Chapter 4

Determinants

4.1 Definition Using Expansion by Minors

Every square matrix A has a number associated to it and
called its determinant, denoted by det(A).

One of the most important properties of a determinant is
that it gives us a criterion to decide whether the matrix
is invertible:

A matrix A is invertible iff det(A) # 0.

[t is possible to define determinants in terms of a fairly
complicated formula involving n! terms (assuming A is
a n X n matrix) but this way to proceed makes it more
difficult to prove properties of determinants.

331



332 CHAPTER 4. DETERMINANTS

Consequently, we follow a more algorithmic approach due
to Mike Artin.

We will view the determinant as a function of the rows
of an n X n matrix.

Formally, this means that

det: (R")" — R.

We will define the determinant recursively using a pro-
cess called expansion by minors.

Then, we will derive properties of the determinant and
prove that there is a unique function satistying these prop-
erties.

As a consequence, we will have an axiomatic definition of
the determinant.
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For a 1 x 1 matrix A = (a), we have

det(A) = det(a) = a.

a b
a=lea
1t will turn out that
det(A) = ad — be.

For a 2 x 2 matrix,

The determinant has a geometric interpretation as a signed
area, in higher dimension as a signed volume.

In order to describe the recursive process to define a de-
terminant we need the notion of a minor.
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Definition 4.1. Given any n X n matrix with n > 2,
for any two indices 4,7 with 1 <<7,5 < mn, let A;; be the
(n — 1) X (n — 1) matrix obtained by deleting row ¢ and
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colummn 5 from A and called a minor:

For example, if

then

(2 -1 0 0 0
—1 2

X X X X

X X X X X X X

1.0 0
0 -1 2 —1 0
0 0 -1 2 -1
0 0 0 —1 2|

2 —1 0 0]
0 —1 —1 0
00 2 -1
00 -1 2|
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We can now proceed with the definition of determinants.

Definition 4.2. Given any n x n matrix A = (a;;), if
n = 1, then

det(A) = aly,

else

det(A) = andet(Ap) + -+ (=1)"az det(Apn) + - -
+ (—1)" o det(A,1), (%)

the expansion by minors on the first column.

When n = 2, we have

a11 Aai2
det = a1 det|age]—ag; det|ais] = a11a92—a91a19,
a21 A22

which confirms the formula claimed earlier.
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When n = 3, we get

it a3 29 Q23 a1z ais
det a21 A92 A93 | — A1 det — a1 det
a3z Aa33 a3z as3
| A31 G432 G33 ]
a1z ais
+ asy det
22 Q23

and using the formula for a 2 x 2 determinant, we get

ail a2 ais
det as1 A99 A923

| A31 32 433 ]

— a11<a22&33 — a32a23) - a21(&12a33 — &32a13>
+ a31(a12a23 — a22a13>-

As we can see, the formula is already quite complicated!
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Given a n x n-matrix A = (a;;), its determinant det(A)
is also denoted by

a1 aio ... A1n

as1 A9 ... A9
det(A) = |7 777 0 T

an1 An2 ... Qpn

We now derive some important and useful properties of
the determinant.

Recall that we view the determinant det(A) as a function
of the rows of the matrix A, so we can write

det(A) = det(Aq, ..., Ap),

where Ay, ..., A, are the rows of A.
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Proposition 4.1. The determinant function
det: (R™)™ — R satisfies the following properties:

(1) det(I) =1, where I is the identity matriz.

(2) The determinant is linear in each of its rows; this
means that

th(Al, ce 7142'—17 B+ O, AZ'+1, ce ,An) =
det(Al, NN 7Ai—17 B, Ai—l—l; ce 7An>
-+ det(Al, ce ,Ai_l, C, Ai—l—la ce ,An>

and

d@t(Al, ce 7142'—17 )\Az, AH—lp ce ,An) =
)\det(Al, ce 7141'—17 Ai, Ai—i—l; ce ,An)

(3) If two adjacent rows of A are equal, then
det(A) = 0. This means that

det(Al, N 7Ai7Ai7 ce ,An> = 0.

Property (2) says that det is a multilinear map, and
property (3) says that det is an alternating map.
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Proposition 4.2. The determinant function
det: (R™)™ — R satisfies the following properties:

(4) If two adjacent rows are interchanged, then the de-
termanant 1s multiplied by —1; thus,

th(Al, c. 7Az'+17 Ai7 ce ,An>
= — det(Al, ce ,Ai, Ai+1, ce ,An>

(5) If two rows are identical then the determinant is
zero; that 1s,

det(Al,...,AZ',...,AZ',...,A”>:O.

(6) If any two distinct rows of A are are interchanged,
then the determinant is multiplied by —1; thus,

d€t<A1,...,Aj,...,AZ',...,A”)
:—det<A1,...,Ai,...,Aj,...,An>.

(7) If a multiple of a row is added to another row, the
determinant is unchanged; that 1s,

th(Al, ,Az—l—)\AJ, ,An)
= det(Al,...,Ai,...,An).

(8) If any row of A is zero, then det(A) = 0.
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Using property (6), it is easy to show that the expansion
by minors formula (x) can be adpated to any column.
Indeed, we have

det(A) = (—=1)ay;det(Ay;) + - - + (—1)a;; det(A;)
o (1) g det(Ayy). (k%)

The beauty of this approach is that properties (6) and (7)
describe the effect of the elementary operations P(i, )
and E; ; » on the determinant:

Indeed, (6) says that
det(P(i,j)A) = — det(A), (a)
and (7) says that
det(F; j2A) = det(A). (b)
Furthermore, linearity (propery (2)) says that

det(E;\A) = Adet(A). (c)
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Substituting the identity I for A in the above equations,
since det(I) = 1, we find the determinants of the elemen-
tary matrices:

(1) For any permutation matrix P(i,7) (¢ # 7), we have
det(P(i, 7)) = —1.

(2) For any row operation Ej ;. (adding A times row j to
row ), we have

det(EZ'J;)\) = 1.

(3) For any row operation E; ) (multiplying row ¢ by A),
we have

det(EM) = A\

The above properties together with the equations (a), (b),
(¢) yield the following important proposition:
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Proposition 4.3. For every n xn matrixz A and every
elementary matriz E, we have

det(FA) = det(E) det(A).

We can now use Proposition 4.3 and the reduction to row
echelon form to compute det(A).

Indeed, recall that we showed (just before Proposition
2.15)) that every square matrix A can be reduced by el-
ementary operations to a matrix A" which is either the
identity or else whose last row is zero,

A'=FE)---EA.

If A” =1, then det(A") =1 by (1), else is A’ has a zero
row, then det(A’) = 0 by (8).



4.1. DEFINITION USING EXPANSION BY MINORS 343

Furthermore, by induction using Proposition 4.3 (see the
proof of Proposition 4.7), we get

det(A") = det(Ey - - - E1A) = det(Ey) - - - det(Ey) det(A).

Since all the determinants, det( ) of the elementary ma-
trices F; are known, we see that the formula

det(A’) = det(Ey) - - - det(Ey) det(A)

determines A. As a consequence, we have the following
characterization of a determinant:

Theorem 4.4. (Aziomatic Characterization of the De-
terminant) The determinant det is the unique func-
tion f: (R")" — R satisfying properties (1), (2), and
(3) of Proposition 4.1.
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Instead of evaluating a determinant using expansion by
minors on the columns, we can use expansion by minors
on the rows.

Indeed, define the function D given

D(A) = (=1)*a;1D(A;1) + - -
+ (=1 a; D(Ain), (1)

with D([a]) = a.

Then, it is fairly easy to show that the properties of
Proposition 4.1 hold for D, and thus, by Theorem 4.4,
the function D also defines the determinant, that is,

D(A) = det(A).

Proposition 4.5. For any square matrix A, we have

det(A) = det(A").



4.1. DEFINITION USING EXPANSION BY MINORS 345

We also obtain the important characterization of invert-
ibility of a matrix in terms of its determinant.

Proposition 4.6. A square matriz A is invertible iff

det(A) # 0.

We can now prove one of the most useful properties of
determinants.

Proposition 4.7. Given any two n X n matrices A
and B, we have

det(AB) = det(A) det(B).

In order to give an explicit formula for the determinant,
we need to discuss some properties of permutation matri-
ces.
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4.2 Permutations and Permutation Matrices

Let [n] = {1,2...,n}, where n € N, and n > 0.

Definition 4.3. A permutation on n elements is a bi-
jection m: [n] — [n]. When n = 1, the only function
from [1] to [1] is the constant map: 1 — 1. Thus, we
will assume that n > 2. A transposition is a permu-
tation 7: [n] — [n] such that, for some ¢ < j (with
1 <i<j<mn)7@i) =4, 7)) =1 and 7(k) = k,
for all & € [n] — {4,5}. In other words, a transposition
exchanges two distinct elements i, j € [n].

If 7 is a transposition, clearly, 7o7 = id. We have already
encountered transpositions before, but represented by the
matrices P(7, ).

We will also use the terminology product of permutations
(or transpositions), as a synonym for composition of per-
mutations.
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Clearly, the composition of two permutations is a permu-
tation and every permutation has an inverse which is also
a permutation.

Therefore, the set of permutations on [n] is a group often
denoted &,,. It is easy to show by induction that the

eroup G,, has n! elements.

There are various ways of denoting permutations. One
way 1s to use a functional notation such as

(et =) - ooy - wte)

For example the permutation 7: [4] — [4] given by

[ —

=

=

|

/N TN N N
(N

S— —— — 1
|

_ N B W

=

is represented by

N\
W

N
N W
—
N—
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The above representation has the advantage of being com-
pact, but a matrix representation is also useful and has
the advantage that composition of permutations corre-
sponds to matrix multiplication.

A permutation can be viewed as an operation permuting
the rows of a matrix. For example, the permutation

1234
3421

corresponds to the matrix

0001
0010
=11000

0100

Observe that the matrix P, has a single 1 on every row
and every column, all other entries being zero, and that if
we multiply any 4 x 4 matrix A by P, on the left, then the
rows of P A are permuted according to the permutation
T

)

that is, the m(i)th row of P, A is the ith row of A.
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For example,

ail ai2 a1z aig
21 Q22 A23 A24

a4q1 Q42 A43 A44

Equivalently, the ith row of P, A is the 771(7)th row of
A.

In order for the matrix P, to move the 7th row of A to
the 7(i)th row, the w(¢)th row of P, must have a 1 in
column ¢ and zeros everywhere else;

this means that the ith column of P, contains the basis
vector ey, the vector that has a 1 in position 7(7) and
zeros everywhere else.
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This is the general situation and it leads to the following
definition.

Definition 4.4. Given any permutation 7: [n] — |n],
the permutation matriz P, = (p;;) representing 7 is the

matrix given by
)1 iti=7(y)
P00 it # ()
equivalently, the jth column of Py is the basis vector e

J)

A permutation matrix P is any matrix of the form P;
(where P is an n x n matrix, and 7: [n] — |n] is a
permutation, for some n > 1).
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Remark: There is a confusing point about the notation
for permutation matrices.

A permutation matrix P acts on a matrix A by multipli-
cation on the left by permuting the rows of A.

As we said before, this means that the 7(¢)th row of P, A
is the 2th row of A, or equivalently that the ith row of
P, A is the 7= 1(2)th row of A.

But then, observe that the row index of the entries of the
ith row of PA is 771(4), and not 7(z)! See the following
example:

000 1| [ann a2 a13 a4 a41 Q42 43 Q44
00 1O0] |an ax axz axy|  |a31 az azz as
_ 9
1000 (a3 az azs ass ai; aiz aiz a4
01 00] [an ag a3 agq) A1 Q22 A3 Q4
where

| |
—_ —_
o
N—— — N ~—

ST R
/\/CB/\/\

|
O — W
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Proposition 4.8. The following properties hold:

(1) Given any two permutations mp,mo: [n| — [n], the
permutation matriz Pr,or, representing the compo-
sitton of w1 and my is equal to the product Pr, Py, of
the permutation matrices Py, and Py, representing
m and my; that is,

Pryor, = Pr, Pr,.
(2) The matrix Pﬂ1_1 representing the inverse of the

permutation mw is the inverse P{ll of the matrix
P, representing the permutation my; that us,

P_1=P"

T

Furthermore,

The following proposition shows the importance of trans-
positions.

Proposition 4.9. For every n > 2, every permuta-
tion m: [n] — [n] can be written as a nonempty com-
position of transpositions.
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Remark: When m = id,, is the identity permutation,
we can agree that the composition of 0 transpositions is
the identity:.

Proposition 4.9 shows that the transpositions generate
the group of permutations G,,.

Since we already know that the determinant of a transpo-
sition matrix is —1, Proposition 4.9 implies that for every
permutation matrix P, we have

det(P) = +1.

We can say more. Indeed if a given permutation 7 is
factored into two different products of transpositions

/ /
Tpo---o7 and 7,0 0Ty, because

det(Pr) = det(Fy) - - - det(Pr,) = det(Py) - - - det(Py),

and det(FP;,) = det(Py) = —1, the natural numbers p
J
and q have the same parity.
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Consequently, for every permutation o of [n], the parity
of the number p of transpositions involved in any decom-
position of 0 as ¢ = 7,0 --- o7y is an invariant (only
depends on o).

Definition 4.5. For every permutation o of [n], the par-
ity €(o) of the number of transpositions involved in any
decomposition of o is called the signature of 0. We have

(o) = det(Fy).

Remark: When m = id,, is the identity permutation,
since we agreed that the composition of 0 transpositions
is the identity, it it still correct that (—1)" = €(id) = +1.

[t is also easy to see that (7’ o w) = e(n)e(7).

1

In particular, since 771 o 7 = id,,, we get e(r 1) = €(m).

We are now ready to give an explicit formula for a deter-
minant.
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Given an n X n matrix A (with n > 2), we can view its
first row A; as the sum of the n rows

[CLHO'“O], [Oa120---0], ...,[O'HOCLM],

and we can expand A by linearity as

_CL110'“ 0 0 ajg -+ 0
det(A) = det + det S

+ - 4 det

We can repeat this process on the second row, the third
row, etc.
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At the end, we obtain a sum of determinants of matrices

of the form

ai1?
a9?

Ap?

having a single entry left in each row, all the others being
7Z€r0.

Observe that all the determinants involving matrices hav-
ing a zero column will be zero.

Actually, the only determinants that survive are those
that have a single entry a;; in each row and each column.

Such matrices are very similar to permutation matrices.
In fact, they must be of the form M, = (m;;) for some
permutation 7 of [n], with

B CLZ']' le:ﬂ'(])
0 ifi7w(j).

mij
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Consequently, by multilinearity of determinants, we have

det<A) - Z Ar(1)1 """ Ax(n)n det<P7T>

7T€6n

— Z 6(71')&77(1)1 “r o Qr(p)n-

We summarize the above derivation as the following propo-
sition which gives the complete expansion of the deter-
minant.

Proposition 4.10. For any n X n matrixc A = (aij),
we have

det(A) = Z 6(7T>CL7T(1)1 “ Oy (n)n-

eSS,
Note that since det(A) = det(A"), we also have

th(A) — Z €<7T>a’177(1) ©rt Qpg(n)-
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These formulae are more of theoretical than of practical
importance. However, these formulae do show that the
determinant is a polynomial function in the n? variables
a;;, and this has some importance consequences.

Remark: There is a geometric interpretation of deter-
minants which we find quite illuminating. Given n lin-
early independent vectors (uq, ..., u,) in R the set

Pn:{)\lu1+---+)\nun|0§)\¢§1,1§7j§n}

is called a parallelotope. If n = 2, then P, is a parallel-
ogram and if n = 3, then Pj is a parallelepiped, a skew
box having ui, ug, ug as three of its corner sides.

Then, it turns out that det(uq, ..., u,) is the signed vol-
ume of the parallelotope P, (where volume means n-
dimensional volume).

The sign of this volume accounts for the orientation of P,
in R".
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As we saw, the determinant of a matrix is a multilinear
alternating map of its rows.

This fact, combined with the fact that the determinant
of a matrix is also a multilinear alternating map of its
columns is often useful for finding short-cuts in computing
determinants.

We illustrate this point on the following example which
shows up in polynomial interpolation.

Example 4.1. Consider the so-called Vandermonde de-

terminant
1 1 1
X1 X9 L
_ 2 2 9
V(zy,...,x,) =] 27 x5 ... .
n—1 n—1 n—1
X X X,

We claim that

V(xy,...,x,) = H (z; — x;),

1<i<j<n

with V(zq,...,2,) =1, whenn = 1.
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4.3 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring and
when needed, a field.

Definition 4.6. Let K be a commutative ring. Given a
matrix A € M, (K), let A = (b;;) be the matrix defined
such that

bz’j = <—1>Z+‘7 th(AjZ'>,
the cofactor of a;;. The matrix A is called the adjugate
of A, and each matrix Aj;; is called a minor of the matrix

A.
@ Note the reversal of the indices in

bz’j — <—1>i+‘j d@t(A]Z>

Thus, A is the transpose of the matrix of cofactors of
elements of A.
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Proposition 4.11. Let K be a commutative ring. For
every matriz A € M,,(K), we have

AA = AA = det(A),.

As a consequence, A is invertible iff det(A) is invert-

ible, and if so, A~ = (det(A))'A.

When K is a field, an element a € K is invertible ift

a # 0.

In this case, the second part of the proposition can be
stated as A is invertible iff det(A) # 0.

Note in passing that this method of computing the inverse
of a matrix is usually not practical.

We now consider some applications of determinants to
linear independence and to solving systems of linear equa-
tions.
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4.4 Systems of Linear Equations and Determinants

We now characterize when a system of linear equations
of the form Az = b has a unique solution.

Proposition 4.12. Given an n X n-matrix A over a
field K, the following properties hold:

(1) For every column vector b, there is a unique col-
umn vector x such that Ax = b iff the only solution

to Ax = 0 is the trivial vector x = 0, iff det(A) # 0.
(2) If det(A) # 0, the unique solution of Ax = b is

given by the expressions
B det(AY, ..., A7~ b, AV LAY
Codet(AL, L AL AT AL AR

known as Cramer’s rules.

Lj

(3) The system of linear equations Ax = 0 has a nonzero

solution iff det(A) = 0.

As pleasing as Cramer’s rules are, it is usually impracti-
cal to solve systems of linear equations using the above
exXpPressions.
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4.5 The Cayley—Hamilton Theorem

We conclude this chapter with an interesting and impor-
tant application of Proposition 4.11, the Cayley—Hamalton
theorem.

The results of this section apply to matrices over any
commutative ring K.

First, we need the concept of the characteristic polyno-
mial of a matrix.

Definition 4.7. If K is any commutative ring, for every
nxn matrix A € M,,(K), the characteristic polynomial
PA(X) of A is the determinant

Py(X) = det(XT — A).

The characteristic polynomial P4(X) is a polynomial in
K|[X], the ring of polynomials in the indeterminate X
with coefficients in the ring K.
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For example, when n = 2, if

a b
a=(0a)
then

—a —b

Pu(X) = |X_C v d‘ = X2~ (a+d)X + ad — be.

We can substitute the matrix A for the variable X in the
polynomial P4(X), obtaining a matrixz Pa. If we write

PAX)=X"+ X"+ +cp,

then

Pi=A"+c AV 4+ ... 4¢, 1.

We have the following remarkable theorem.
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Theorem 4.13. (Cayley—Hamilton) If K is any com-
mutative ring, for every n x n matriz A € M, (K), if
we let

PuX)=X"+c X" 1+ 4e,
be the characteristic polynomial of A, then

Pi=A"+c AV 4. 4,1 =0.

As a concrete example, when n = 2, the matrix

a b
1= (00)
satisfies the equation

A% — (a+d)A+ (ad — be)I = 0.
4.6 Further Readings

Thorough expositions of the material covered in Chapter
1, 2, 3, and Chapter 4 can be found in Strang [27, 26,
Lax [20], Meyer [22|, Artin [1], Lang [18], Mac Lane
and Birkhoft [21], Hoffman and Kunze [16], Dummit and
Foote [10], Bourbaki [3, 4], Van Der Waerden [29], Serre
24], Horn and Johnson [15], and Bertin [2].



366 CHAPTER 4. DETERMINANTS



