Fall 2014 CIS 515

Fundamentals of Linear Algebra and Optimization Jean Gallier

Homework 2

September, 18 2014; Due October 2, 2014 Beginning of class

Problem B1 (10 pts). Given any $m \times n$ matrix A and any $n \times p$ matrix B, if we denote the columns of A by A^1, \ldots, A^n and the rows of B by B_1, \ldots, B_n , prove that

 $AB = A^1 B_1 + \dots + A^n B_n.$

Problem B2 (10 pts). Let $f: E \to F$ be a linear map which is also a bijection (it is injective and surjective). Prove that the inverse function $f^{-1}: F \to E$ is linear.

Problem B3 (10 pts). Given two vectors spaces E and F, let $(u_i)_{i \in I}$ be any basis of E and let $(v_i)_{i \in I}$ be any family of vectors in F. Prove that the unique linear map $f: E \to F$ such that $f(u_i) = v_i$ for all $i \in I$ is surjective iff $(v_i)_{i \in I}$ spans F.

Problem B4 (10 pts). Let $f: E \to F$ be a linear map with $\dim(E) = n$ and $\dim(F) = m$. Prove that f has rank 1 iff f is represented by an $m \times n$ matrix of the form

 $A = uv^{\top}$

with u a nonzero column vector of dimension m and v a nonzero column vector of dimension n.

Problem B5 (120 pts). (Haar extravaganza) Consider the matrix

$$W_{3,3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

(1) Show that given any vector $c = (c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8)$, the result $W_{3,3}c$ of applying $W_{3,3}$ to c is

 $W_{3,3}c = (c_1 + c_5, c_1 - c_5, c_2 + c_6, c_2 - c_6, c_3 + c_7, c_3 - c_7, c_4 + c_8, c_4 - c_8),$

the last step in reconstructing a vector from its Haar coefficients.

(2) Prove that the inverse of $W_{3,3}$ is $(1/2)W_{3,3}^{\top}$. Prove that the columns and the rows of $W_{3,3}$ are orthogonal.

(3) Let $W_{3,2}$ and $W_{3,1}$ be the following matrices:

$$W_{3,2} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad W_{3,1} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Show that given any vector $c = (c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8)$, the result $W_{3,2}c$ of applying $W_{3,2}$ to c is

$$W_{3,2}c = (c_1 + c_3, c_1 - c_3, c_2 + c_4, c_2 - c_4, c_5, c_6, c_7, c_8)$$

the second step in reconstructing a vector from its Haar coefficients, and the result $W_{3,1}c$ of applying $W_{3,1}$ to c is

$$W_{3,1}c = (c_1 + c_2, c_1 - c_2, c_3, c_4, c_5, c_6, c_7, c_8),$$

the first step in reconstructing a vector from its Haar coefficients.

Conclude that

$$W_{3,3}W_{3,2}W_{3,1} = W_3,$$

the Haar matrix

$$W_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & -1 & 0 \\ 1 & -1 & 0 & -1 & 0 & 0 & 0 & 1 \\ 1 & -1 & 0 & -1 & 0 & 0 & 0 & -1 \end{pmatrix}.$$

Hint. First, check that

$$W_{3,2}W_{3,1} = \begin{pmatrix} W_2 & 0_{4,4} \\ 0_{4,4} & I_4 \end{pmatrix},$$

where

$$W_2 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix}.$$

(4) Prove that the columns and the rows of $W_{3,2}$ and $W_{3,1}$ are orthogonal. Deduce from this that the columns of W_3 are orthogonal, and the rows of W_3^{-1} are orthogonal. Are the rows of W_3 orthogonal? Are the columns of W_3^{-1} orthogonal? Find the inverse of $W_{3,2}$ and the inverse of $W_{3,1}$.

(5) For any $n \geq 2$, the $2^n \times 2^n$ matrix $W_{n,n}$ is obtained form the two rows

$$\underbrace{\underbrace{1,0,\ldots,0}_{2^{n-1}},\underbrace{1,0,\ldots,0}_{2^{n-1}}}_{\underbrace{1,0,\ldots,0},\underbrace{-1,0,\ldots,0}_{2^{n-1}}}$$

by shifting them $2^{n-1} - 1$ times over to the right by inserting a zero on the left each time.

Given any vector $c = (c_1, c_2, \ldots, c_{2^n})$, show that $W_{n,n}c$ is the result of the last step in the process of reconstructing a vector from its Haar coefficients c. Prove that $W_{n,n}^{-1} = (1/2)W_{n,n}^{\top}$, and that the columns and the rows of $W_{n,n}$ are orthogonal.

(6) The matrix $W_{n,i}$ is obtained from the matrix $W_{i,i}$ $(1 \le i \le n-1)$ as follows:

$$W_{n,i} = \begin{pmatrix} W_{i,i} & 0_{2^i,2^n-2^i} \\ 0_{2^n-2^i,2^i} & I_{2^n-2^i} \end{pmatrix}.$$

It consists of four blocks, where $0_{2^i,2^n-2^i}$ and $0_{2^n-2^i,2^i}$ are matrices of zeros and $I_{2^n-2^i}$ is the identity matrix of dimension $2^n - 2^i$.

Explain what $W_{n,i}$ does to c and prove that

$$W_{n,n}W_{n,n-1}\cdots W_{n,1}=W_n,$$

where W_n is the Haar matrix of dimension 2^n .

Hint. Use induction on k, with the induction hypothesis

$$W_{n,k}W_{n,k-1}\cdots W_{n,1} = \begin{pmatrix} W_k & 0_{2^k,2^n-2^k} \\ 0_{2^n-2^k,2^k} & I_{2^n-2^k} \end{pmatrix}.$$

Prove that the columns and rows of $W_{n,k}$ are orthogonal, and use this to prove that the columns of W_n and the rows of W_n^{-1} are orthogonal. Are the rows of W_n orthogonal? Are the columns of W_n^{-1} orthogonal? Prove that

$$W_{n,k}^{-1} = \begin{pmatrix} \frac{1}{2} W_{k,k}^{\top} & 0_{2^k,2^n-2^k} \\ 0_{2^n-2^k,2^k} & I_{2^n-2^k} \end{pmatrix}.$$

Problem B6 (20 pts). Prove that for every vector space E, if $f: E \to E$ is an idempotent linear map, i.e., $f \circ f = f$, then we have a direct sum

$$E = \operatorname{Ker} f \oplus \operatorname{Im} f,$$

so that f is the projection onto its image Im f.

Problem B7 (20 pts). Let U_1, \ldots, U_p be any $p \ge 2$ subspaces of some vector space E and recall that the linear map

$$a: U_1 \times \cdots \times U_p \to E$$

is given by

$$a(u_1,\ldots,u_p)=u_1+\cdots+u_p,$$

with $u_i \in U_i$ for $i = 1, \ldots, p$.

(1) If we let $Z_i \subseteq U_1 \times \cdots \times U_p$ be given by

$$Z_{i} = \left\{ \left(u_{1}, \dots, u_{i-1}, -\sum_{j=1, j \neq i}^{p} u_{j}, u_{i+1}, \dots, u_{p} \right) \middle| \sum_{j=1, j \neq i}^{p} u_{j} \in U_{i} \cap \left(\sum_{j=1, j \neq i}^{p} U_{j} \right) \right\},$$

for $i = 1, \ldots, p$, then prove that

$$\operatorname{Ker} a = Z_1 = \dots = Z_p.$$

In general, for any given *i*, the condition $U_i \cap \left(\sum_{j=1, j\neq i}^p U_j\right) = (0)$ does not necessarily imply that $Z_i = (0)$. Thus, let

$$Z = \left\{ \left(u_1, \dots, u_{i-1}, u_i, u_{i+1}, \dots, u_p \right) \mid u_i = -\sum_{j=1, j \neq i}^p u_j, \ u_i \in U_i \cap \left(\sum_{j=1, j \neq i}^p U_j\right), \ 1 \le i \le p \right\}.$$

Since $\operatorname{Ker} a = Z_1 = \cdots = Z_p$, we have $Z = \operatorname{Ker} a$. Prove that if

$$U_i \cap \left(\sum_{j=1, j \neq i}^p U_j\right) = (0) \quad 1 \le i \le p,$$

then $Z = \operatorname{Ker} a = (0)$.

(2) Prove that $U_1 + \cdots + U_p$ is a direct sum iff

$$U_i \cap \left(\sum_{j=1, j \neq i}^p U_j\right) = (0) \quad 1 \le i \le p.$$

(3) Extra credit (30 pts). Assume that E is finite-dimensional, and let $f_i: E \to E$ be any $p \ge 2$ linear maps such that

$$f_1 + \dots + f_p = \mathrm{id}_E.$$

Prove that the following properties are equivalent:

- (1) $f_i^2 = f_i, 1 \le i \le p.$
- (2) $f_j \circ f_i = 0$, for all $i \neq j, 1 \leq i, j \leq p$.

TOTAL: 200 + 30 points.