
Chapter 10

Euclidean Spaces

10.1 Inner Products, Euclidean Spaces

The framework of vector spaces allows us deal with ratios
of vectors and linear combinations, but there is no way to
express the notion of length of a line segment or to talk
about orthogonality of vectors.

A Euclidean structure will allow us to deal with metric
notions such as orthogonality and length (or distance).

First, we define a Euclidean structure on a vector space.
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Definition 10.1. A real vector space E is a Euclidean
space i↵ it is equipped with a symmetric bilinear form
' : E ⇥ E ! R which is also positive definite , which
means that

'(u, u) > 0, for every u 6= 0.

More explicitly, ' : E ⇥ E ! R satisfies the following
axioms:

'(u1 + u2, v) = '(u1, v) + '(u2, v),

'(u, v1 + v2) = '(u, v1) + '(u, v2),

'(�u, v) = �'(u, v),

'(u, �v) = �'(u, v),

'(u, v) = '(v, u),

u 6= 0 implies that '(u, u) > 0.

The real number '(u, v) is also called the inner product
(or scalar product) of u and v.
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We also define the quadratic form associated with ' as
the function � : E ! R+ such that

�(u) = '(u, u),

for all u 2 E.

Since ' is bilinear, we have '(0, 0) = 0, and since it is
positive definite, we have the stronger fact that

'(u, u) = 0 i↵ u = 0,

that is �(u) = 0 i↵ u = 0.

Given an inner product ' : E ⇥E ! R on a vector space
E, we also denote '(u, v) by

u · v, or hu, vi, or (u|v),

and
p

�(u) by kuk.
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Example 1. The standard example of a Euclidean space
is Rn, under the inner product · defined such that

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + · · · + xnyn.

This Euclidean space is denoted by En.

Example 2. Let E be a vector space of dimension 2, and
let (e1, e2) be a basis of E.

If a > 0 and b2 � ac < 0, the bilinear form defined such
that

'(x1e1+y1e2, x2e1+y2e2) = ax1x2+b(x1y2+x2y1)+cy1y2

yields a Euclidean structure on E.

In this case,

�(xe1 + ye2) = ax2 + 2bxy + cy2.
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Example 3. Let C[a, b] denote the set of continuous func-
tions f : [a, b] ! R. It is easily checked that C[a, b] is a
vector space of infinite dimension.

Given any two functions f, g 2 C[a, b], let

hf, gi =
Z b

a
f (t)g(t)dt.

We leave as an easy exercise that h�, �i is indeed an
inner product on C[a, b].

When [a, b] = [�⇡, ⇡] (or [a, b] = [0, 2⇡], this makes
basically no di↵erence), one should compute

hsin px, sin qxi, hsin px, cos qxi,
and hcos px, cos qxi,

for all natural numbers p, q � 1. The outcome of these
calculations is what makes Fourier analysis possible!
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Example 4. Let E = Mn(R) be the vector space of real
n ⇥ n matrices.

If we view a matrix A 2 Mn(R) as a “long” column vector
obtained by concatenating together its columns, we can
define the inner product of two matrices A, B 2 Mn(R)
as

hA, Bi =
nX

i,j=1

aijbij,

which can be conveniently written as

hA, Bi = tr(A>B) = tr(B>A).

Since this can be viewed as the Euclidean product on
Rn2

, it is an inner product on Mn(R). The corresponding
norm

kAkF =
q
tr(A>A)

is the Frobenius norm (see Section 7.2).
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Let us observe that ' can be recovered from �. Indeed,
by bilinearity and symmetry, we have

�(u + v) = '(u + v, u + v)

= '(u, u + v) + '(v, u + v)

= '(u, u) + 2'(u, v) + '(v, v)

= �(u) + 2'(u, v) + �(v).

Thus, we have

'(u, v) =
1

2
[�(u + v) � �(u) � �(v)].

We also say that ' is the polar form of �.

If E is finite-dimensional and if ' : E ⇥ E ! R is a
bilinear form on E, given any basis (e1, . . . , en) of E, we
can write x =

Pn
i=1 xiei and y =

Pn
j=1 yjej, and we have

'(x, y) =
nX

i,j=1

xiyj'(ei, ej).
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If we let G be the matrix G = ('(ei, ej)), and if x and y
are the column vectors associated with (x1, . . . , xn) and
(y1, . . . , yn), then we can write

'(x, y) = x>Gy = y>G>x.

Note that we are committing an abuse of notation, since
x =

Pn
i=1 xiei is a vector in E, but the column vector

associated with (x1, . . . , xn) belongs to Rn.

To avoid this minor abuse, we could denote the column
vector associated with (x1, . . . , xn) by x (and similarly
y for the column vector associated with (y1, . . . , yn)), in
wich case the “correct” expression for '(x, y) is

'(x, y) = x>Gy.

However, in view of the isomorphism between E and Rn,
to keep notation as simple as possible, we will use x and
y instead of x and y.
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The matrix G associated with an inner product is called
the Gram matrix of the inner product with respect to
the basis (e1, . . . , en).

Proposition 10.1. Let E be a finite-dimensional vec-
tor space, and let (e1, . . . , en) be a basis of E.

1. For any inner product h�, �i on E, if G = (hei, eji)
is the Gram matrix of the inner product h�, �i
w.r.t. the basis (e1, . . . , en), then G is symmetric
positive definite.

2. For any change of basis matrix P , the Gram ma-
trix of h�, �i with respect to the new basis is P>GP .

3. If A is any n ⇥ n symmetric positive definite ma-
trix, then

hx, yi = x>Ay

is an inner product on E.

One of the very important properties of an inner product
' is that the map u 7!

p
�(u) is a norm.
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Proposition 10.2. Let E be a Euclidean space with
inner product ' and quadratic form �. For all u, v 2
E, we have the Cauchy-Schwarz inequality:

'(u, v)2  �(u)�(v),

the equality holding i↵ u and v are linearly dependent.

We also have the Minkovski inequality:
p
�(u + v) 

p
�(u) +

p
�(v),

the equality holding i↵ u and v are linearly dependent,
where in addition if u 6= 0 and v 6= 0, then u = �v for
some � > 0.
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Sketch of proof . Define the function T : R ! R, such
that

T (�) = �(u + �v),

for all � 2 R. Using bilinearity and symmetry, we can
show that

�(u + �v) = �(u) + 2�'(u, v) + �2�(v).

Since ' is positive definite, we have T (�) � 0 for all
� 2 R.

If �(v) = 0, then v = 0, and we also have '(u, v) = 0.
In this case, the Cauchy-Schwarz inequality is trivial,
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If �(v) > 0, then

�2�(v) + 2�'(u, v) + �(u) = 0

can’t have distinct roots, which means that its discrimi-
nant

� = 4('(u, v)2 � �(u)�(v))

is zero or negative, which is precisely the Cauchy-Schwarz
inequality.

The Minkovski inequality can then be shown.
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The Minkovski inequality
p
�(u + v) 

p
�(u) +

p
�(v)

shows that the map u 7!
p
�(u) satisfies the triangle

inequality , condition (N3) of definition 7.1, and since '
is bilinear and positive definite, it also satisfies conditions
(N1) and (N2) of definition 7.1, and thus, it is a norm on
E.

The norm induced by ' is called the Euclidean norm
induced by '.

Note that the Cauchy-Schwarz inequality can be written
as

|u · v|  kuk kvk ,

and the Minkovski inequality as

ku + vk  kuk + kvk .
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Remark: One might wonder if every norm on a vector
space is induced by some Euclidean inner product.

In general, this is false, but remarkably, there is a simple
necessary and su�cient condition, which is that the norm
must satisfy the parallelogram law :

ku + vk2 + ku � vk2 = 2(kuk2 + kvk2).

If h�, �i is an inner product, then we have

ku + vk2 = kuk2 + kvk2 + 2hu, vi
ku � vk2 = kuk2 + kvk2 � 2hu, vi,

and by adding and subtracting these identities, we get
the parallelogram law, and the equation

hu, vi = 1

4
(ku + vk2 � ku � vk2),

which allows us to recover h�, �i from the norm.
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Conversely, if k k is a norm satisfying the parallelogram
law, and if it comes from an inner product, then this inner
product must be given by

hu, vi = 1

4
(ku + vk2 � ku � vk2).

Proving that the above form is indeed symmetric and
bilinear is quite tricky.

We now define orthogonality.
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10.2 Orthogonality and Duality in Euclidean Spaces

Definition 10.2. Given a Euclidean space E, any two
vectors u, v 2 E are orthogonal, or perpendicular i↵
u · v = 0. Given a family (ui)i2I of vectors in E, we say
that (ui)i2I is orthogonal i↵ ui · uj = 0 for all i, j 2 I ,
where i 6= j. We say that the family (ui)i2I is orthonor-
mal i↵ ui · uj = 0 for all i, j 2 I , where i 6= j, and
kuik = ui · ui = 1, for all i 2 I . For any subset F of E,
the set

F? = {v 2 E | u · v = 0, for all u 2 F},

of all vectors orthogonal to all vectors in F , is called the
orthogonal complement of F .

Since inner products are positive definite, observe that for
any vector u 2 E, we have

u · v = 0 for all v 2 E i↵ u = 0.

It is immediately verified that the orthogonal complement
F? of F is a subspace of E.
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Example 5. Going back to example 3, and to the inner
product

hf, gi =
Z ⇡

�⇡
f (t)g(t)dt

on the vector space C[�⇡, ⇡], it is easily checked that

hsin px, sin qxi =
⇢

⇡ if p = q, p, q � 1,
0 if p 6= q, p, q � 1

hcos px, cos qxi =
⇢

⇡ if p = q, p, q � 1,
0 if p 6= q, p, q � 0

and
hsin px, cos qxi = 0,

for all p � 1 and q � 0, and of course,
h1, 1i =

R ⇡
�⇡ dx = 2⇡.

As a consequence, the family (sin px)p�1 [ (cos qx)q�0 is
orthogonal.

It is not orthonormal, but becomes so if we divide every
trigonometric function by

p
⇡, and 1 by

p
2⇡.
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Proposition 10.3. Given a Euclidean space E, for
any family (ui)i2I of nonnull vectors in E, if (ui)i2I is
orthogonal, then it is linearly independent.

Proposition 10.4. Given a Euclidean space E, any
two vectors u, v 2 E are orthogonal i↵

ku + vk2 = kuk2 + kvk2 .

One of the most useful features of orthonormal bases is
that they a↵ord a very simple method for computing
the coordinates of a vector over any basis vector .
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Indeed, assume that (e1, . . . , em) is an orthonormal basis.
For any vector

x = x1e1 + · · · + xmem,

if we compute the inner product x · ei, we get

x · ei = x1e1 · ei + · · · + xiei · ei + · · · + xmem · ei = xi,

since

ei · ej =

⇢
1 if i = j,
0 if i 6= j,

is the property characterizing an orthonormal family.

Thus,
xi = x · ei,

which means that xiei = (x·ei)ei is the orthogonal projec-
tion of x onto the subspace generated by the basis vector
ei.
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If the basis is orthogonal but not necessarily orthonormal,
then

xi =
x · ei

ei · ei
=

x · ei

keik2 .

All this is true even for an infinite orthonormal (or or-
thogonal) basis (ei)i2I .

� However, remember that every vector x is expressed as
a linear combination

x =
X

i2I

xiei

where the family of scalars (xi)i2I has finite support,
which means that xi = 0 for all i 2 I � J , where J is a
finite set.
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Thus, even though the family (sin px)p�1 [ (cos qx)q�0

is orthogonal (it is not orthonormal, but becomes one if
we divide every trigonometric function by

p
⇡, and 1 byp

2⇡; we won’t because it looks messy!), the fact that a
function f 2 C0[�⇡, ⇡] can be written as a Fourier series
as

f (x) = a0 +
1X

k=1

(ak cos kx + bk sin kx)

does not mean that (sin px)p�1 [ (cos qx)q�0 is a basis
of this vector space of functions, because in general, the
families (ak) and (bk) do not have finite support!

In order for this infinite linear combination to make sense,
it is necessary to prove that the partial sums

a0 +
nX

k=1

(ak cos kx + bk sin kx)

of the series converge to a limit when n goes to infinity.

This requires a topology on the space.
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A very important property of Euclidean spaces of finite
dimension is that the inner product induces a canoni-
cal bijection (i.e., independent of the choice of bases)
between the vector space E and its dual E⇤.

The reason is that an inner product · : E⇥E ! R defines
a nondegenerate pairing, as defined in Definition 9.4.

By Proposition 9.3, there is a canonical isomorphism be-
tween E and E⇤.

We feel that the reader will appreciate if we exhibit this
mapping explicitly and reprove that it is an isomorp-
phism.

The mapping from E to E⇤ is defined as follows. For any
vector u 2 E, let 'u : E ! R be the map defined such
that

'u(v) = u · v, for all v 2 E.

Since the inner product is bilinear, the map 'u is a linear
form in E⇤.
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Thus, we have a map [ : E ! E⇤, defined such that

[(u) = 'u.

Theorem 10.5.Given a Euclidean space E, the map
[ : E ! E⇤, defined such that

[(u) = 'u,

is linear and injective. When E is also of finite di-
mension, the map [ : E ! E⇤ is a canonical isomor-
phism.

The inverse of the isomorphism [ : E ! E⇤ is denoted
by ] : E⇤ ! E.
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Remarks:

(1) The “musical map” [ : E ! E⇤ is not surjective when
E has infinite dimension.

The result can be salvaged by restricting our attention
to continuous linear maps, and by assuming that the
vector space E is a Hilbert space (i.e., E is a complete
normed vector space w.r.t. the Euclidean norm).

(2) Theorem 10.5 still holds if the inner product on E is
replaced by a nondegenerate symmetric bilinear form
'.

We say that a symmetric bilinear form ' : E⇥E ! R
is nondegenerate if for every u 2 E,

if '(u, v) = 0 for all v 2 E, then u = 0.



10.2. ORTHOGONALITY AND DUALITY IN EUCLIDEAN SPACES 555

For example, the symmetric bilinear form on R4 (the
Lorentz form) defined such that

'((x1, x2, x3, x4), (y1, y2, y3, y4))

= x1y1 + x2y2 + x3y3 � x4y4

is nondegenerate.

However, there are nonnull vectors u 2 R4 such that
'(u, u) = 0, which is impossible in a Euclidean space.
Such vectors are called isotropic.

Example 10.1. Consider Rn with its usual Euclidean
inner product.

Given any di↵erentiable function f : U ! R, where U is
some open subset of Rn, by definition, for any x 2 U , the
total derivative dfx of f at x is the linear form defined
so that for all u = (u1, . . . , un) 2 Rn,

dfx(u) =

✓
@f

@x1
(x) · · · @f

@xn
(x)

◆0

@
u1
...

un

1

A =
nX

i=1

@f

@xi
(x)ui.
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The unique vector v 2 Rn such that

v · u = dfx(u) for all u 2 Rn

is the transpose of the Jacobian matrix of f at x, the
1 ⇥ n matrix

✓
@f

@x1
(x) · · · @f

@xn
(x)

◆
.

This is the gradient grad(f )x of f at x, given by

grad(f )x =

0

BBBB@

@f

@x1
(x)

...

@f

@xn
(x)

1

CCCCA
.
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Example 10.2. Given any two vectors u, v 2 R3, let
c(u, v) be the linear form given by

c(u, v)(w) = det(u, v, w) for all w 2 R3.

Since

det(u, v, w) =

������

u1 v1 w1

u2 v2 w2

u3 v3 w3

������

= w1

����
u2 v2

u3 v3

����� w2

����
u1 v1

u3 v3

���� + w3

����
u1 v1

u2 v2

����
= w1(u2v3 � u3v2) + w2(u3v1 � u1v3)

+ w3(u1v2 � u2v1),

we see that the unique vector z 2 R3 such that

z · w = c(u, v)(w) = det(u, v, w) for all w 2 R3

is the vector

z =

0

@
u2v3 � u3v2

u3v1 � u1v3

u1v2 � u2v1

1

A .

This is just the cross-product u ⇥ v of u and v.
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Since det(u, v, u) = det(u, v, v) = 0, we see that u ⇥ v is
orthogonal to both u and v.

The above allows us to generalize the cross-product to
Rn. Given any n � 1 vectors u1, . . . , un�1 2 Rn, the
cross-product u1 ⇥ · · · ⇥ un�1 is the unique vector in Rn

such that

(u1 ⇥ · · · ⇥ un�1) · w = det(u1, . . . , un�1, w)

for all w 2 Rn.

Example 10.3. Consider the vector space Mn(R) of real
n ⇥ n matrices with the inner product

hA, Bi = tr(A>B).

Let s : Mn(R) ! R be the function given by

s(A) =
nX

i,j=1

aij,

where A = (aij).
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It is immediately verified that s is a linear form.

It is easy to check that the unique matrix Z such that

hZ, Ai = s(A) for all A 2 Mn(R)

is the matrix Z = ones(n, n) whose entries are all equal
to 1.

As a consequence of Theorem 10.5, if E is a Euclidean
space of finite dimension, every linear form f 2 E⇤ cor-
responds to a unique u 2 E, such that

f (v) = u · v,

for every v 2 E.

In particular, if f is not the null form, the kernel of f ,
which is a hyperplane H , is precisely the set of vectors
that are orthogonal to u.

Theorem 10.5 allows us to define the adjoint of a linear
map on a Euclidean space.
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10.3 Adjoint of Linear Map

Let E be a Euclidean space of finite dimension n, and let
f : E ! E be a linear map.

For every u 2 E, the map

v 7! u · f (v)

is clearly a linear form in E⇤, and by Theorem 10.5, there
is a unique vector in E denoted as f ⇤(u), such that

f ⇤(u) · v = u · f (v),

for every v 2 E.

Proposition 10.6. Given a Euclidean space E of fi-
nite dimension, for every linear map f : E ! E, there
is a unique linear map f ⇤ : E ! E, such that

f ⇤(u) · v = u · f (v),

for all u, v 2 E. The map f ⇤ is called the adjoint of
f (w.r.t. to the inner product).
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Remark: Proposition 10.6 still holds if the inner prod-
uct on E is replaced by a nondegenerate symmetric bi-
linear form '.

Linear maps f : E ! E such that f = f ⇤ are called
self-adjoint maps.

They play a very important role because they have real
eigenvalues and because orthonormal bases arise from
their eigenvectors.

Furthermore, many physical problems lead to self-adjoint
linear maps (in the form of symmetric matrices).

Linear maps such that f�1 = f ⇤, or equivalently

f ⇤ � f = f � f ⇤ = id,

also play an important role. They are isometries . Rota-
tions are special kinds of isometries.
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Another important class of linear maps are the linear
maps satisfying the property

f ⇤ � f = f � f ⇤,

called normal linear maps .

We will see later on that normal maps can always be
diagonalized over orthonormal bases of eigenvectors, but
this will require using a Hermitian inner product (over
C).

Given two Euclidean spaces E and F , where the inner
product on E is denoted as h�, �i1 and the inner product
on F is denoted as h�, �i2, given any linear map
f : E ! F , it is immediately verified that the proof of
Proposition 10.6 can be adapted to show that there is a
unique linear map f ⇤ : F ! E such that

hf (u), vi2 = hu, f ⇤(v)i1

for all u 2 E and all v 2 F . The linear map f ⇤ is also
called the adjoint of f .
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Remark : Given any basis for E and any basis for F , it is
possible to characterize the matrix of the adjoint f ⇤ of f
in terms of the matrix of f , and the symmetric matrices
defining the inner products. We will do so with respect
to orthonormal bases.

We can also use Theorem 10.5 to show that any Euclidean
space of finite dimension has an orthonormal basis.
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10.4 Existence and Construction of Orthonomal Bases

Proposition 10.7. Given any nontrivial Euclidean
space E of finite dimension n � 1, there is an or-
thonormal basis (u1, . . . , un) for E.

There is a more constructive way of proving Proposition
10.7, using a procedure known as the Gram–Schmidt
orthonormalization procedure .

Among other things, the Gram–Schmidt orthonormal-
ization procedure yields the so-called QR-decomposition
for matrices , an important tool in numerical methods.
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Proposition 10.8. Given any nontrivial Euclidean
space E of dimension n � 1, from any basis (e1, . . . , en)
for E, we can construct an orthonormal basis (u1, . . . , un)
for E, with the property that for every k, 1  k  n,
the families (e1, . . . , ek) and (u1, . . . , uk) generate the
same subspace.

Proof . We proceed by induction on n. For n = 1, let

u1 =
e1

ke1k
.

For n � 2, we define the vectors uk and u0
k as follows.

u0
1 = e1, u1 =

u0
1

ku0
1k

,

and for the inductive step

u0
k+1 = ek+1 �

kX

i=1

(ek+1 · ui)ui, uk+1 =
u0

k+1��u0
k+1

��.

We need to show that u0
k+1 is nonzero, and we conclude

by induction.
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Remarks :

(1) Note that u0
k+1 is obtained by subtracting from ek+1

the projection of ek+1 itself onto the orthonormal vectors
u1, . . . , uk that have already been computed. Then, we
normalize u0

k+1.

The QR-decomposition can now be obtained very easily.
We will do this in section 10.6.

(2) We could compute u0
k+1 using the formula

u0
k+1 = ek+1 �

kX

i=1

 
ek+1 · u0

i

ku0
ik

2

!
u0

i,

and normalize the vectors u0
k at the end.

This time, we are subtracting from ek+1 the projection of
ek+1 itself onto the orthogonal vectors u0

1, . . . , u
0
k.

This might be preferable when writing a computer pro-
gram.
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(3) The proof of Proposition 10.8 also works for a count-
ably infinite basis for E, producing a countably infinite
orthonormal basis.

Example 6. If we consider polynomials and the inner
product

hf, gi =
Z 1

�1
f (t)g(t)dt,

applying the Gram–Schmidt orthonormalization proce-
dure to the polynomials

1, x, x2, . . . , xn, . . . ,

which form a basis of the polynomials in one variable with
real coe�cients, we get a family of orthonormal polyno-
mials Qn(x) related to the Legendre polynomials .

The Legendre polynomials Pn(x) have many nice proper-
ties. They are orthogonal, but their norm is not always
1. The Legendre polynomials Pn(x) can be defined as
follows:
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If we let fn be the function

fn(x) = (x2 � 1)n,

we define Pn(x) as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f (n)

n (x),

where f (n)
n is the nth derivative of fn.

They can also be defined inductively as follows:

P0(x) = 1,

P1(x) = x,

Pn+1(x) =
2n + 1

n + 1
xPn(x) � n

n + 1
Pn�1(x).

It turns out that the polynomials Qn are related to the
Legendre polynomials Pn as follows:

Qn(x) =

r
2n + 1

2
Pn(x).
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As a consequence of Proposition 10.7 (or Proposition 10.8),
given any Euclidean space of finite dimension n, if (e1, . . . ,
en) is an orthonormal basis for E, then for any two vec-
tors u = u1e1+ · · ·+unen and v = v1e1+ · · ·+ vnen, the
inner product u · v is expressed as

u ·v = (u1e1+ · · ·+unen) · (v1e1+ · · ·+vnen) =
nX

i=1

uivi,

and the norm kuk as

kuk = ku1e1 + · · · + unenk =

vuut
nX

i=1

u2
i .

We can also prove the following proposition regarding or-
thogonal spaces.

Proposition 10.9. Given any nontrivial Euclidean
space E of finite dimension n � 1, for any subspace F
of dimension k, the orthogonal complement F? of F
has dimension n�k, and E = F �F?. Furthermore,
we have F?? = F .
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10.5 Linear Isometries (Orthogonal Transformations)

In this section, we consider linear maps between Eu-
clidean spaces that preserve the Euclidean norm.

Definition 10.3. Given any two nontrivial Euclidean
spaces E and F of the same finite dimension n, a function
f : E ! F is an orthogonal transformation, or a linear
isometry i↵ it is linear and

kf (u)k = kuk ,

for all u 2 E.

Thus, a linear isometry is a linear map that preserves the
norm.
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Remarks : (1) A linear isometry is often defined as a linear
map such that

kf (v) � f (u)k = kv � uk ,

for all u, v 2 E. Since the map f is linear, the two defi-
nitions are equivalent. The second definition just focuses
on preserving the distance between vectors.

(2) Sometimes, a linear map satisfying the condition of
definition 10.3 is called a metric map, and a linear isom-
etry is defined as a bijective metric map.

Also, an isometry (without the word linear) is sometimes
defined as a function f : E ! F (not necessarily linear)
such that

kf (v) � f (u)k = kv � uk ,

for all u, v 2 E, i.e., as a function that preserves the
distance.
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This requirement turns out to be very strong. Indeed,
the next proposition shows that all these definitions are
equivalent when E and F are of finite dimension, and for
functions such that f (0) = 0.

Proposition 10.10. Given any two nontrivial Eu-
clidean spaces E and F of the same finite dimension
n, for every function f : E ! F , the following prop-
erties are equivalent:

(1) f is a linear map and kf (u)k = kuk, for all u 2 E;

(2) kf (v) � f (u)k = kv � uk, for all u, v 2 E, and
f (0) = 0;

(3) f (u) · f (v) = u · v, for all u, v 2 E.

Furthermore, such a map is bijective.
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For (2), we shall prove a slightly stronger result. We prove
that if

kf (v) � f (u)k = kv � uk
for all u, v 2 E, for any vector ⌧ 2 E, the function
g : E ! F defined such that

g(u) = f (⌧ + u) � f (⌧ )

for all u 2 E is a map satisfying (2), and that (2) implies
(3).

Remarks :

(i) The dimension assumption is only needed to prove
that (3) implies (1) when f is not known to be linear,
and to prove that f is surjective, but the proof shows
that (1) implies that f is injective.

(ii) The implication that (3) implies (1) holds if we also
assume that f is surjective, even if E has infinite dimen-
sion.
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In (2), when f does not satisfy the condition f (0) = 0,
the proof shows that f is an a�ne map.

Indeed, taking any vector ⌧ as an origin, the map g is
linear, and

f (⌧ + u) = f (⌧ ) + g(u) for all u 2 E.

By Proposition 4.14, this shows that f is a�ne with as-
sociated linear map g.

This fact is worth recording as the following proposition.
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Proposition 10.11. Given any two nontrivial Eu-
clidean spaces E and F of the same finite dimension
n, for every function f : E ! F , if

kf (v) � f (u)k = kv � uk for all u, v 2 E,

then f is an a�ne map, and its associated linear map
g is an isometry.

In view of Proposition 10.10, we usually abbreviate “lin-
ear isometry” as “isometry,” unless we wish to emphasize
that we are dealing with a map between vector spaces.
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10.6 The Orthogonal Group, Orthogonal Matrices

In this section, we explore some of the fundamental prop-
erties of the orthogonal group and of orthogonal matrices.

As an immediate corollary of the Gram–Schmidt orthonor-
malization procedure, we obtain the QR-decomposition
for invertible matrices.



10.6. THE ORTHOGONAL GROUP, ORTHOGONAL MATRICES 577

Proposition 10.12. Let E be any Euclidean space of
finite dimension n, and let f : E ! E be any linear
map. The following properties hold:

(1) The linear map f : E ! E is an isometry i↵

f � f ⇤ = f ⇤ � f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if
the matrix of f is A, then the matrix of f ⇤ is the
transpose A> of A, and f is an isometry i↵ A
satisfies the identities

A A> = A>A = In,

where In denotes the identity matrix of order n,
i↵ the columns of A form an orthonormal basis of
Rn, i↵ the rows of A form an orthonormal basis of
Rn.

Proposition 10.12 shows that the inverse of an isometry
f is its adjoint f ⇤. Proposition 10.12 also motivates the
following definition:
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Definition 10.4. A real n ⇥ n matrix is an orthogonal
matrix i↵

A A> = A>A = In.

Remarks : It is easy to show that the conditions
A A> = In, A>A = In, and A�1 = A>, are equivalent.

Given any two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), if P is the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn) since the columns of P are
the coordinates of the vectors vj with respect to the basis
(u1, . . . , un), and since (v1, . . . , vn) is orthonormal, the
columns of P are orthonormal, and by Proposition 10.12
(2), the matrix P is orthogonal.

The proof of Proposition 10.10 (3) also shows that if f is
an isometry, then the image of an orthonormal basis
(u1, . . . , un) is an orthonormal basis.
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Recall that the determinant det(f ) of an endomorphism
f : E ! E is independent of the choice of a basis in E.

Also, for every matrix A 2 Mn(R), we have
det(A) = det(A>), and for any two n⇥n-matrices A and
B, we have det(AB) = det(A) det(B).

Then, if f is an isometry, and A is its matrix with respect
to any orthonormal basis, A A> = A>A = In implies
that det(A)2 = 1, that is, either det(A) = 1, or
det(A) = �1.

It is also clear that the isometries of a Euclidean space
of dimension n form a group, and that the isometries of
determinant +1 form a subgroup.
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Definition 10.5. Given a Euclidean space E of dimen-
sion n, the set of isometries f : E ! E forms a group
denoted as O(E), or O(n) when E = Rn, called the
orthogonal group (of E).

For every isometry, f , we have det(f ) = ±1, where det(f )
denotes the determinant of f . The isometries such that
det(f ) = 1 are called rotations, or proper isometries,
or proper orthogonal transformations , and they form
a subgroup of the special linear group SL(E) (and of
O(E)), denoted as SO(E), or SO(n) when E = Rn,
called the special orthogonal group (of E).

The isometries such that det(f ) = �1 are called im-
proper isometries, or improper orthogonal transfor-
mations, or flip transformations .
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10.7 The Rodrigues Formula

When n = 3 and A is a skew symmetric matrix, it is
possible to work out an explicit formula for eA.

For any 3 ⇥ 3 real skew symmetric matrix

A =

0

@
0 �c b
c 0 �a

�b a 0

1

A ,

if we let ✓ =
p

a2 + b2 + c2 and

B =

0

@
a2 ab ac
ab b2 bc
ac bc c2

1

A ,

then we have the following result known as Rodrigues’
formula (1840).



582 CHAPTER 10. EUCLIDEAN SPACES

The (real) vector space of n⇥n skew symmetric matrices
is denoted by so(n).

Proposition 10.13. The exponential map
exp : so(3) ! SO(3) is given by

eA = cos ✓ I3 +
sin ✓

✓
A +

(1 � cos ✓)

✓2
B,

or, equivalently, by

eA = I3 +
sin ✓

✓
A +

(1 � cos ✓)

✓2
A2

if ✓ 6= 0, with e03 = I3.

The key property used in proving the above formula is

A3 = �✓2A.
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The above formulae are the well-known formulae express-
ing a rotation of axis specified by the vector (a, b, c) and
angle ✓.

The Rodrigues formula can used to show that the expo-
nential map exp : so(3) ! SO(3) is surjective .

Given any rotation matrix R 2 SO(3), we have the fol-
lowing cases:

(1) The case R = I is trivial.

(2) If R 6= I and tr(R) 6= �1, then

exp�1(R) =

⇢
✓

2 sin ✓
(R � RT )

���� 1 + 2 cos ✓ = tr(R)

�
.

(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the
matrix R).
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Then there is a unique skew-symmetric B with corre-
sponding ✓ satisfying 0 < ✓ < ⇡ such that eB = R.

(3) If R 6= I and tr(R) = �1, then R is a rotation by
the angle ⇡ and things are more complicated, but a
matrix B can be found. We leave this part as a good
exercise.

The computation of a logarithm of a rotation in SO(3) as
sketched above has applications in kinematics, robotics,
and motion interpolation.
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10.8 QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix,
we can explain how the Gram–Schmidt orthonormaliza-
tion procedure immediately yields the QR-decomposition
for matrices.

Proposition 10.14. Given any n ⇥ n real matrix A,
if A is invertible then there is an orthogonal matrix
Q and an upper triangular matrix R with positive di-
agonal entries such that A = QR.

Proof . We can view the columns ofA as vectorsA1, . . . , An

in En.

If A is invertible, then they are linearly independent, and
we can apply Proposition 10.8 to produce an orthonor-
mal basis using the Gram–Schmidt orthonormalization
procedure.
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Recall that we construct vectors Qk and Q
0k as follows:

Q
01 = A1, Q1 =

Q
01

kQ01k
,

and for the inductive step

Q
0k+1 = Ak+1 �

kX

i=1

(Ak+1 ·Qi)Qi, Qk+1 =
Q

0k+1

kQ0k+1k
,

where 1  k  n � 1.

If we express the vectors Ak in terms of the Qi and Q
0i,

we get the triangular system

A1 = kQ
01kQ1,

...

Aj = (Aj · Q1)Q1 + · · · + (Aj · Qi)Qi + · · · + kQ
0jkQj,

...

An = (An · Q1)Q1 + · · · + (An · Qn�1)Qn�1 + kQ
0nkQn.

If we let rk k = kQ
0kk, ri j = Aj · Qi when 1  i  j � 1,

and then Q = (Q1, . . . , Qn) and R = (ri j), then R is
upper-triangular, Q is orthogonal, and

A = QR.



10.8. QR-DECOMPOSITION FOR INVERTIBLE MATRICES 587

Remarks : (1) Because the diagonal entries of R are pos-
itive, it can be shown that Q and R are unique.

(2) The QR-decomposition holds even when A is not in-
vertible. In this case, R has some zero on the diagonal.
However, a di↵erent proof is needed. We will give a nice
proof using Householder matrices (see also Strang [31]).

Example 7. Consider the matrix

A =

0

@
0 0 5
0 4 1
1 1 1

1

A

We leave as an exercise to show that A = QR with

Q =

0

@
0 0 1
0 1 0
1 0 0

1

A and R =

0

@
1 1 1
0 4 1
0 0 5

1

A
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Another example of QR-decomposition is

A =

0

@
1 1 2
0 0 1
1 0 0

1

A

where

Q =

0

@
1/

p
2 1/

p
2 0

0 0 1
1/

p
2 �1/

p
2 0

1

A

and

R =

0

@

p
2 1/

p
2

p
2

0 1/
p
2

p
2

0 0 1

1

A

The QR-decomposition yields a rather e�cient and nu-
merically stable method for solving systems of linear equa-
tions.
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Indeed, given a system Ax = b, where A is an n ⇥ n
invertible matrix, writing A = QR, since Q is orthogonal,
we get

Rx = Q>b,

and since R is upper triangular, we can solve it by Gaus-
sian elimination, by solving for the last variable xn first,
substituting its value into the system, then solving for
xn�1, etc.

The QR-decomposition is also very useful in solving least
squares problems (we will come back to this later on), and
for finding eigenvalues.

It can be easily adapted to the case where A is a rect-
angular m ⇥ n matrix with independent columns (thus,
n  m).

In this case, Q is not quite orthogonal. It is an m ⇥
n matrix whose columns are orthogonal, and R is an
invertible n ⇥ n upper triangular matrix with positive
diagonal entries. For more on QR, see Strang [31].
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It should also be said that the Gram–Schmidt orthonor-
malization procedure that we have presented is not very
stable numerically, and instead, one should use the mod-
ified Gram–Schmidt method .

To compute Q
0k+1, instead of projecting Ak+1 onto

Q1, . . . , Qk in a single step, it is better to perform k pro-
jections.

We compute Qk+1
1 , Qk+1

2 , . . . , Qk+1
k as follows:

Qk+1
1 = Ak+1 � (Ak+1 · Q1)Q1,

Qk+1
i+1 = Qk+1

i � (Qk+1
i · Qi+1)Qi+1,

where 1  i  k � 1.

It is easily shown that Q
0k+1 = Qk+1

k . The reader is urged
to code this method.
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A somewhat surprising consequence of the
QR-decomposition is a famous determinantal inequality
due to Hadamard.

Proposition 10.15. (Hadamard) For any real n ⇥ n
matrix A = (aij), we have

| det(A)| 
nY

i=1

✓ nX

j=1

a2
ij

◆1/2

and | det(A)| 
nY

j=1

✓ nX

i=1

a2
ij

◆1/2

.

Moreover, equality holds i↵ either A has orthogonal
rows in the left inequality or orthogonal columns in
the right inequality.
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Another version of Hadamard’s inequality applies to sym-
metric positive semidefinite matrices.

Proposition 10.16. (Hadamard) For any real n ⇥ n
matrix A = (aij), if A is symmetric positive semidef-
inite, then we have

det(A) 
nY

i=1

aii.

Moreover, if A is positive definite, then equality holds
i↵ A is a diagonal matrix.


