Fall 2020 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 2

September, 21 2020; Due October 5, 2020
Beginning of class

Problem B1 (10 pts). Let $f: E \rightarrow F$ be a linear map which is also a bijection (it is injective and surjective). Prove that the inverse function $f^{-1}: F \rightarrow E$ is linear.

Problem B2 (10 pts). Given two vectors spaces E and F, let $\left(u_{i}\right)_{i \in I}$ be any basis of E and let $\left(v_{i}\right)_{i \in I}$ be any family of vectors in F. Prove that the unique linear map $f: E \rightarrow F$ such that $f\left(u_{i}\right)=v_{i}$ for all $i \in I$ is surjective iff $\left(v_{i}\right)_{i \in I}$ spans F.
Problem B3 (10 pts). Let $f: E \rightarrow F$ be a linear map with $\operatorname{dim}(E)=n$ and $\operatorname{dim}(F)=m$. Prove that f has rank 1 iff f is represented by an $m \times n$ matrix of the form

$$
A=u v^{\top}
$$

with u a nonzero column vector of dimension m and v a nonzero column vector of dimension n.

Problem B4 (120 pts). (Haar extravaganza) Consider the matrix

$$
W_{3,3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1
\end{array}\right)
$$

(1) Show that given any vector $c=\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right)$, the result $W_{3,3} c$ of applying $W_{3,3}$ to c is

$$
W_{3,3} c=\left(c_{1}+c_{5}, c_{1}-c_{5}, c_{2}+c_{6}, c_{2}-c_{6}, c_{3}+c_{7}, c_{3}-c_{7}, c_{4}+c_{8}, c_{4}-c_{8}\right)
$$

the last step in reconstructing a vector from its Haar coefficients.
(2) Prove that the inverse of $W_{3,3}$ is $(1 / 2) W_{3,3}^{\top}$. Prove that the columns and the rows of $W_{3,3}$ are orthogonal.
(3) Let $W_{3,2}$ and $W_{3,1}$ be the following matrices:

$$
W_{3,2}=\left(\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad W_{3,1}=\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Show that given any vector $c=\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right)$, the result $W_{3,2} c$ of applying $W_{3,2}$ to c is

$$
W_{3,2} c=\left(c_{1}+c_{3}, c_{1}-c_{3}, c_{2}+c_{4}, c_{2}-c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right),
$$

the second step in reconstructing a vector from its Haar coefficients, and the result $W_{3,1} c$ of applying $W_{3,1}$ to c is

$$
W_{3,1} c=\left(c_{1}+c_{2}, c_{1}-c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right)
$$

the first step in reconstructing a vector from its Haar coefficients.
Conclude that

$$
W_{3,3} W_{3,2} W_{3,1}=W_{3},
$$

the Haar matrix

$$
W_{3}=\left(\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\
1 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & -1 & 0 & 0 & -1 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1 & 0 & 0 & -1 & 0 \\
1 & -1 & 0 & -1 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & -1 & 0 & 0 & 0 & -1
\end{array}\right) .
$$

Hint. First, check that

$$
W_{3,2} W_{3,1}=\left(\begin{array}{cc}
W_{2} & 0_{4,4} \\
0_{4,4} & I_{4}
\end{array}\right)
$$

where

$$
W_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & -1 & 0 \\
1 & -1 & 0 & 1 \\
1 & -1 & 0 & -1
\end{array}\right) .
$$

(4) Prove that the columns and the rows of $W_{3,2}$ and $W_{3,1}$ are orthogonal. Deduce from this that the columns of W_{3} are orthogonal, and the rows of W_{3}^{-1} are orthogonal. Are the rows of W_{3} orthogonal? Are the columns of W_{3}^{-1} orthogonal? Find the inverse of $W_{3,2}$ and the inverse of $W_{3,1}$.
(5) For any $n \geq 2$, the $2^{n} \times 2^{n}$ matrix $W_{n, n}$ is obtained form the two rows

$$
\begin{aligned}
& \underbrace{1,0, \ldots, 0}_{2^{n-1}}, \underbrace{1,0, \ldots, 0}_{2^{n-1}} \\
& \underbrace{1,0, \ldots, 0}_{2^{n-1}}, \underbrace{-1,0, \ldots, 0}_{2^{n-1}}
\end{aligned}
$$

by shifting them $2^{n-1}-1$ times over to the right by inserting a zero on the left each time.
Given any vector $c=\left(c_{1}, c_{2}, \ldots, c_{2^{n}}\right)$, show that $W_{n, n} c$ is the result of the last step in the process of reconstructing a vector from its Haar coefficients c. Prove that $W_{n, n}^{-1}=(1 / 2) W_{n, n}^{\top}$, and that the columns and the rows of $W_{n, n}$ are orthogonal.

Extra credit (30 pts.)

Given a $m \times n$ matrix $A=\left(a_{i j}\right)$ and a $p \times q$ matrix $B=\left(b_{i j}\right)$, the Kronecker product (or tensor product) $A \otimes B$ of A and B is the $m p \times n q$ matrix

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m n} B
\end{array}\right)
$$

It can be shown (and you may use these facts without proof) that \otimes is associative and that

$$
\begin{aligned}
(A \otimes B)(C \otimes D) & =A C \otimes B D \\
(A \otimes B)^{\top} & =A^{\top} \otimes B^{\top},
\end{aligned}
$$

whenever $A C$ and $B D$ are well defined.
Check that

$$
W_{n, n}=\left(I_{2^{n-1}} \otimes\binom{1}{1} \quad I_{2^{n-1}} \otimes\binom{1}{-1}\right)
$$

and that

$$
W_{n}=\left(W_{n-1} \otimes\binom{1}{1} \quad I_{2^{n-1}} \otimes\binom{1}{-1}\right)
$$

Use the above to reprove that

$$
W_{n, n} W_{n, n}^{\top}=2 I_{2^{n}}
$$

Let

$$
B_{1}=2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

and for $n \geq 1$,

$$
B_{n+1}=2\left(\begin{array}{cc}
B_{n} & 0 \\
0 & I_{2^{n}}
\end{array}\right) .
$$

Prove that

$$
W_{n}^{\top} W_{n}=B_{n}, \quad \text { for all } n \geq 1
$$

(6) The matrix $W_{n, i}$ is obtained from the matrix $W_{i, i}(1 \leq i \leq n-1)$ as follows:

$$
W_{n, i}=\left(\begin{array}{cc}
W_{i, i} & 0_{2^{i}, 2^{n}-2^{i}} \\
0_{2^{n}-2^{i}, 2^{i}} & I_{2^{n}-2^{i}}
\end{array}\right) .
$$

It consists of four blocks, where $0_{2^{i}, 2^{n}-2^{i}}$ and $0_{2^{n}-2^{i}, 2^{i}}$ are matrices of zeros and $I_{2^{n}-2^{i}}$ is the identity matrix of dimension $2^{n}-2^{i}$.

Explain what $W_{n, i}$ does to c and prove that

$$
W_{n, n} W_{n, n-1} \cdots W_{n, 1}=W_{n},
$$

where W_{n} is the Haar matrix of dimension 2^{n}.
Hint. Use induction on k, with the induction hypothesis

$$
W_{n, k} W_{n, k-1} \cdots W_{n, 1}=\left(\begin{array}{cc}
W_{k} & 0_{2^{k}, 2^{n}-2^{k}} \\
0_{2^{n}-2^{k}, 2^{k}} & I_{2^{n}-2^{k}}
\end{array}\right) .
$$

Prove that the columns and rows of $W_{n, k}$ are orthogonal, and use this to prove that the columns of W_{n} and the rows of W_{n}^{-1} are orthogonal. Are the rows of W_{n} orthogonal? Are the columns of W_{n}^{-1} orthogonal? Prove that

$$
W_{n, k}^{-1}=\left(\begin{array}{cc}
\frac{1}{2} W_{k, k}^{\top} & 0_{2^{k}, 2^{n}-2^{k}} \\
0_{2^{n}-2^{k}, 2^{k}} & I_{2^{n}-2^{k}}
\end{array}\right) .
$$

Problem B5 (20 pts). Prove that for every vector space E, if $f: E \rightarrow E$ is an idempotent linear map, i.e., $f \circ f=f$, then we have a direct sum

$$
E=\operatorname{Ker} f \oplus \operatorname{Im} f
$$

so that f is the projection onto its image $\operatorname{Im} f$.
Problem B6 (40 pts). Given any vector space E, a linear map $f: E \rightarrow E$ is an involution if $f \circ f=\mathrm{id}$.
(1) Prove that an involution f is invertible. What is its inverse?
(2) Let E_{1} and E_{-1} be the subspaces of E defined as follows:

$$
\begin{aligned}
E_{1} & =\{u \in E \mid f(u)=u\} \\
E_{-1} & =\{u \in E \mid f(u)=-u\} .
\end{aligned}
$$

Prove that we have a direct sum

$$
E=E_{1} \oplus E_{-1}
$$

Hint. For every $u \in E$, write

$$
u=\frac{u+f(u)}{2}+\frac{u-f(u)}{2}
$$

(3) If E is finite-dimensional and f is an involution, prove that there is some basis of E with respect to which the matrix of f is of the form

$$
I_{k, n-k}=\left(\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{n-k}
\end{array}\right)
$$

where I_{k} is the $k \times k$ identity matrix (similarly for I_{n-k}) and $k=\operatorname{dim}\left(E_{1}\right)$. Can you give a geometric interpretation of the action of f (especially when $k=n-1$)?

TOTAL: $210+30$ points.

