
Spring, 2012 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 4 + Project 2

March 22, 2012; Due April 2, 2012

Problem B1 (40 pts). Let A be an n×n matrix which is strictly row diagonally dominant,
which means that

|ai i| >
∑
j 6=i

|ai j|,

for i = 1, . . . , n, and let

δ = min
i

{
|ai i| −

∑
j 6=i

|ai j|
}
.

The fact that A is is strictly row diagonally dominant is equivalent to the condition δ > 0.

(1) For any nonzero vector v, prove that

‖Av‖∞ ≥ ‖v‖∞ δ.

Use the above to prove that A is invertible.

(2) Prove that ∥∥A−1∥∥∞ ≤ δ−1.

Hint . Prove that

sup
v 6=0

‖A−1v‖∞
‖v‖∞

= sup
w 6=0

‖w‖∞
‖Aw‖∞

.

Problem B2 (20 pts). Let A be any invertible complex n× n matrix.

(1) For any vector norm ‖ ‖ on Cn, prove that the function ‖ ‖A : Cn → R given by

‖x‖A = ‖Ax‖ for all x ∈ Cn,

is a vector norm.

(2) Prove that the operator norm induced by ‖ ‖A, also denoted by ‖ ‖A, is given by

‖B‖A =
∥∥ABA−1∥∥ for every n× n matrix B,

where ‖ABA−1‖ uses the operator norm induced by ‖ ‖.
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Problem B3 (80 pts). (1) Implement the method for converting a rectangular matrix to
reduced row echelon fom.

(2) Use the above method to find the inverse of an invertible n×n matrix A, by applying
it to the the n× 2n matrix [AI] obtained by adding the n columns of the identity matrix to
A.

(3) Consider the matrix

A =


1 2 3 4 · · · n
2 3 4 5 · · · n+ 1
3 4 5 6 · · · n+ 2
...

...
...

. . .
...

n n+ 1 n+ 2 n+ 3 · · · 2n− 1

 .

Using your program, find the row reduced echelon form of A for n = 4, . . . , 20.

Also run the Matlab rref function and compare results.

Your program probably disagrees with rref even for small values of n. The problem is
that some pivots are very small and the normalization step (to make the pivot 1) causes
roundoff errors. Use a tolerance parameter to fix this problem.

What can you conjecture about the rank of A?

(4) Prove that the matrix A has the following row reduced form:

R =


1 0 −1 −2 · · · −(n− 2)
0 1 2 3 · · · n− 1
0 0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · 0

 .

Deduce from the above that A has rank 2.

Hint . Some well chosen sequence of row operations.

(5) Use your program to show that if you add any number greater than or equal to
(2/25)n2 to every diagonal entry of A you get an invertible matrix! In fact, running the
Matlab fuction chol should tell you that these matrices are SPD (symmetric, positive defi-
nite).

Remark: The above phenomenon will be explained in Problem B4. If you have a rigorous
and simple explanation for this phenomenon, let me know!

2



Problem B4 (120 pts). The purpose of this problem is to prove that the characteristic
polynomial of the matrix

A =


1 2 3 4 · · · n
2 3 4 5 · · · n+ 1
3 4 5 6 · · · n+ 2
...

...
...

. . .
...

n n+ 1 n+ 2 n+ 3 · · · 2n− 1


is

PA(λ) = λn−2
(
λ2 − n2λ− 1

12
n2(n2 − 1)

)
.

(1) Prove that the characteristic polynomial PA(λ) is given by

PA(λ) = λn−2P (λ),

with

P (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −2 −3 −4 · · · −n+ 3 −n+ 2 −n+ 1 −n

−λ− 1 λ− 1 −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2) Prove that the sum of the roots λ1, λ2 of the (degree two) polynomial P (λ) is

λ1 + λ2 = n2.

The problem is thus to compute the product λ1λ2 of these roots. Prove that

λ1λ2 = P (0).
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(3) The problem is now to evaluate dn = P (0), where

dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −2 −3 −4 · · · −n+ 3 −n+ 2 −n+ 1 −n

−1 −1 −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
I suggest the following strategy: cancel out the first entry in row 1 and row 2 by adding

a suitable multiple of row 3 to row 1 and row 2, and then subtract row 2 from row 1.

Do this twice.

You will notice that the first two entries on row 1 and the first two entries on row 2
change, but the rest of the matrix looks the same, except that the dimension is reduced.

This suggests setting up a recurrence involving the entries uk, vk, xk, yk in the determinant

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uk xk −3 −4 · · · −n+ k − 3 −n+ k − 2 −n+ k − 1 −n+ k

vk yk −1 −1 · · · −1 −1 −1 −1

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

. . . . . . . . .
...

...
...

...

0 0 0 0
. . . 1 0 0 0

0 0 0 0
. . . −2 1 0 0

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

starting with k = 0, with

u0 = −1, v0 = −1, x0 = −2, y0 = −1,

and ending with k = n− 2, so that

dn = Dn−2 =

∣∣∣∣∣∣
un−3 xn−3 −3
vn−3 yn−3 −1

1 −2 1

∣∣∣∣∣∣ =

∣∣∣∣un−2 xn−2
vn−2 yn−2

∣∣∣∣ .
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Prove that we have the recurrence relations
uk+1

vk+1

xk+1

yk+1

 =


2 −2 1 −1
0 2 0 1
−1 1 0 0
0 −1 0 0



uk
vk
xk
yk

+


0
0
−2
−1

 .

These appear to be nasty affine recurrence relations, so we will use the trick to convert
this affine map to a linear map.

(4) Consider the linear map given by
uk+1

vk+1

xk+1

yk+1

1

 =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1



uk
vk
xk
yk
1

 ,

and show that its action on uk, vk, xk, yk is the same as the affine action of part (3).

Use Matlab to find the eigenvalues of the matrix

T =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1

 .

You will be stunned!

Let N be the matrix given by
N = T − I.

Prove that
N4 = 0.

Use this to prove that

T k = I + kN +
1

2
k(k − 1)N2 +

1

6
k(k − 1)(k − 2)N3,

for all k ≥ 0.

(5) Prove that
uk
vk
xk
yk
1

 = T k


−1
−1
−2
−1
1

 =


2 −2 1 −1 0
0 2 0 1 0
−1 1 0 0 −2
0 −1 0 0 −1
0 0 0 0 1


k
−1
−1
−2
−1
1

 ,
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for k ≥ 0.

Prove that

T k =



k + 1 −k(k + 1) k −k2 1
6
(k − 1)k(2k − 7)

0 k + 1 0 k −1
2
(k − 1)k

−k k2 1− k (k − 1)k −1
3
k((k − 6)k + 11)

0 −k 0 1− k 1
2
(k − 3)k

0 0 0 0 1


,

and thus, that 
uk

vk

xk

yk

 =


1
6
(2k3 + 3k2 − 5k − 6)

−1
2
(k2 + 3k + 2)

1
3
(−k3 + k − 6)

1
2
(k2 + k − 2)

 ,

and that ∣∣∣∣uk xk
vk yk

∣∣∣∣ = −1− 7

3
k − 23

12
k2 − 2

3
k3 − 1

12
k4.

As a consequence, prove that amazingly,

dn = Dn−2 = − 1

12
n2(n2 − 1).

(6) Prove that the characteristic polynomial of A is indeed

PA(λ) = λn−2
(
λ2 − n2λ− 1

12
n2(n2 − 1)

)
.

Use the above to show that the two nonzero eigenvalues of A are

λ =
n

2

(
n±
√

3

3

√
4n2 − 1

)
.

The negative eigenvalue λ1 can also be expressed as

λ1 = n2 (3− 2
√

3)

6

√
1− 1

4n2
.

Use this expression to explain the phenomenon in B3(5): If we add any number greater than
or equal to (2/25)n2 to every diagonal entry of A we get an invertible matrix. What about
0.077351n2? Try it!
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Problem B5 (40 pts). A method for computing the nth root x1/n of a positive real number
x ∈ R, with n ∈ N a positive integer n ≥ 2, proceeds as follows: Define the sequence (xk),
where x0 is any chosen positive real, and

xk+1 =
1

n

(
(n− 1)xk +

x

xn−1k

)
, k ≥ 0.

(1) Implement the above method in Matlab, and test it for various input values of x, x0,
and of n ≥ 2, by running successively your program for m = 2, 3, . . . , 100 iterations. Have
your program plot the points (i, xi) to watch how quickly the sequence converges.

Experiment with various choices of x0. One of these choices should be x0 = x. Compare
your answers with the result of applying the of Matlab function x 7→ x1/n.

In some case, when x0 is small, the number of iterations has to be at least 1000. Exhibit
this behavior.

Problem B6 (80 pts). Refer to Problem B5 for the definition of the sequence (xk).

(1) Define the relative error εk as

εk =
xk
x1/n

− 1, k ≥ 0.

Prove that

εk+1 =
x(1−1/n)

nxn−1k

(
(n− 1)xnk

x
− nxn−1k

x(1−1/n)
+ 1

)
,

and then that

εk+1 =
1

n(εk + 1)n−1
(
εk(εk + 1)n−2((n− 1)εk + (n− 2)) + 1− (εk + 1)n−2

)
,

for all k ≥ 0.

(2) Since

εk + 1 =
xk
x1/n

,

and since we assumed x0, x > 0, we have ε0 + 1 > 0. We would like to prove that

εk ≥ 0, for all k ≥ 1.

For this, consider the variations of the function f given by

f(u) = (n− 1)un − nx1/nun−1 + x,

for u ∈ R.
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Use the above to prove that f(u) ≥ 0 for all u ≥ 0. Conclude that

εk ≥ 0, for all k ≥ 1.

(3) Prove that if n = 2, then

0 ≤ εk+1 =
ε2k

2(εk + 1)
, for all k ≥ 0,

else if n ≥ 3, then

0 ≤ εk+1 ≤
(n− 1)

n
εk, for all k ≥ 1.

Prove that the sequence (xk) converges to x1/n for every initial value x0 > 0.

(4) When n = 2, we saw in B6(3) that

0 ≤ εk+1 =
ε2k

2(εk + 1)
, for all k ≥ 0.

For n = 3, prove that

εk+1 =
2ε2k(3/2 + εk)

3(εk + 1)2
, for all k ≥ 0,

and for n = 4, prove that

εk+1 =
3ε2k

4(εk + 1)3
(
2 + (8/3)εk + ε2k

)
, for all k ≥ 0.

Let µ3 and µ4 be the functions given by

µ3(a) =
3

2
+ a

µ4(a) = 2 +
8

3
a+ a2,

so that if n = 3, then

εk+1 =
2ε2kµ3(εk)

3(εk + 1)2
, for all k ≥ 0,

and if n = 4, then

εk+1 =
3ε2kµ4(εk)

4(εk + 1)3
, for all k ≥ 0.

Prove that
aµ3(a) ≤ (a+ 1)2 − 1, for all a ≥ 0,

and
aµ4(a) ≤ (a+ 1)3 − 1, for all a ≥ 0.
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Let η3,k = µ3(ε1)εk when n = 3, and η4,k = µ4(ε1)εk when n = 4. Prove that

η3,k+1 ≤
2

3
η23,k, for all k ≥ 1,

and

η4,k+1 ≤
3

4
η24,k, for all k ≥ 1.

Deduce from the above that the rate of convergence of ηi,k is very fast, for i = 3, 4 (and
k ≥ 1).

Remark: If we let µ2(a) = a for all a and η2,k = εk, then we proved that

η2,k+1 ≤
1

2
η22,k, for all k ≥ 1.

Extra Credit (150 pt)

(5) Prove that for all n ≥ 2, we have

εk+1 =

(
n− 1

n

)
ε2kµn(εk)

(εk + 1)n−1
, for all k ≥ 0,

where µn is given by

µn(a) =
1

2
n+

n−4∑
j=1

1

n− 1

(
(n− 1)

(
n− 2

j

)
+ (n− 2)

(
n− 2

j + 1

)
−
(
n− 2

j + 2

))
aj

+
n(n− 2)

n− 1
an−3 + an−2.

Furthermore, prove that µn can be expressed as

µn(a) =
1

2
n+

n(n− 2)

3
a+

n−4∑
j=2

(j + 1)n

(j + 2)(n− 1)

(
n− 1

j + 1

)
aj +

n(n− 2)

n− 1
an−3 + an−2.

(6) Prove that for every j, with 1 ≤ j ≤ n− 1, the coefficient of aj in aµn(a) is less than
or equal to the coefficient of aj in (a+ 1)n−1 − 1, and thus

aµn(a) ≤ (a+ 1)n−1 − 1, for all a ≥ 0,

with strict inequality if n ≥ 3. In fact, prove that if n ≥ 3, then for every j, with 3 ≤ j ≤
n−2, the coefficient of aj in aµn(a) is strictly less than the coefficient of aj in (a+ 1)n−1−1,
and if n ≥ 4, this also holds for j = 2.

Let ηn,k = µn(ε1)εk (n ≥ 2). Prove that

ηn,k+1 ≤
(
n− 1

n

)
η2n,k, for all k ≥ 1.

TOTAL: 380 + 150 points.
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