that $\varphi(x, x) \neq 0$.
Use induction to prove that there is a basis of vectors $\left(u_{1}, \ldots, u_{n}\right)$ that are pairwise conjugate w.r.t. φ.

Hint. For the induction step, proceed as follows. Let $\left(u_{1}, e_{2}, \ldots, e_{n}\right)$ be a basis of E, with $\varphi\left(u_{1}, u_{1}\right) \neq 0$. Prove that there are scalars $\lambda_{2}, \ldots, \lambda_{n}$ such that each of the vectors

$$
v_{i}=e_{i}+\lambda_{i} u_{1}
$$

is conjugate to u_{1} w.r.t. φ, where $2 \leq i \leq n$, and that $\left(u_{1}, v_{2}, \ldots, v_{n}\right)$ is a basis.
(b) Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of vectors that are pairwise conjugate w.r.t. φ, and assume that they are ordered such that

$$
\varphi\left(e_{i}, e_{i}\right)= \begin{cases}\theta_{i} \neq 0 & \text { if } 1 \leq i \leq r \\ 0 & \text { if } r+1 \leq i \leq n\end{cases}
$$

where r is the rank of φ. Show that the matrix of φ w.r.t. $\left(e_{1}, \ldots, e_{n}\right)$ is a diagonal matrix, and that

$$
\varphi(x, y)=\sum_{i=1}^{r} \theta_{i} x_{i} y_{i}
$$

where $x=\sum_{i=1}^{n} x_{i} e_{i}$ and $y=\sum_{i=1}^{n} y_{i} e_{i}$.
Prove that for every symmetric matrix A, there is an invertible matrix P such that

$$
P^{\top} A P=D,
$$

where D is a diagonal matrix.
(c) Prove that there is an integer $p, 0 \leq p \leq r$ (where r is the rank of φ), such that $\varphi\left(u_{i}, u_{i}\right)>0$ for exactly p vectors of every basis $\left(u_{1}, \ldots, u_{n}\right)$ of vectors that are pairwise conjugate w.r.t. φ (Sylvester's inertia theorem).

Proceed as follows. Assume that in the basis $\left(u_{1}, \ldots, u_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\alpha_{1} x_{1}^{2}+\cdots+\alpha_{p} x_{p}^{2}-\alpha_{p+1} x_{p+1}^{2}-\cdots-\alpha_{r} x_{r}^{2}
$$

where $x=\sum_{i=1}^{n} x_{i} u_{i}$, and that in the basis $\left(v_{1}, \ldots, v_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\beta_{1} y_{1}^{2}+\cdots+\beta_{q} y_{q}^{2}-\beta_{q+1} y_{q+1}^{2}-\cdots-\beta_{r} y_{r}^{2}
$$

where $x=\sum_{i=1}^{n} y_{i} v_{i}$, with $\alpha_{i}>0, \beta_{i}>0,1 \leq i \leq r$.

Assume that $p>q$ and derive a contradiction. First, consider x in the subspace F spanned by

$$
\left(u_{1}, \ldots, u_{p}, u_{r+1}, \ldots, u_{n}\right)
$$

and observe that $\varphi(x, x) \geq 0$ if $x \neq 0$. Next, consider x in the subspace G spanned by

$$
\left(v_{q+1}, \ldots, v_{r}\right)
$$

and observe that $\varphi(x, x)<0$ if $x \neq 0$. Prove that $F \cap G$ is nontrivial (i.e., contains some nonnull vector), and derive a contradiction. This implies that $p \leq q$. Finish the proof.

The pair $(p, r-p)$ is called the signature of φ.
(d) A symmetric bilinear form φ is definite if for every $x \in E$, if $\varphi(x, x)=0$, then $x=0$.

Prove that a symmetric bilinear form is definite iff its signature is either $(n, 0)$ or $(0, n)$. In other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B7 (20 $\left.+\infty_{2} / \infty_{1} \approx 50 \mathrm{pts}\right)$. (1) Let H be the affine hyperplane in \mathbb{R}^{n} given by the equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=c,
$$

with $a_{i} \neq 0$ for some $i, 1 \leq i \leq n$. The linear hyperplane H_{0} parallel to H is given by the equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0,
$$

and we say that a vector $y \in \mathbb{R}^{n}$ is orthogonal (or perpendicular) to H iff y is orthogonal to H_{0}. Let h be the intersection of H with the line through the origin and perpendicular to H. Prove that the coordinates of h are given by

$$
\frac{c}{a_{1}^{2}+\cdots+a_{n}^{2}}\left(a_{1}, \ldots, a_{n}\right) .
$$

(2) For any point $p \in H$, prove that $\|h\| \leq\|p\|$. Thus, it is natural to define the distance $d(O, H)$ from the origin O to the hyperplane H as $d(O, H)=\|h\|$. Prove that

$$
d(O, H)=\frac{|c|}{\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)^{\frac{1}{2}}} .
$$

(3) Let S be a finite set of $n \geq 3$ points in the plane $\left(\mathbb{R}^{2}\right)$. Prove that if for every pair of distinct points $p_{i}, p_{j} \in S$, there is a third point $p_{k} \in S$ (distinct from p_{i} and p_{j}) such that p_{i}, p_{j}, p_{k} belong to the same (affine) line, then all points in S belong to a common (affine) line.

Hint. Proceed by contradiction and use a minimality argument. This is either ∞-hard or relatively easy, depending how you proceed!

Problem B8 (Extra Credit 60 pts). (1) Let A be any $n \times n$ matrix such that the sum of the entries of every row of A is the same (say c_{1}), and the sum of entries of every column of A is the same (say c_{2}). Prove that $c_{1}=c_{2}$.
(2) Prove that for any $n \geq 2$, the $2 n-2$ equations asserting that the sum of the entries of every row of A is the same, and the sum of entries of every column of A is the same are lineary independent. For example, when $n=4$, we have the following 6 equations

$$
\begin{aligned}
& a_{11}+a_{12}+a_{13}+a_{14}-a_{21}-a_{22}-a_{23}-a_{24}=0 \\
& a_{21}+a_{22}+a_{23}+a_{24}-a_{31}-a_{32}-a_{33}-a_{34}=0 \\
& a_{31}+a_{32}+a_{33}+a_{34}-a_{41}-a_{42}-a_{43}-a_{44}=0 \\
& a_{11}+a_{21}+a_{31}+a_{41}-a_{12}-a_{22}-a_{32}-a_{42}=0 \\
& a_{12}+a_{22}+a_{32}+a_{42}-a_{13}-a_{23}-a_{33}-a_{43}=0 \\
& a_{13}+a_{23}+a_{33}+a_{43}-a_{14}-a_{24}-a_{34}-a_{44}=0 .
\end{aligned}
$$

Hint. Group the equations as above; that is, first list the $n-1$ equations relating the rows, and then list the $n-1$ equations relating the columns. Prove that the first $n-1$ equations are linearly independent, and that the last $n-1$ equations are also linearly independent. Then, find a relationship between the two groups of equations that will allow you to prove that they span subspace V^{r} and V^{c} such that $V^{r} \cap V^{c}=(0)$.
(3) Now consider magic squares. Such matrices satisfy the two conditions about the sum of the entries in each row and in each column to be the same number, and also the additional two constraints that the main descending and the main ascending diagonals add up to this common number. Traditionally, it is also required that the entries in a magic square are positive integers, but we will consider generalized magic square with arbitrary real entries. For example, in the case $n=4$, we have the following system of 8 equations:

$$
\begin{array}{r}
a_{11}+a_{12}+a_{13}+a_{14}-a_{21}-a_{22}-a_{23}-a_{24}=0 \\
a_{21}+a_{22}+a_{23}+a_{24}-a_{31}-a_{32}-a_{33}-a_{34}=0 \\
a_{31}+a_{32}+a_{33}+a_{34}-a_{41}-a_{42}-a_{43}-a_{44}=0 \\
a_{11}+a_{21}+a_{31}+a_{41}-a_{12}-a_{22}-a_{32}-a_{42}=0 \\
a_{12}+a_{22}+a_{32}+a_{42}-a_{13}-a_{23}-a_{33}-a_{43}=0 \\
a_{13}+a_{23}+a_{33}+a_{43}-a_{14}-a_{24}-a_{34}-a_{44}=0 \\
a_{22}+a_{33}+a_{44}-a_{12}-a_{13}-a_{14}=0 \\
a_{41}+a_{32}+a_{23}-a_{11}-a_{12}-a_{13}=0 .
\end{array}
$$

In general, the equation involving the descending diagonal is

$$
\begin{equation*}
a_{22}+a_{33}+\cdots+a_{n n}-a_{12}-a_{13}-\cdots-a_{1 n}=0 \tag{r}
\end{equation*}
$$

and the equation involving the ascending diagonal is

$$
\begin{equation*}
a_{n 1}+a_{n-12}+\cdots+a_{2 n-1}-a_{11}-a_{12}-\cdots-a_{1 n-1}=0 \tag{c}
\end{equation*}
$$

Prove that if $n \geq 3$, then the $2 n$ equations asserting that a matrix is a generalized magic square are linearly independent.

Hint. Equations are really linear forms, so find some matrix annihilated by all equations except equation r, and some matrix annihilated by all equations except equation c.

TOTAL: $260+60$ points.

