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Jean Gallier

Homework 3

October 05, 2020; Due October 19, 2020

Problem B1 (30 pts). A rotation Rθ in the plane R2 is given by the matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

(1) Use Matlab to show the action of a rotation Rθ on a simple figure such as a triangle
or a rectangle, for various values of θ, including θ = π/6, π/4, π/3, π/2.

(2) Prove that Rθ is invertible and that its inverse is R−θ.

(3) For any two rotations Rα and Rβ, prove that

Rβ ◦Rα = Rα ◦Rβ = Rα+β.

Use (2)-(3) to prove that the rotations in the plane form a commutative group denoted
SO(2).

Problem B2 (100 pts). Consider the affine map Rθ,(a1,a2) in R2 given by(
y1
y2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
+

(
a1
a2

)
.

(1) Prove that if θ 6= k2π, with k ∈ Z, then Rθ,(a1,a2) has a unique fixed point (c1, c2),
that is, there is a unique point (c1, c2) such that(

c1
c2

)
= Rθ,(a1,a2)

(
c1
c2

)
,

and this fixed point is given by(
c1
c2

)
=

1

2 sin(θ/2)

(
cos(π/2− θ/2) − sin(π/2− θ/2)
sin(π/2− θ/2) cos(π/2− θ/2)

)(
a1
a2

)
.

1



(2) In this question, we still assume that θ 6= k2π, with k ∈ Z. By translating the
coordinate system with origin (0, 0) to the new coordinate system with origin (c1, c2), which
means that if (x1, x2) are the coordinates with respect to the standard origin (0, 0) and if
(x′1, x

′
2) are the coordinates with respect to the new origin (c1, c2), we have

x1 = x′1 + c1

x2 = x′2 + c2

and similarly for (y1, y2) and (y′1, y
′
2), then show that(
y1
y2

)
= Rθ,(a1,a2)

(
x1
x2

)
becomes (

y′1
y′2

)
= Rθ

(
x′1
x′2

)
.

Conclude that with respect to the new origin (c1, c2), the affine map Rθ,(a1,a2) becomes
the rotation Rθ. We say that Rθ,(a1,a2) is a rotation of center (c1, c2).

(3) Use Matlab to show the action of the affine map Rθ,(a1,a2) on a simple figure such as a
triangle or a rectangle, for θ = π/3 and various values of (a1, a2). Display the center (c1, c2)
of the rotation.

What kind of transformations correspond to θ = k2π, with k ∈ Z?

(4) Prove that the inverse of Rθ,(a1,a2) is of the form R−θ,(b1,b2), and find (b1, b2) in terms
of θ and (a1, a2).

(5) Given two affine maps Rα,(a1,a2) and Rβ,(b1,b2), prove that

Rβ,(b1,b2) ◦Rα,(a1,a2) = Rα+β,(t1,t2)

for some (t1, t2), and find (t1, t2) in terms of β, (a1, a2) and (b1, b2).

Even in the case where (a1, a2) = (0, 0), prove that in general

Rβ,(b1,b2) ◦Rα 6= Rα ◦Rβ,(b1,b2).

Use (4)-(5) to show that the affine maps of the plane defined in this problem form a
nonabelian group denoted SE(2).

Prove that Rβ,(b1,b2) ◦Rα,(a1,a2) is not a translation (possibly the identity) iff α+β 6= k2π,
for all k ∈ Z. Find its center of rotation when (a1, a2) = (0, 0).

If α+β = k2π, then Rβ,(b1,b2) ◦Rα,(a1,a2) is a pure translation. Find the translation vector
of Rβ,(b1,b2) ◦Rα,(a1,a2).
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Problem B3 (80 pts). A subset A of Rn is called an affine subspace if either A = ∅, or
there is some vector a ∈ Rn and some subspace U of Rn such that

A = a+ U = {a+ u | u ∈ U}.

We define the dimension dim(A) of A as the dimension dim(U) of U .

(1) If A = a+ U , why is a ∈ A?

What are affine subspaces of dimension 0? What are affine subspaces of dimension 1
(begin with R2)? What are affine subspaces of dimension 2 (begin with R3)?

Prove that any nonempty affine subspace is closed under affine combinations.

(2) Prove that if A = a + U is any nonempty affine subspace, then A = b + U for any
b ∈ A.

(3) Let A be any nonempty subset of Rn closed under affine combinations. For any
a ∈ A, prove that

Ua = {x− a ∈ Rn | x ∈ A}

is a (linear) subspace of Rn such that

A = a+ Ua.

Prove that Ua does not depend on the choice of a ∈ A; that is, Ua = Ub for all a, b ∈ A. In
fact, prove that

Ua = U = {y − x ∈ Rn | x, y ∈ A}, for all a ∈ A,

and so
A = a+ U, for any a ∈ A.

Remark: The subspace U is called the direction of A.

(4) Two nonempty affine subspaces A and B are said to be parallel iff they have the same
direction. Prove that that if A 6= B and A and B are parallel, then A ∩ B = ∅.

Remark: The above shows that affine subspaces behave quite differently from linear sub-
spaces.

Problem B4 (120 pts). (Affine frames and affine maps) For any vector v = (v1, . . . , vn) ∈
Rn, let v̂ ∈ Rn+1 be the vector v̂ = (v1, . . . , vn, 1). Equivalently, v̂ = (v̂1, . . . , v̂n+1) ∈ Rn+1 is
the vector defined by

v̂i =

{
vi if 1 ≤ i ≤ n,

1 if i = n+ 1.
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(1) For any m+ 1 vectors (u0, u1, . . . , um) with ui ∈ Rn and m ≤ n, prove that if the m
vectors (u1 − u0, . . . , um − u0) are linearly independent, then the m+ 1 vectors (û0, . . . , ûm)
are linearly independent.

(2) Prove that if the m + 1 vectors (û0, . . . , ûm) are linearly independent, then for any
choice of i, with 0 ≤ i ≤ m, the m vectors uj − ui for j ∈ {0, . . . ,m} with j − i 6= 0 are
linearly independent.

Any m+ 1 vectors (u0, u1, . . . , um) such that the m+ 1 vectors (û0, . . . , ûm) are linearly
independent are said to be affinely independent .

From (1) and (2), the vector (u0, u1, . . . , um) are affinely independent iff for any any choice
of i, with 0 ≤ i ≤ m, the m vectors uj − ui for j ∈ {0, . . . ,m} with j − i 6= 0 are linearly
independent. If m = n, we say that n+ 1 affinely independent vectors (u0, u1, . . . , un) form
an affine frame of Rn.

(3) if (u0, u1, . . . , un) is an affine frame of Rn, then prove that for every vector v ∈ Rn,
there is a unique (n+ 1)-tuple (λ0, λ1, . . . , λn) ∈ Rn+1, with λ0 +λ1 + · · ·+λn = 1, such that

v = λ0u0 + λ1u1 + · · ·+ λnun.

The scalars (λ0, λ1, . . . , λn) are called the barycentric (or affine) coordinates of v w.r.t. the
affine frame (u0, u1, . . . , un).

If we write ei = ui − u0, for i = 1, . . . , n, then prove that we have

v = u0 + λ1e1 + · · ·+ λnen,

and since (e1, . . . , en) is a basis of Rn (by (1) & (2)), the n-tuple (λ1, . . . , λn) consists of the
standard coordinates of v − u0 over the basis (e1, . . . , en).

Conversely, for any vector u0 ∈ Rn and for any basis (e1, . . . , en) of Rn, let ui = u0 + ei
for i = 1, . . . , n. Prove that (u0, u1, . . . , un) is an affine frame of Rn, and for any v ∈ Rn, if

v = u0 + x1e1 + · · ·+ xnen,

with (x1, . . . , xn) ∈ Rn (unique), then

v = (1− (x1 + · · ·+ xn))u0 + x1u1 + · · ·+ xnun,

so that (1− (x1 + · · ·+xn)), x1, · · · , xn), are the barycentric coordinates of v w.r.t. the affine
frame (u0, u1, . . . , un).

The above shows that there is a one-to-one correspondence between affine frames (u0, . . .,
un) and pairs (u0, (e1, . . . , en)), with (e1, . . . , en) a basis. Given an affine frame (u0, . . . , un),
we obtain the basis (e1, . . . , en) with ei = ui−u0, for i = 1, . . . , n; given the pair (u0, (e1, . . .,
en)) where (e1, . . . , en) is a basis, we obtain the affine frame (u0, . . . , un), with ui = u0 + ei,
for i = 1, . . . , n. There is also a one-to-one correspondence between barycentric coordinates
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w.r.t. the affine frame (u0, . . . , un) and standard coordinates w.r.t. the basis (e1, . . . , en).
The barycentric cordinates (λ0, λ1, . . . , λn) of v (with λ0 + λ1 + · · · + λn = 1) yield the
standard coordinates (λ1, . . . , λn) of v − u0; the standard coordinates (x1, . . . , xn) of v − u0
yield the barycentric coordinates (1− (x1 + · · ·+ xn), x1, . . . , xn) of v.

(4) Let (u0, . . . , un) be any affine frame in Rn and let (v0, . . . , vn) be any vectors in Rm.
Prove that there is a unique affine map f : Rn → Rm such that

f(ui) = vi, i = 0, . . . , n.

(5) Let (a0, . . . , an) be any affine frame in Rn and let (b0, . . . , bn) be any n+ 1 points in
Rn. Prove that there is a unique (n+ 1)× (n+ 1) matrix

A =

(
B w
0 1

)
corresponding to the unique affine map f such that

f(ai) = bi, i = 0, . . . , n,

in the sense that
Aâi = b̂i, i = 0, . . . , n,

and that A is given by

A =
(
b̂0 b̂1 · · · b̂n

) (
â0 â1 · · · ân

)−1
.

Make sure to prove that the bottom row of A is (0, . . . , 0, 1).

In the special case where (a0, . . . , an) is the canonical affine frame with ai = ei+1 for
i = 0, . . . , n− 1 and an = (0, . . . , 0) (where ei is the ith canonical basis vector), show that

(
â0 â1 · · · ân

)
= En =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
1 1 · · · 1 1


and

(
â0 â1 · · · ân

)−1
=


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0
−1 −1 · · · −1 1

 .
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For example, when n = 2, if we write bi = (xi, yi), then we have

A =

x1 x2 x3
y1 y2 y3
1 1 1

 1 0 0
0 1 0
−1 −1 1

 =

x1 − x3 x2 − x3 x3
y1 − y3 y2 − y3 y3

0 0 1

 .

Hint . Write

Â =
(
â0 â1 · · · ân

)
=

(
a0
1

a1
1

. . .
an
1

)
and

B̂ =
(
b̂0 b̂1 · · · b̂n

)
=

(
b0
1

b1
1

. . .
bn
1

)
.

We can write
A = B̂Â−1 = B̂E−1n EnÂ−1 = (B̂E−1n )(ÂE−1n )−1.

The idea is to factor the unique affine map f that sends the affine frame (a0, . . . , an) to
(b0, . . . , bn) as the composition f = f2 ◦ f1 of two unique affine maps f1 and f2, where f1
maps the affine frame (a0, . . . , an) to the canonical affine frame (e1, . . . , en, e0), and f2 maps
the the canonical affine frame (e1, . . . , en, e0) to (b0, . . . , bn). The inverse f−11 of f1 is the
unique affine map that sends the canonical affine frame (e1, . . . , en, e0) to the affine frame
(a0, . . . , an).

Prove that the set of (n× 1)× (n+ 1) matrices of the form(
P u
0 1

)
,

where P is an invertible n× n matrix and u ∈ Rn, is a group under matrix multiplication.

Another method goes as follows. Let Hn+1 be the subset of Rn+1 defined by

Hn+1 = {v̂ | v ∈ Rn} =

{(
v
1

)
| v ∈ Rn

}
called the hyperplane of equation xn+1 = 1. Check that Hn+1 is an affine hyperplane with
direction

Rn × {0} =

{(
v
0

)
| v ∈ Rn

}
.

Prove that if an (n+ 1)× (n+ 1) matrix A of the form

A =

(
B w
0 1

)
represents the unique affine map f from Rn to Rm such that

f(ai) = bi, i = 0, . . . , n,
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then
A =

(
b̂0 b̂1 · · · b̂n

) (
â0 â1 · · · ân

)−1
= B̂Â−1.

Prove that the last row of

B̂Â−1 =
(
b̂0 b̂1 · · · b̂n

) (
â0 â1 · · · ân

)−1
.

is (0, . . . , 0, 1) (with n zeros). For this, prove the following two facts:

(1) The matrix A represents a linear map f̂ that maps the hyperplane xn+1 = 1 into the
hyperplane xn+1 = 1,

(2) If A is a matrix representing a linear map f̂ from Rn+1 to Rn+1 and if f̂ maps the
hyperplane xn+1 = 1 into the hyperplane xn+1 = 1, then the (n + 1)th row of A is
(0, . . . , 0, 1) (a row vector with n zeros).

(6) Recall that a nonempty affine subspace A of Rn is any nonempty subset of Rn closed
under affine combinations. For any affine map f : Rn → Rm, for any affine subspace A of
Rn, and any affine subspace B of Rm, prove that f(A) is an affine subspace of Rm, and that
f−1(B) is an affine subspace of Rn.

Problem B5 (100 pts). (1) Let A be any invertible 2× 2 matrix

A =

(
a b
c d

)
.

Prove that there is an invertible matrix S such that

SA =

(
1 0
0 ad− bc

)
,

where S is the product of at most four elementary matrices of the form Ei,j;β.

Conclude that every matrix A in SL(2) (the group of invertible 2 × 2 matrices A with
det(A) = +1) is the product of at most four elementary matrices of the form Ei,j;β.

For any a 6= 0, 1, give an explicit factorization as above for

A =

(
a 0
0 a−1

)
.

What is this decomposition for a = −1?

(2) Recall that a rotation matrix R (a member of the group SO(2)) is a matrix of the
form

R =

(
cos θ − sin θ
sin θ cos θ

)
.
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Prove that if θ 6= kπ (with k ∈ Z), any rotation matrix can be written as a product

R = ULU,

where U is upper triangular and L is lower triangular of the form

U =

(
1 u
0 1

)
, L =

(
1 0
v 1

)
.

Therefore, every plane rotation (except a flip about the origin when θ = π) can be written
as the composition of three shear transformations!

(3) Recall that Ei,d is the diagonal matrix

Ei,d = diag(1, . . . , 1, d, 1, . . . , 1),

whose diagonal entries are all +1, except the (i, i)th entry which is equal to d.

Given any n× n matrix A, for any pair (i, j) of distinct row indices (1 ≤ i, j ≤ n), prove
that there exist two elementary matrices E1(i, j) and E2(i, j) of the form Ek,`;β, such that

Ej,−1E1(i, j)E2(i, j)E1(i, j)A = P (i, j)A,

the matrix obtained from the matrix A by permuting row i and row j. Equivalently, we have

E1(i, j)E2(i, j)E1(i, j)A = Ej,−1P (i, j)A,

the matrix obtained from A by permuting row i and row j and multiplying row j by −1.

Prove that for every i = 1, . . . , n−1, there exist four elementary matrices E3(i, d), E4(i, d),
E5(i, d), E6(i, d) of the form Ek,`;β, such that

E6(i, d)E5(i, d)E4(i, d)E3(i, d)En,d = Ei,d.

What happens when d = −1, that is, what kind of simplifications occur?

Prove that all permutation matrices can be written as products of elementary operations
of the form Ek,`;β and the operation En,−1.

(4) Prove that for every invertible n× n matrix A, there is a matrix S such that

SA =

(
In−1 0

0 d

)
= En,d,

with d = det(A), and where S is a product of elementary matrices of the form Ek,`;β.

In particular, every matrix in SL(n) (the group of invertible n × n matrices A with
det(A) = +1) can be written as a product of elementary matrices of the form Ek,`;β. Prove
that at most n(n+ 1)− 2 such transformations are needed.
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Extra Credit (20 points). Prove that every matrix in SL(n) can be written as a product
of at most (n− 1)(max{n, 3}+ 1) elementary matrices of the form Ek,`;β.

Problem B6 (60 pts). Let E be a real vector space of dimension n ≥ 2 and let F be any
real vector space. Pick any basis (u1, . . . , un) in E.

(1) Prove that for any bilinear alternating map f : E × E → F , for any two vectors
x = x1u1 + · · ·+ xnun and y = y1u1 + · · ·+ ynun, we have

f(x, y) =
∑

1≤i<j≤n

(xiyj − xjyi)f(ui, uj).

Observe that

xiyj − xjyi =

∣∣∣∣xi xj
yi yj

∣∣∣∣
is the determinant obtained from the 2× n matrix

X =

(
x1 x2 · · · xn
y1 y2 · · · yn

)
by choosing two columns of index i < j among the n columns.

Hint . Let v = x2u2 + · · ·+ xnun and w = y2u2 + · · ·+ ynun. First prove that

f(x, y) = (x1y2 − x2y1)f(u1, u2) + (x1y3 − x3y1)f(u1, u3) + · · ·+ (x1yn − xny1)f(u1, un)

+ f(v, w).

Then use induction.

(2) Prove that for any sequence (wij)1≤i<j≤n of
(
n
2

)
= n(n− 1)/2 vectors wij ∈ F , there

is a unique bilinear alternating map f : E × E → F such that

f(ui, uj) = wij, 1 ≤ i < j ≤ n,

and in fact,

f(x, y) =
∑

1≤i<j≤n

(xiyj − xjyi)wij.

Conclude that there is a bijection ϕ between the set Alt2(E;F ) of bilinear alternating
maps f : E × E → F and the product vector space F n(n−1)/2 given by

ϕ(f) = (f(ui, uj))1≤i<j≤n.

Remark. Observe that when F = R, if we let A be the n×n matrix given by A = (f(ei, ej))
and if we let X be the column vector with entries (x1, . . . , xn) and Y be the column vector
with entries (y1, . . . , yn), then A> = −A and f(x, y) = X>AY .
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(3) We define addition and scalar multiplication on the set of bilinear alternating maps
as follows. For any two bilinear alternating maps f : E ×E → F and g : E ×E → F , for all
x, y ∈ E and all λ ∈ R,

(f + g)(x, y) = f(x, y) + g(x, y),

and
(λf)(x, y) = λf(x, y).

Check (quickly) that f + g and λf are bilinear and alternating, and that the set Alt2(E;F )
of bilinear alternating maps with the above addition and scalar multiplication is a real vector
space.

(4) Prove that the bijection ϕ : Alt2(E;F )→ F n(n−1)/2 in (2) given by

ϕ(f) = (f(ui, uj))1≤i<j≤n

is linear. Conclude that ϕ is an isomorphism of vector spaces, and that if F has dimension
m, then Alt2(E;F ) has dimension mn(n− 1)/2.

Extra Credit (50 pts).

(5) Let p be an integer such that 1 ≤ p ≤ n. Consider the set Altp(E;F ) of multilinear
alternating maps f : Ep → F . Prove that for any vectors x1, . . . , xp ∈ E, if

xi = xi1u1 + · · ·+ xinun, i = 1, . . . , p,

then
f(x1, . . . , xp) =

∑
1≤j1<j2<···<jp≤n

∆j1,j2,...,jp(x1, . . . , xp)f(uj1 , uj2 , . . . , ujp),

where ∆j1,j2,...,jp(x1, . . . , xp) is the determinant (of a p× p matrix)

∆j1,j2,...,jp(x1, . . . , xp) =

∣∣∣∣∣∣∣∣∣
x1j1 x1j2 · · · x1jp
x2j1 x2j2 · · · x2jp

...
...

. . .
...

xpj1 xpj2 · · · xpjp

∣∣∣∣∣∣∣∣∣ .
Observe that the above determinant is obtained from the p× n matrix

X =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xp1 xp2 · · · xpn

 ,

by choosing the columns of index j1, j2, . . . , jp among the n columns.

Hint . First observe that

f(x1, . . . , xp) =
∑

(j1,...,jp)∈{1,...,n}{1,...,p}
x1j1 · · ·xpjpf(uj1 , . . . , ujp),
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where the sum extends over all sequences (j1, . . . , jp) of length p of elements from {1, . . . , n}.

You will also need the fact that the notion of signature of a permutation, which was
defined for permutations of the set {1, . . . , n}, is defined in a similar way for permutations
of the set {j1, . . . , jp}, with 1 ≤ j1 < · · · < jp ≤ n.

(6) Give Altp(E;F ) the structure of a vector space as in (3). Prove that the map

ϕ : Altp(E;F )→ F (n
p) given by

ϕ(f) =
(
f(uj1 , uj2 , . . . , ujp)

)
1≤j1<j2<···<jp≤n

is an isomorphism of vector spaces.

What more can you say when p = n? What is the dimension of Altn(E;F )?

Suppose F = R. Prove that the dimension of Altp(E;R) is
(
n
p

)
(recall that 1 ≤ p ≤ n).

What is the dimension of Altn(E;R)?

(7) Prove that for p > n, every multilinear alternating map f : Ep → F is the zero map.

TOTAL: 490 + 70 points.
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