
Chapter 4

Determinants

4.1 Definition Using Expansion by Minors

Every square matrix A has a number associated to it and
called its determinant , denoted by det(A).

One of the most important properties of a determinant is
that it gives us a criterion to decide whether the matrix
is invertible:

A matrix A is invertible i↵ det(A) 6= 0.

It is possible to define determinants in terms of a fairly
complicated formula involving n! terms (assuming A is
a n ⇥ n matrix) but this way to proceed makes it more
di�cult to prove properties of determinants.
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Consequently, we follow a more algorithmic approach due
to Mike Artin.

We will view the determinant as a function of the rows
of an n ⇥ n matrix .

Formally, this means that

det : (Rn)n ! R.

We will define the determinant recursively using a pro-
cess called expansion by minors .

Then, we will derive properties of the determinant and
prove that there is a unique function satisfying these prop-
erties.

As a consequence, we will have an axiomatic definition of
the determinant.
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For a 1 ⇥ 1 matrix A = (a), we have

det(A) = det(a) = a.

For a 2 ⇥ 2 matrix,

A =


a b
c d

�

it will turn out that

det(A) = ad � bc.

The determinant has a geometric interpretation as a signed
area, in higher dimension as a signed volume.

In order to describe the recursive process to define a de-
terminant we need the notion of a minor.
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Definition 4.1. Given any n ⇥ n matrix with n � 2,
for any two indices i, j with 1  i, j  n, let Aij be the
(n � 1)⇥ (n � 1) matrix obtained by deleting row i and
colummn j from A and called a minor :

Aij =

2

666666664

⇥
⇥

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥
⇥
⇥
⇥

3

777777775

For example, if

A =

2

66664

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

3

77775

then

A2 3 =

2

664

2 �1 0 0
0 �1 �1 0
0 0 2 �1
0 0 �1 2

3

775 .
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We can now proceed with the definition of determinants.

Definition 4.2. Given any n ⇥ n matrix A = (aij), if
n = 1, then

det(A) = a11,

else

det(A) = a11 det(A11) + · · · + (�1)i+1ai1 det(Ai1) + · · ·
+ (�1)n+1an1 det(An1), (⇤)

the expansion by minors on the first column.

When n = 2, we have

det


a11 a12

a21 a22

�
= a11 det[a22]�a21 det[a12] = a11a22�a21a12,

which confirms the formula claimed earlier.
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When n = 3, we get

det

2

4
a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5 = a11 det


a22 a23

a32 a33

�
� a21 det


a12 a13

a32 a33

�

+ a31 det


a12 a13

a22 a23

�
,

and using the formula for a 2 ⇥ 2 determinant, we get

det

2

4
a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5

= a11(a22a33 � a32a23) � a21(a12a33 � a32a13)

+ a31(a12a23 � a22a13).

As we can see, the formula is already quite complicated!
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Given a n ⇥ n-matrix A = (ai j), its determinant det(A)
is also denoted by

det(A) =

��������

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

��������
.

We now derive some important and useful properties of
the determinant.

Recall that we view the determinant det(A) as a function
of the rows of the matrix A, so we can write

det(A) = det(A1, . . . , An),

where A1, . . . , An are the rows of A.
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Proposition 4.1. The determinant function
det : (Rn)n ! R satisfies the following properties:

(1) det(I) = 1, where I is the identity matrix.

(2) The determinant is linear in each of its rows; this
means that

det(A1, . . . , Ai�1, B + C, Ai+1, . . . , An) =

det(A1, . . . , Ai�1, B, Ai+1, . . . , An)

+ det(A1, . . . , Ai�1, C, Ai+1, . . . , An)

and

det(A1, . . . , Ai�1, �Ai, Ai+1, . . . , An) =

� det(A1, . . . , Ai�1, Ai, Ai+1, . . . , An).

(3) If two adjacent rows of A are equal, then
det(A) = 0. This means that

det(A1, . . . , Ai, Ai, . . . , An) = 0.

Property (2) says that det is a multilinear map, and
property (3) says that det is an alternating map.
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Proposition 4.2. The determinant function
det : (Rn)n ! R satisfies the following properties:

(4) If two adjacent rows are interchanged, then the de-
terminant is multiplied by �1; thus,

det(A1, . . . , Ai+1, Ai, . . . , An)

= � det(A1, . . . , Ai, Ai+1, . . . , An).

(5) If two rows are identical then the determinant is
zero; that is,

det(A1, . . . , Ai, . . . , Ai, . . . , An) = 0.

(6) If any two distinct rows of A are are interchanged,
then the determinant is multiplied by �1; thus,

det(A1, . . . , Aj, . . . , Ai, . . . , An)

= � det(A1, . . . , Ai, . . . , Aj, . . . , An).

(7) If a multiple of a row is added to another row, the
determinant is unchanged; that is,

det(A1, . . . , Ai + �Aj, . . . , An)

= det(A1, . . . , Ai, . . . , An).

(8) If any row of A is zero, then det(A) = 0.
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Using property (6), it is easy to show that the expansion
by minors formula (⇤) can be adpated to any column.
Indeed, we have

det(A) = (�1)j+1a1j det(A1j) + · · · + (�1)j+iaij det(Aij)

+ · · · + (�1)j+nanj det(Anj). (⇤⇤)

The beauty of this approach is that properties (6) and (7)
describe the e↵ect of the elementary operations P (i, j)
and Ei,j,� on the determinant:

Indeed, (6) says that

det(P (i, j)A) = � det(A), (a)

and (7) says that

det(Ei,j;�A) = det(A). (b)

Furthermore, linearity (propery (2)) says that

det(Ei,�A) = � det(A). (c)
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Substituting the identity I for A in the above equations,
since det(I) = 1, we find the determinants of the elemen-
tary matrices:

(1) For any permutation matrix P (i, j) (i 6= j), we have

det(P (i, j)) = �1.

(2) For any row operation Ei,j;� (adding � times row j to
row i), we have

det(Ei,j;�) = 1.

(3) For any row operation Ei,� (multiplying row i by �),
we have

det(Ei,�) = �.

The above properties together with the equations (a), (b),
(c) yield the following important proposition:
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Proposition 4.3. For every n⇥n matrix A and every
elementary matrix E, we have

det(EA) = det(E) det(A).

We can now use Proposition 4.3 and the reduction to row
echelon form to compute det(A).

Indeed, recall that we showed (just before Proposition
2.15)) that every square matrix A can be reduced by el-
ementary operations to a matrix A0 which is either the
identity or else whose last row is zero,

A0 = Ek · · · E1A.

If A0 = I , then det(A0) = 1 by (1), else is A0 has a zero
row, then det(A0) = 0 by (8).
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Furthermore, by induction using Proposition 4.3 (see the
proof of Proposition 4.7), we get

det(A0) = det(Ek · · · E1A) = det(Ek) · · · det(E1) det(A).

Since all the determinants, det(Ek) of the elementary ma-
trices Ei are known, we see that the formula

det(A0) = det(Ek) · · · det(E1) det(A)

determines A. As a consequence, we have the following
characterization of a determinant:

Theorem 4.4. (Axiomatic Characterization of the De-
terminant) The determinant det is the unique func-
tion f : (Rn)n ! R satisfying properties (1), (2), and
(3) of Proposition 4.1.
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Instead of evaluating a determinant using expansion by
minors on the columns, we can use expansion by minors
on the rows.

Indeed, define the function D given

D(A) = (�1)i+1ai 1D(Ai 1) + · · ·
+ (�1)i+nai nD(Ai n), (†)

with D([a]) = a.

Then, it is fairly easy to show that the properties of
Proposition 4.1 hold for D, and thus, by Theorem 4.4,
the function D also defines the determinant, that is,

D(A) = det(A).

Proposition 4.5. For any square matrix A, we have
det(A) = det(A>).



4.1. DEFINITION USING EXPANSION BY MINORS 345

We also obtain the important characterization of invert-
ibility of a matrix in terms of its determinant.

Proposition 4.6. A square matrix A is invertible i↵
det(A) 6= 0.

We can now prove one of the most useful properties of
determinants.

Proposition 4.7. Given any two n ⇥ n matrices A
and B, we have

det(AB) = det(A) det(B).

In order to give an explicit formula for the determinant,
we need to discuss some properties of permutation matri-
ces.
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4.2 Permutations and Permutation Matrices

Let [n] = {1, 2 . . . , n}, where n 2 N, and n > 0.

Definition 4.3. A permutation on n elements is a bi-
jection ⇡ : [n] ! [n]. When n = 1, the only function
from [1] to [1] is the constant map: 1 7! 1. Thus, we
will assume that n � 2. A transposition is a permu-
tation ⌧ : [n] ! [n] such that, for some i < j (with
1  i < j  n), ⌧ (i) = j, ⌧ (j) = i, and ⌧ (k) = k,
for all k 2 [n] � {i, j}. In other words, a transposition
exchanges two distinct elements i, j 2 [n].

If ⌧ is a transposition, clearly, ⌧ �⌧ = id. We have already
encountered transpositions before, but represented by the
matrices P (i, j).

We will also use the terminology product of permutations
(or transpositions), as a synonym for composition of per-
mutations.
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Clearly, the composition of two permutations is a permu-
tation and every permutation has an inverse which is also
a permutation.

Therefore, the set of permutations on [n] is a group often
denoted Sn. It is easy to show by induction that the
group Sn has n! elements.

There are various ways of denoting permutations. One
way is to use a functional notation such as

✓
1 2 · · · i · · · n

⇡(1) ⇡(2) · · · ⇡(i) · · · ⇡(n)

◆
.

For example the permutation ⇡ : [4] ! [4] given by

⇡(1) = 3

⇡(2) = 4

⇡(3) = 2

⇡(4) = 1

is represented by ✓
1 2 3 4
3 4 2 1

◆
.
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The above representation has the advantage of being com-
pact, but a matrix representation is also useful and has
the advantage that composition of permutations corre-
sponds to matrix multiplication.

A permutation can be viewed as an operation permuting
the rows of a matrix. For example, the permutation

✓
1 2 3 4
3 4 2 1

◆

corresponds to the matrix

P⇡ =

2

664

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

3

775 .

Observe that the matrix P⇡ has a single 1 on every row
and every column, all other entries being zero, and that if
we multiply any 4⇥4 matrix A by P⇡ on the left, then the
rows of P⇡A are permuted according to the permutation
⇡;

that is, the ⇡(i)th row of P⇡A is the ith row of A.
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For example,

P⇡A =

2

664

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

3

775

2

664

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

3

775

=

2

664

a41 a42 a43 a44

a31 a32 a33 a34

a11 a12 a13 a14

a21 a22 a23 a24

3

775 .

Equivalently, the ith row of P⇡A is the ⇡�1(i)th row of
A.

In order for the matrix P⇡ to move the ith row of A to
the ⇡(i)th row, the ⇡(i)th row of P⇡ must have a 1 in
column i and zeros everywhere else;

this means that the ith column of P⇡ contains the basis
vector e⇡(i), the vector that has a 1 in position ⇡(i) and
zeros everywhere else.
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This is the general situation and it leads to the following
definition.

Definition 4.4. Given any permutation ⇡ : [n] ! [n],
the permutation matrix P⇡ = (pij) representing ⇡ is the
matrix given by

pij =

(
1 if i = ⇡(j)

0 if i 6= ⇡(j);

equivalently, the jth column of P⇡ is the basis vector e⇡(j).

A permutation matrix P is any matrix of the form P⇡

(where P is an n ⇥ n matrix, and ⇡ : [n] ! [n] is a
permutation, for some n � 1).
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Remark: There is a confusing point about the notation
for permutation matrices.

A permutation matrix P acts on a matrix A by multipli-
cation on the left by permuting the rows of A.

As we said before, this means that the ⇡(i)th row of P⇡A
is the ith row of A, or equivalently that the ith row of
P⇡A is the ⇡�1(i)th row of A.

But then, observe that the row index of the entries of the
ith row of PA is ⇡�1(i), and not ⇡(i)! See the following
example:

2

664

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

3

775

2

664

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

3

775 =

2

664

a41 a42 a43 a44

a31 a32 a33 a34

a11 a12 a13 a14

a21 a22 a23 a24

3

775 ,

where

⇡�1(1) = 4

⇡�1(2) = 3

⇡�1(3) = 1

⇡�1(4) = 2.
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Proposition 4.8. The following properties hold:

(1) Given any two permutations ⇡1, ⇡2 : [n] ! [n], the
permutation matrix P⇡2�⇡1 representing the compo-
sition of ⇡1 and ⇡2 is equal to the product P⇡2P⇡1 of
the permutation matrices P⇡1 and P⇡2 representing
⇡1 and ⇡2; that is,

P⇡2�⇡1 = P⇡2P⇡1.

(2) The matrix P⇡�1
1

representing the inverse of the

permutation ⇡1 is the inverse P�1
⇡1

of the matrix
P⇡1 representing the permutation ⇡1; that is,

P⇡�1
1

= P�1
⇡1

.

Furthermore,
P�1

⇡1
= (P⇡1)

>.

The following proposition shows the importance of trans-
positions.

Proposition 4.9. For every n � 2, every permuta-
tion ⇡ : [n] ! [n] can be written as a nonempty com-
position of transpositions.
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Remark: When ⇡ = idn is the identity permutation,
we can agree that the composition of 0 transpositions is
the identity.

Proposition 4.9 shows that the transpositions generate
the group of permutations Sn.

Since we already know that the determinant of a transpo-
sition matrix is �1, Proposition 4.9 implies that for every
permutation matrix P , we have

det(P ) = ±1.

We can say more. Indeed if a given permutation ⇡ is
factored into two di↵erent products of transpositions
⌧p � · · · � ⌧1 and ⌧ 0

q � · · · � ⌧ 0
1, because

det(P⇡) = det(P⌧p) · · · det(P⌧1) = det(P⌧ 0
q
) · · · det(P⌧ 0

1
),

and det(P⌧i) = det(P⌧ 0
j
) = �1, the natural numbers p

and q have the same parity .
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Consequently, for every permutation � of [n], the parity
of the number p of transpositions involved in any decom-
position of � as � = ⌧p � · · · � ⌧1 is an invariant (only
depends on �).

Definition 4.5. For every permutation � of [n], the par-
ity ✏(�) of the number of transpositions involved in any
decomposition of � is called the signature of �. We have
✏(�) = det(P�).

Remark: When ⇡ = idn is the identity permutation,
since we agreed that the composition of 0 transpositions
is the identity, it it still correct that (�1)0 = ✏(id) = +1.

It is also easy to see that ✏(⇡0 � ⇡) = ✏(⇡0)✏(⇡).

In particular, since ⇡�1 � ⇡ = idn, we get ✏(⇡�1) = ✏(⇡).

We are now ready to give an explicit formula for a deter-
minant.
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Given an n ⇥ n matrix A (with n � 2), we can view its
first row A1 as the sum of the n rows

[a11 0 · · · 0], [0 a12 0 · · · 0], . . . , [0 · · · 0 a1n],

and we can expand A by linearity as

det(A) = det

2

664

a11 0 · · · 0
... ... · · · ...
... ... · · · ...
... ... · · · ...

3

775 + det

2

664

0 a12 · · · 0
... ... · · · ...
... ... · · · ...
... ... · · · ...

3

775

+ · · · + det

2

664

· · · · · · 0 a1n

· · · · · · ... ...
... · · · ... ...

· · · · · · ... ...

3

775 .

We can repeat this process on the second row, the third
row, etc.
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At the end, we obtain a sum of determinants of matrices
of the form

M =

2

664

a1?

a2?
... ... ... ... ...

an?

3

775

having a single entry left in each row, all the others being
zero.

Observe that all the determinants involving matrices hav-
ing a zero column will be zero.

Actually, the only determinants that survive are those
that have a single entry aij in each row and each column.

Such matrices are very similar to permutation matrices.
In fact, they must be of the form M⇡ = (mij) for some
permutation ⇡ of [n], with

mij =

(
aij if i = ⇡(j)

0 if i 6= ⇡(j).
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Consequently, by multilinearity of determinants, we have

det(A) =
X

⇡2Sn

a⇡(1)1 · · · a⇡(n)n det(P⇡)

=
X

⇡2Sn

✏(⇡)a⇡(1)1 · · · a⇡(n)n.

We summarize the above derivation as the following propo-
sition which gives the complete expansion of the deter-
minant.

Proposition 4.10. For any n ⇥ n matrix A = (aij),
we have

det(A) =
X

⇡2Sn

✏(⇡)a⇡(1)1 · · · a⇡(n)n.

Note that since det(A) = det(A>), we also have

det(A) =
X

⇡2Sn

✏(⇡)a1⇡(1) · · · an⇡(n).
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These formulae are more of theoretical than of practical
importance. However, these formulae do show that the
determinant is a polynomial function in the n2 variables
aij, and this has some importance consequences.

Remark: There is a geometric interpretation of deter-
minants which we find quite illuminating. Given n lin-
early independent vectors (u1, . . . , un) in Rn, the set

Pn = {�1u1 + · · · + �nun | 0  �i  1, 1  i  n}

is called a parallelotope . If n = 2, then P2 is a parallel-
ogram and if n = 3, then P3 is a parallelepiped , a skew
box having u1, u2, u3 as three of its corner sides.

Then, it turns out that det(u1, . . . , un) is the signed vol-
ume of the parallelotope Pn (where volume means n-
dimensional volume).

The sign of this volume accounts for the orientation of Pn

in Rn.
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As we saw, the determinant of a matrix is a multilinear
alternating map of its rows.

This fact, combined with the fact that the determinant
of a matrix is also a multilinear alternating map of its
columns is often useful for finding short-cuts in computing
determinants.

We illustrate this point on the following example which
shows up in polynomial interpolation.

Example 4.1.Consider the so-calledVandermonde de-
terminant

V (x1, . . . , xn) =

����������

1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

... ... . . . ...
xn�1

1 xn�1
2 . . . xn�1

n

����������

.

We claim that

V (x1, . . . , xn) =
Y

1i<jn

(xj � xi),

with V (x1, . . . , xn) = 1, when n = 1.
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4.3 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring and
when needed, a field.

Definition 4.6. Let K be a commutative ring. Given a
matrix A 2 Mn(K), let eA = (bi j) be the matrix defined
such that

bi j = (�1)i+j det(Aj i),

the cofactor of aj i. The matrix eA is called the adjugate
of A, and each matrix Aj i is called a minor of the matrix
A.

� Note the reversal of the indices in

bi j = (�1)i+j det(Aj i).

Thus, eA is the transpose of the matrix of cofactors of
elements of A.



4.3. INVERSE MATRICES AND DETERMINANTS 361

Proposition 4.11. Let K be a commutative ring. For
every matrix A 2 Mn(K), we have

A eA = eAA = det(A)In.

As a consequence, A is invertible i↵ det(A) is invert-
ible, and if so, A�1 = (det(A))�1 eA.

When K is a field, an element a 2 K is invertible i↵
a 6= 0.

In this case, the second part of the proposition can be
stated as A is invertible i↵ det(A) 6= 0.

Note in passing that this method of computing the inverse
of a matrix is usually not practical.

We now consider some applications of determinants to
linear independence and to solving systems of linear equa-
tions.
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4.4 Systems of Linear Equations and Determinants

We now characterize when a system of linear equations
of the form Ax = b has a unique solution.

Proposition 4.12. Given an n ⇥ n-matrix A over a
field K, the following properties hold:

(1) For every column vector b, there is a unique col-
umn vector x such that Ax = b i↵ the only solution
to Ax = 0 is the trivial vector x = 0, i↵ det(A) 6= 0.

(2) If det(A) 6= 0, the unique solution of Ax = b is
given by the expressions

xj =
det(A1, . . . , Aj�1, b, Aj+1, . . . , An)

det(A1, . . . , Aj�1, Aj, Aj+1, . . . , An)
,

known as Cramer’s rules.

(3) The system of linear equations Ax = 0 has a nonzero
solution i↵ det(A) = 0.

As pleasing as Cramer’s rules are, it is usually impracti-
cal to solve systems of linear equations using the above
expressions.
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4.5 The Cayley–Hamilton Theorem

We conclude this chapter with an interesting and impor-
tant application of Proposition 4.11, theCayley–Hamilton
theorem .

The results of this section apply to matrices over any
commutative ring K.

First, we need the concept of the characteristic polyno-
mial of a matrix.

Definition 4.7. If K is any commutative ring, for every
n⇥n matrix A 2 Mn(K), the characteristic polynomial
PA(X) of A is the determinant

PA(X) = det(XI � A).

The characteristic polynomial PA(X) is a polynomial in
K[X ], the ring of polynomials in the indeterminate X
with coe�cients in the ring K.
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For example, when n = 2, if

A =

✓
a b
c d

◆
,

then

PA(X) =

����
X � a �b

�c X � d

���� = X2 � (a + d)X + ad � bc.

We can substitute the matrix A for the variable X in the
polynomial PA(X), obtaining a matrix PA. If we write

PA(X) = Xn + c1X
n�1 + · · · + cn,

then

PA = An + c1A
n�1 + · · · + cnI.

We have the following remarkable theorem.
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Theorem 4.13. (Cayley–Hamilton) If K is any com-
mutative ring, for every n ⇥ n matrix A 2 Mn(K), if
we let

PA(X) = Xn + c1X
n�1 + · · · + cn

be the characteristic polynomial of A, then

PA = An + c1A
n�1 + · · · + cnI = 0.

As a concrete example, when n = 2, the matrix

A =

✓
a b
c d

◆

satisfies the equation

A2 � (a + d)A + (ad � bc)I = 0.

4.6 Further Readings

Thorough expositions of the material covered in Chapter
1, 2, 3, and Chapter 4 can be found in Strang [27, 26],
Lax [20], Meyer [22], Artin [1], Lang [18], Mac Lane
and Birkho↵ [21], Ho↵man and Kunze [16], Dummit and
Foote [10], Bourbaki [3, 4], Van Der Waerden [29], Serre
[24], Horn and Johnson [15], and Bertin [2].
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