Fall, 2014 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 4

October 21, 2014; Due November 4, 2014, beginning of class

Problem B1 (50 pts). (1) Prove that the dimension of the subspace of 2×2 matrices A, such that the sum of the entries of every row is the same (say c_{1}) and the sum of entries of every column is the same (say c_{2}) is 2 .
(2) Prove that the dimension of the subspace of 2×2 matrices A, such that the sum of the entries of every row is the same (say c_{1}), the sum of entries of every column is the same (say c_{2}), and $c_{1}=c_{2}$, is also 2 . Prove that every such matrix is of the form

$$
\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

and give a basis for this subspace.
(3) Prove that the dimension of the subspace of 3×3 matrices A, such that the sum of the entries of every row is the same (say c_{1}), the sum of entries of every column is the same (say c_{2}), and $c_{1}=c_{2}$, is 5 . Begin by showing that the above constraints are given by the set of equations

$$
\left(\begin{array}{ccccccccc}
1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1 \\
1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 \\
0 & 1 & 1 & -1 & 0 & 0 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a_{11} \\
a_{12} \\
a_{13} \\
a_{21} \\
a_{22} \\
a_{23} \\
a_{31} \\
a_{32} \\
a_{33}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Prove that every matrix satisfying the above constraints is of the form

$$
\left(\begin{array}{ccc}
a+b-c & -a+c+e & -b+c+d \\
-a-b+c+d+e & a & b \\
c & d & e
\end{array}\right)
$$

with $a, b, c, d, e \in \mathbb{R}$. Find a basis for this subspace. (Use the method to find a basis for the kernel of a matrix).

Problem B2 ($\mathbf{1 0} \mathbf{p t s}$). If A is an $n \times n$ symmetric matrix and B is any $n \times n$ invertible matrix, prove that A is positive definite iff $B^{\top} A B$ is positive definite.
Problem B3 (100 pts). (1) Let A be any invertible 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Prove that there is an invertible matrix S such that

$$
S A=\left(\begin{array}{cc}
1 & 0 \\
0 & a d-b c
\end{array}\right)
$$

where S is the product of at most four elementary matrices of the form $E_{i, j ; \beta}$.
Conclude that every matrix A in $\mathbf{S L}(2)$ (the group of invertible 2×2 matrices A with $\operatorname{det}(A)=+1)$ is the product of at most four elementary matrices of the form $E_{i, j ; \beta}$.

For any $a \neq 0,1$, give an explicit factorization as above for

$$
A=\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) .
$$

What is this decomposition for $a=-1$?
(2) Recall that a rotation matrix R (a member of the group $\mathbf{S O}(2)$) is a matrix of the form

$$
R=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Prove that if $\theta \neq k \pi$ (with $k \in \mathbb{Z}$), any rotation matrix can be written as a product

$$
R=U L U
$$

where U is upper triangular and L is lower triangular of the form

$$
U=\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right), \quad L=\left(\begin{array}{ll}
1 & 0 \\
v & 1
\end{array}\right)
$$

Therefore, every plane rotation (except a flip about the origin when $\theta=\pi$) can be written as the composition of three shear transformations!
(3) Recall that $E_{i, d}$ is the diagonal matrix

$$
E_{i, d}=\operatorname{diag}(1, \ldots, 1, d, 1, \ldots, 1)
$$

whose diagonal entries are all +1 , except the (i, i) th entry which is equal to d.

Given any $n \times n$ matrix A, for any pair (i, j) of distinct row indices $(1 \leq i, j \leq n)$, prove that there exist two elementary matrices $E_{1}(i, j)$ and $E_{2}(i, j)$ of the form $E_{k, \ell ; \beta}$, such that

$$
E_{j,-1} E_{1}(i, j) E_{2}(i, j) E_{1}(i, j) A=P(i, j) A
$$

the matrix obtained from the matrix A by permuting row i and row j. Equivalently, we have

$$
E_{1}(i, j) E_{2}(i, j) E_{1}(i, j) A=E_{j,-1} P(i, j) A
$$

the matrix obtained from A by permuting row i and row j and multiplying row j by -1 .
Prove that for every $i=2, \ldots, n$, there exist four elementary matrices $E_{3}(i, d), E_{4}(i, d)$, $E_{5}(i, d), E_{6}(i, d)$ of the form $E_{k, \ell ; \beta}$, such that

$$
E_{6}(i, d) E_{5}(i, d) E_{4}(i, d) E_{3}(i, d) E_{n, d}=E_{i, d} .
$$

What happens when $d=-1$, that is, what kind of simplifications occur?
Prove that all permutation matrices can be written as products of elementary operations of the form $E_{k, \ell ; \beta}$ and the operation $E_{n,-1}$.
(4) Prove that for every invertible $n \times n$ matrix A, there is a matrix S such that

$$
S A=\left(\begin{array}{cc}
I_{n-1} & 0 \\
0 & d
\end{array}\right)=E_{n, d}
$$

with $d=\operatorname{det}(A)$, and where S is a product of elementary matrices of the form $E_{k, \ell ; \beta}$.
In particular, every matrix in $\mathbf{S L}(n)$ (the group of invertible $n \times n$ matrices A with $\operatorname{det}(A)=+1$) can be written as a product of elementary matrices of the form $E_{k, \ell ; \beta}$. Prove that at most $n(n+1)-2$ such transformations are needed.
Problem B4 (50 pts). A matrix, A, is called strictly column diagonally dominant iff

$$
\left|a_{j j}\right|>\sum_{i=1, i \neq j}^{n}\left|a_{i j}\right|, \quad \text { for } j=1, \ldots, n
$$

Prove that if A is strictly column diagonally dominant, then Gaussian elimination with partial pivoting does not require pivoting, and A is invertible.

Problem B5 (40 pts). Let $\left(\alpha_{1}, \ldots, \alpha_{m+1}\right)$ be a sequence of pairwise distinct scalars in \mathbb{R} and let $\left(\beta_{1}, \ldots, \beta_{m+1}\right)$ be any sequence of scalars in \mathbb{R}, not necessarily distinct.
(1) Prove that there is a unique polynomial P of degree at most m such that

$$
P\left(\alpha_{i}\right)=\beta_{i}, \quad 1 \leq i \leq m+1 .
$$

Hint. Remember Vandermonde!
(2) Let $L_{i}(X)$ be the polynomial of degree m given by

$$
L_{i}(X)=\frac{\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{i-1}\right)\left(X-\alpha_{i+1}\right) \cdots\left(X-\alpha_{m+1}\right)}{\left(\alpha_{i}-\alpha_{1}\right) \cdots\left(\alpha_{i}-\alpha_{i-1}\right)\left(\alpha_{i}-\alpha_{i+1}\right) \cdots\left(\alpha_{i}-\alpha_{m+1}\right)}, \quad 1 \leq i \leq m+1
$$

The polynomials $L_{i}(X)$ are known as Lagrange polynomial interpolants. Prove that

$$
L_{i}\left(\alpha_{j}\right)=\delta_{i j} \quad 1 \leq i, j \leq m+1
$$

Prove that

$$
P(X)=\beta_{1} L_{1}(X)+\cdots+\beta_{m+1} L_{m+1}(X)
$$

is the unique polynomial of degree at most m such that

$$
P\left(\alpha_{i}\right)=\beta_{i}, \quad 1 \leq i \leq m+1 .
$$

(3) Prove that $L_{1}(X), \ldots, L_{m+1}(X)$ are lineary independent, and that they form a basis of all polynomials of degree at most m.

How is 1 (the constant polynomial 1) expressed over the basis $\left(L_{1}(X), \ldots, L_{m+1}(X)\right)$?
Give the expression of every polynomial $P(X)$ of degree at most m over the basis $\left(L_{1}(X), \ldots, L_{m+1}(X)\right)$.
(4) Prove that the dual basis $\left(L_{1}^{*}, \ldots, L_{m+1}^{*}\right)$ of the basis $\left(L_{1}(X), \ldots, L_{m+1}(X)\right)$ consists of the linear forms L_{i}^{*} given by

$$
L_{i}^{*}(P)=P\left(\alpha_{i}\right)
$$

for every polynomial P of degree at most m; this is simply evaluation at α_{i}.
Problem B6 (60 pts). (a) Find a lower triangular matrix E such that

$$
E\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

(b) What is the effect of the product (on the left) with

$$
E_{4,3 ;-1} E_{3,2 ;-1} E_{4,3 ;-1} E_{2,1 ;-1} E_{3,2 ;-1} E_{4,3 ;-1}
$$

on the matrix

$$
P a_{3}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right)
$$

(c) Find the inverse of the matrix $P a_{3}$.
(d) Consider the $(n+1) \times(n+1)$ Pascal matrix $P a_{n}$ whose i th row is given by the binomial coefficients

$$
\binom{i-1}{j-1}
$$

with $1 \leq i \leq n+1,1 \leq j \leq n+1$, and with the usual convention that

$$
\binom{0}{0}=1, \quad\binom{i}{j}=0 \quad \text { if } \quad j>i
$$

The matrix Pa_{3} is shown in question (c) and $P a_{4}$ is shown below:

$$
P a_{4}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 \\
1 & 4 & 6 & 4 & 1
\end{array}\right)
$$

Find n elementary matrices $E_{i_{k}, j_{k} ; \beta_{k}}$ such that

$$
E_{i_{n}, j_{n} ; \beta_{n}} \cdots E_{i_{1}, j_{1} ; \beta_{1}} P a_{n}=\left(\begin{array}{cc}
1 & 0 \\
0 & P a_{n-1}
\end{array}\right) .
$$

Use the above to prove that the inverse of $P a_{n}$ is the lower triangular matrix whose i th row is given by the signed binomial coefficients

$$
(-1)^{i+j-2}\binom{i-1}{j-1}
$$

with $1 \leq i \leq n+1,1 \leq j \leq n+1$. For example,

$$
P a_{4}^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
-1 & 3 & -3 & 1 & 0 \\
1 & -4 & 6 & -4 & 1
\end{array}\right)
$$

Hint. Given any $n \times n$ matrix A, multiplying A by the elementary matrix $E_{i, j ; \beta}$ on the right yields the matrix $A E_{i, j ; \beta}$ in which β times the i th column is added to the j th column.
Problem B7 (30 pts). Given any two subspaces V_{1}, V_{2} of a finite-dimensional vector space E, prove that

$$
\begin{aligned}
\left(V_{1}+V_{2}\right)^{0} & =V_{1}^{0} \cap V_{2}^{0} \\
\left(V_{1} \cap V_{2}\right)^{0} & =V_{1}^{0}+V_{2}^{0} .
\end{aligned}
$$

Beware that in the second equation, V_{1} and V_{2} are subspaces of E, not E^{*}.

TOTAL: 340 points.

