
Fall, 2015 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 4

October 21, 2015; Due November 3, 2015, beginning of class

Problem B1 (50 pts). (1) Prove that the dimension of the subspace of 2× 2 matrices A,
such that the sum of the entries of every row is the same (say c1) and the sum of entries of
every column is the same (say c2) is 2.

(2) Prove that the dimension of the subspace of 2× 2 matrices A, such that the sum of
the entries of every row is the same (say c1), the sum of entries of every column is the same
(say c2), and c1 = c2, is also 2. Prove that every such matrix is of the form(

a b
b a

)
,

and give a basis for this subspace.

(3) Prove that the dimension of the subspace of 3× 3 matrices A, such that the sum of
the entries of every row is the same (say c1), the sum of entries of every column is the same
(say c2), and c1 = c2, is 5. Begin by showing that the above constraints are given by the set
of equations


1 1 1 −1 −1 −1 0 0 0
0 0 0 1 1 1 −1 −1 −1
1 −1 0 1 −1 0 1 −1 0
0 1 −1 0 1 −1 0 1 −1
0 1 1 −1 0 0 −1 0 0





a11
a12
a13
a21
a22
a23
a31
a32
a33


=


0
0
0
0
0

 .

Prove that every matrix satisfying the above constraints is of the form a+ b− c −a+ c+ e −b+ c+ d
−a− b+ c+ d+ e a b

c d e

 ,
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with a, b, c, d, e ∈ R. Find a basis for this subspace. (Use the method to find a basis for the
kernel of a matrix).

Problem B2 (10 pts). If A is an n × n symmetric matrix and B is any n × n invertible
matrix, prove that A is positive definite iff B>AB is positive definite.

Problem B3 (100 pts). (1) Let A be any invertible 2× 2 matrix

A =

(
a b
c d

)
.

Prove that there is an invertible matrix S such that

SA =

(
1 0
0 ad− bc

)
,

where S is the product of at most four elementary matrices of the form Ei,j;β.

Conclude that every matrix A in SL(2) (the group of invertible 2 × 2 matrices A with
det(A) = +1) is the product of at most four elementary matrices of the form Ei,j;β.

For any a 6= 0, 1, give an explicit factorization as above for

A =

(
a 0
0 a−1

)
.

What is this decomposition for a = −1?

(2) Recall that a rotation matrix R (a member of the group SO(2)) is a matrix of the
form

R =

(
cos θ − sin θ
sin θ cos θ

)
.

Prove that if θ 6= kπ (with k ∈ Z), any rotation matrix can be written as a product

R = ULU,

where U is upper triangular and L is lower triangular of the form

U =

(
1 u
0 1

)
, L =

(
1 0
v 1

)
.

Therefore, every plane rotation (except a flip about the origin when θ = π) can be written
as the composition of three shear transformations!

(3) Recall that Ei,d is the diagonal matrix

Ei,d = diag(1, . . . , 1, d, 1, . . . , 1),

whose diagonal entries are all +1, except the (i, i)th entry which is equal to d.
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Given any n× n matrix A, for any pair (i, j) of distinct row indices (1 ≤ i, j ≤ n), prove
that there exist two elementary matrices E1(i, j) and E2(i, j) of the form Ek,`;β, such that

Ej,−1E1(i, j)E2(i, j)E1(i, j)A = P (i, j)A,

the matrix obtained from the matrix A by permuting row i and row j. Equivalently, we have

E1(i, j)E2(i, j)E1(i, j)A = Ej,−1P (i, j)A,

the matrix obtained from A by permuting row i and row j and multiplying row j by −1.

Prove that for every i = 2, . . . , n, there exist four elementary matrices E3(i, d), E4(i, d),
E5(i, d), E6(i, d) of the form Ek,`;β, such that

E6(i, d)E5(i, d)E4(i, d)E3(i, d)En,d = Ei,d.

What happens when d = −1, that is, what kind of simplifications occur?

Prove that all permutation matrices can be written as products of elementary operations
of the form Ek,`;β and the operation En,−1.

(4) Prove that for every invertible n× n matrix A, there is a matrix S such that

SA =

(
In−1 0

0 d

)
= En,d,

with d = det(A), and where S is a product of elementary matrices of the form Ek,`;β.

In particular,every matrix in SL(n) (the group of invertible n × n matrices A with
det(A) = +1) can be written as a product of elementary matrices of the form Ek,`;β. Prove
that at most n(n+ 1)− 2 such transformations are needed.

Extra Credit (20 points). Prove that every matrix in SL(n) can be written as a product
of at most (n− 1)(max{n, 3}+ 1) elementary matrices of the form Ek,`;β.

Problem B4 (50 pts). A matrix, A, is called strictly column diagonally dominant iff

|aj j| >
n∑

i=1, i 6=j

|ai j|, for j = 1, . . . , n

Prove that if A is strictly column diagonally dominant, then Gaussian elimination with
partial pivoting does not require pivoting, and A is invertible.

Problem B5 (40 pts). Let (α1, . . . , αm+1) be a sequence of pairwise distinct scalars in R
and let (β1, . . . , βm+1) be any sequence of scalars in R, not necessarily distinct.

(1) Prove that there is a unique polynomial P of degree at most m such that

P (αi) = βi, 1 ≤ i ≤ m+ 1.
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Hint . Remember Vandermonde!

(2) Let Li(X) be the polynomial of degree m given by

Li(X) =
(X − α1) · · · (X − αi−1)(X − αi+1) · · · (X − αm+1)

(αi − α1) · · · (αi − αi−1)(αi − αi+1) · · · (αi − αm+1)
, 1 ≤ i ≤ m+ 1.

The polynomials Li(X) are known as Lagrange polynomial interpolants . Prove that

Li(αj) = δi j 1 ≤ i, j ≤ m+ 1.

Prove that
P (X) = β1L1(X) + · · ·+ βm+1Lm+1(X)

is the unique polynomial of degree at most m such that

P (αi) = βi, 1 ≤ i ≤ m+ 1.

(3) Prove that L1(X), . . . , Lm+1(X) are lineary independent, and that they form a basis
of all polynomials of degree at most m.

How is 1 (the constant polynomial 1) expressed over the basis (L1(X), . . . , Lm+1(X))?

Give the expression of every polynomial P (X) of degree at most m over the basis
(L1(X), . . . , Lm+1(X)).

(4) Prove that the dual basis (L∗1, . . . , L
∗
m+1) of the basis (L1(X), . . . , Lm+1(X)) consists

of the linear forms L∗i given by
L∗i (P ) = P (αi),

for every polynomial P of degree at most m; this is simply evaluation at αi.

Problem B6 (60 pts). (a) Find a lower triangular matrix E such that

E


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 =


1 0 0 0
0 1 0 0
0 1 1 0
0 1 2 1

 .

(b) What is the effect of the product (on the left) with

E4,3;−1E3,2;−1E4,3;−1E2,1;−1E3,2;−1E4,3;−1

on the matrix

Pa3 =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 .
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(c) Find the inverse of the matrix Pa3.

(d) Consider the (n + 1) × (n + 1) Pascal matrix Pan whose ith row is given by the
binomial coefficients (

i− 1

j − 1

)
,

with 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1, and with the usual convention that(
0

0

)
= 1,

(
i

j

)
= 0 if j > i.

The matrix Pa3 is shown in question (c) and Pa4 is shown below:

Pa4 =


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

 .

Find n elementary matrices Eik,jk;βk such that

Ein,jn;βn · · ·Ei1,j1;β1Pan =

(
1 0
0 Pan−1

)
.

Use the above to prove that the inverse of Pan is the lower triangular matrix whose ith
row is given by the signed binomial coefficients

(−1)i+j−2
(
i− 1

j − 1

)
,

with 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1. For example,

Pa−14 =


1 0 0 0 0
−1 1 0 0 0
1 −2 1 0 0
−1 3 −3 1 0
1 −4 6 −4 1

 .

Hint . Given any n×n matrix A, multiplying A by the elementary matrix Ei,j;β on the right
yields the matrix AEi,j;β in which β times the ith column is added to the jth column.

Problem B7 (30 pts). Given any two subspaces V1, V2 of a finite-dimensional vector space
E, prove that

(V1 + V2)
0 = V 0

1 ∩ V 0
2

(V1 ∩ V2)0 = V 0
1 + V 0

2 .
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Beware that in the second equation, V1 and V2 are subspaces of E, not E∗.

Hint . To prove the second equation, prove the inclusions V 0
1 +V 0

2 ⊆ (V1∩V2)0 and (V1∩V2)0 ⊆
V 0
1 + V 0

2 . Proving the second inclusion is a little tricky. First, prove that we can pick a
subspace W1 of V1 and a subspace W2 of V2 such that

1. V1 is the direct sum V1 = (V1 ∩ V2)⊕W1.

2. V2 is the direct sum V2 = (V1 ∩ V2)⊕W2.

3. V1 + V2 is the direct sum V1 + V2 = (V1 ∩ V2)⊕W1 ⊕W2.

TOTAL: 340 + 20 points.
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