
Chapter 6

Gaussian Elimination,
LU-Factorization, Cholesky
Factorization, Reduced Row Echelon
Form

6.1 Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently
in computer graphics and in robotics (path planning).

There are many ways of tackling this problem and in this
section we will describe a solution using cubic splines .

Such splines consist of cubic Bézier curves.

They are often used because they are cheap to implement
and give more flexibility than quadratic Bézier curves.
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A cubic Bézier curve C(t) (in R2 or R3) is specified by
a list of four control points (b0, b2, b2, b3) and is given
parametrically by the equation

C(t) = (1 � t)3 b0 + 3(1 � t)2t b1 + 3(1 � t)t2 b2 + t3 b3.

Clearly, C(0) = b0, C(1) = b3, and for t 2 [0, 1], the
point C(t) belongs to the convex hull of the control points
b0, b1, b2, b3.

The polynomials

(1 � t)3, 3(1 � t)2t, 3(1 � t)t2, t3

are the Bernstein polynomials of degree 3.

Typically, we are only interested in the curve segment
corresponding to the values of t in the interval [0, 1].

Still, the placement of the control points drastically a↵ects
the shape of the curve segment, which can even have a
self-intersection; See Figures 6.1, 6.2, 6.3 illustrating var-
ious configuations.
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Figure 6.1: A “standard” Bézier curve
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Figure 6.2: A Bézier curve with an inflexion point
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Figure 6.3: A self-intersecting Bézier curve

Interpolation problems require finding curves passing
through some given data points and possibly satisfying
some extra constraints.

A Bézier spline curve F is a curve which is made up of
curve segments which are Bézier curves, say C1, . . . , Cm

(m � 2).
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We will assume that F defined on [0, m], so that for
i = 1, . . . , m,

F (t) = Ci(t � i + 1), i � 1  t  i.

Typically, some smoothness is required between any two
junction points, that is, between any two points Ci(1) and
Ci+1(0), for i = 1, . . . , m � 1.

We require that Ci(1) = Ci+1(0) (C0-continuity), and
typically that the derivatives of Ci at 1 and of Ci+1 at 0
agree up to second order derivatives.

This is called C2-continuity , and it ensures that the tan-
gents agree as well as the curvatures.

There are a number of interpolation problems, and we
consider one of the most common problems which can be
stated as follows:
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Problem: Given N + 1 data points x0, . . . , xN , find a
C2 cubic spline curve F , such that F (i) = xi, for all i,
0  i  N (N � 2).

A way to solve this problem is to find N + 3 auxiliary
points d�1, . . . , dN+1 called de Boor control points from
which N Bézier curves can be found. Actually,

d�1 = x0 and dN+1 = xN

so we only need to find N + 1 points d0, . . . , dN .

It turns out that the C2-continuity constraints on the N
Bézier curves yield only N � 1 equations, so d0 and dN

can be chosen arbitrarily.

In practice, d0 and dN are chosen according to various
end conditions, such as prescribed velocities at x0 and
xN . For the time being, we will assume that d0 and dN

are given.
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Figure 6.4 illustrates an interpolation problem involving
N + 1 = 7 + 1 = 8 data points. The control points d0

and d7 were chosen arbitrarily.

x0 = d�1
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x3
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x7 = d8

d0

d1

d2

d3

d4

d5

d6

d7

Figure 6.4: A C2 cubic interpolation spline curve passing through the points x0, x1, x2, x3,
x4, x5, x6, x7
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It can be shown that d1, . . . , dN�1 are given by the linear
system

0

BBBB@

7
2 1
1 4 1 0
. . . . . . . . .

0 1 4 1
1 7

2

1

CCCCA

0

BBBB@

d1

d2
...

dN�2

dN�1

1

CCCCA
=

0
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6x1 � 3
2d0

6x2
...

6xN�2

6xN�1 � 3
2dN

1

CCCCA
.

It can be shown that the above matrix is invertible be-
cause it is strictly diagonally dominant.

Once the above system is solved, the Bézier cubicsC1, . . .,
CN are determined as follows (we assume N � 2):

For 2  i  N � 1, the control points (bi
0, b

i
1, b

i
2, b

i
3) of Ci

are given by

bi
0 = xi�1

bi
1 =

2

3
di�1 +

1

3
di

bi
2 =

1

3
di�1 +

2

3
di

bi
3 = xi.
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The control points (b1
0, b

1
1, b

1
2, b

1
3) of C1 are given by

b1
0 = x0

b1
1 = d0

b1
2 =

1

2
d0 +

1

2
d1

b1
3 = x1,

and the control points (bN
0 , bN

1 , bN
2 , bN

3 ) of CN are given
by

bN
0 = xN�1

bN
1 =

1

2
dN�1 +

1

2
dN

bN
2 = dN

bN
3 = xN.

We will now describe various methods for solving linear
systems.

Since the matrix of the above system is tridiagonal, there
are specialized methods which are more e�cient than the
general methods. We will discuss a few of these methods.
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6.2 Gaussian Elimination

Let A be an n⇥n matrix, let b 2 Rn be an n-dimensional
vector and assume that A is invertible.

Our goal is to solve the system Ax = b. Since A is
assumed to be invertible, we know that this system has a
unique solution, x = A�1b.

Experience shows that two counter-intuitive facts are re-
vealed:
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(1) One should avoid computing the inverse, A�1, of A
explicitly. This is because this would amount to solv-
ing the n linear systems, Au(j) = ej, for j = 1, . . . , n,
where ej = (0, . . . , 1, . . . , 0) is the jth canonical basis
vector of Rn (with a 1 is the jth slot).

By doing so, we would replace the resolution of a single
system by the resolution of n systems, and we would
still have to multiply A�1 by b.

(2) One does not solve (large) linear systems by comput-
ing determinants (using Cramer’s formulae).

This is because this method requires a number of ad-
ditions (resp. multiplications) proportional to (n+1)!
(resp. (n + 2)!).

The key idea on which most direct methods are based is
that if A is an upper-triangular matrix , which means
that aij = 0 for 1  j < i  n (resp. lower-triangular,
which means that aij = 0 for 1  i < j  n), then
computing the solution, x, is trivial.
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Indeed, say A is an upper-triangular matrix

A =

0

BBBBBB@

a1 1 a1 2 · · · a1 n�2 a1 n�1 a1 n

0 a2 2 · · · a2 n�2 a2 n�1 a2 n

0 0 . . . ... ... ...
. . . ... ...

0 0 · · · 0 an�1 n�1 an�1 n

0 0 · · · 0 0 an n

1

CCCCCCA
.

Then, det(A) = a1 1a2 2 · · · an n 6= 0, which implies that
ai i 6= 0 for i = 1, . . . , n, and we can solve the system
Ax = b from bottom-up by back-substitution .

That is, first we compute xn from the last equation, next
plug this value of xn into the next to the last equation
and compute xn�1 from it, etc.

This yields

xn = a�1
n nbn

xn�1 = a�1
n�1 n�1(bn�1 � an�1 nxn)

...

x1 = a�1
1 1 (b1 � a1 2x2 � · · · � a1 nxn).
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Note that the use of determinants can be avoided to prove
that if A is invertible then ai i 6= 0 for i = 1, . . . , n.

Indeed, it can be shown directly (by induction) that an
upper (or lower) triangular matrix is invertible i↵ all its
diagonal entries are nonzero.

If A was lower-triangular, we would solve the system from
top-down by forward-substitution .

Thus, what we need is a method for transforming a matrix
to an equivalent one in upper-triangular form.

This can be done by elimination .
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Consider the following example:

2x + y + z = 5
4x � 6y = �2

�2x + 7y + 2z = 9.

We can eliminate the variable x from the second and
the third equation as follows: Subtract twice the first
equation from the second and add the first equation to
the third. We get the new system

2x + y + z = 5
� 8y � 2z = �12

8y + 3z = 14.

This time, we can eliminate the variable y from the third
equation by adding the second equation to the third:

2x + y + z = 5
� 8y � 2z = �12

z = 2.

This last system is upper-triangular.
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Using back-substitution, we find the solution: z = 2,
y = 1, x = 1.

Observe that we have performed only row operations .

The general method is to iteratively eliminate variables
using simple row operations (namely, adding or subtract-
ing a multiple of a row to another row of the matrix) while
simultaneously applying these operations to the vector b,
to obtain a system, MAx = Mb, where MA is
upper-triangular .

Such a method is called Gaussian elimination .
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However, one extra twist is needed for the method to
work in all cases: It may be necessary to permute rows ,
as illustrated by the following example:

x + y + z = 1
x + y + 3z = 1
2x + 5y + 8z = 1.

In order to eliminate x from the second and third row,
we subtract the first row from the second and we subtract
twice the first row from the third:

x + y + z = 1
2z = 0

3y + 6z = �1.

Now, the trouble is that y does not occur in the second
row; so, we can’t eliminate y from the third row by adding
or subtracting a multiple of the second row to it.

The remedy is simple: permute the second and the third
row! We get the system:
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x + y + z = 1
3y + 6z = �1

2z = 0,

which is already in triangular form.

Another example where some permutations are needed is:

z = 1
�2x + 7y + 2z = 1
4x � 6y = �1.

First, we permute the first and the second row, obtaining

�2x + 7y + 2z = 1
z = 1

4x � 6y = �1,

and then, we add twice the first row to the third (to
eliminate x) obtaining:

�2x + 7y + 2z = 1
z = 1

8y + 4z = 1.
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Again, we permute the second and the third row, getting

�2x + 7y + 2z = 1
8y + 4z = 1

z = 1,

an upper-triangular system.

Of course, in this example, z is already solved and we
could have eliminated it first, but for the general method,
we need to proceed in a systematic fashion.

We now describe the method of Gaussian Elimination
applied to a linear system, Ax = b, where A is assumed
to be invertible.

We use the variable k to keep track of the stages of elim-
ination. Initially, k = 1.
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(1) The first step is to pick some nonzero entry, ai 1,
in the first column of A. Such an entry must exist,
since A is invertible (otherwise, the first column of A
would be the zero vector, and the columns of A would
not be linearly independent).

The actual choice of such an element has some impact
on the numerical stability of the method, but this will
be examined later. For the time being, we assume that
some arbitrary choice is made. This chosen element is
called the pivot of the elimination step and is denoted
⇡1 (so, in this first step, ⇡1 = ai 1).

(2) Next, we permute the row (i) corresponding to the
pivot with the first row. Such a step is called pivoting .
So, after this permutation, the first element of the first
row is nonzero.

(3) We now eliminate the variable x1 from all rows except
the first by adding suitable multiples of the first row
to these rows. More precisely we add �ai 1/⇡1 times
the first row to the ith row, for i = 2, . . . , n. At the
end of this step, all entries in the first column are zero
except the first.
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(4) Increment k by 1. If k = n, stop. Otherwise, k < n,
and then iteratively repeat steps (1), (2), (3) on the
(n � k + 1) ⇥ (n � k + 1) subsystem obtained by
deleting the first k � 1 rows and k � 1 columns from
the current system.

If we let A1 = A and Ak = (a(k)
i j ) be the matrix obtained

after k � 1 elimination steps (2  k  n), then the kth
elimination step is applied to the matrix Ak of the form

Ak =

0

BBBBBBB@

a(k)
1 1 a(k)

1 2 · · · · · · · · · a(k)
1 n

a(k)
2 2 · · · · · · · · · a(k)

2 n
. . . ... ...

a(k)
k k · · · a(k)

k n... ...

a(k)
n k · · · a(k)

n n

1

CCCCCCCA

.

Actually, note
a(k)

i j = a(i)
i j

for all i, j with 1  i  k � 2 and i  j  n, since
the first k � 1 rows remain unchanged after the (k � 1)th
step.
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We will prove later that det(Ak) = ± det(A). Conse-
quently, Ak is invertible.

The fact that Ak is invertible i↵ A is invertible can also
be shown without determinants from the fact that there
is some invertible matrix Mk such that Ak = MkA, as
we will see shortly.

Since Ak is invertible, some entry a(k)
i k with k  i  n is

nonzero. Otherwise, the last n � k+1 entries in the first
k columns of Ak would be zero, and the first k columns
of Ak would yield k vectors in Rk�1.

But then, the first k columns of Ak would be linearly de-
pendent and Ak would not be invertible, a contradiction.
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So, one the entries a(k)
i k with k  i  n can be chosen

as pivot, and we permute the kth row with the ith row,
obtaining the matrix ↵(k) = (↵(k)

j l ).

The new pivot is ⇡k = ↵(k)
k k , and we zero the entries i =

k + 1, . . . , n in column k by adding �↵(k)
i k /⇡k times row

k to row i. At the end of this step, we have Ak+1.

Observe that the first k � 1 rows of Ak are identical to
the first k � 1 rows of Ak+1.

The process of Gaussian elimination is illustrated in
schematic form below:

0

BB@

⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

1

CCA =)

0

BB@

⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥

1

CCA =)

0

BB@

⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥
0 0 ⇥ ⇥
0 0 ⇥ ⇥

1

CCA =)

0

BB@

⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥
0 0 ⇥ ⇥
0 0 0 ⇥

1

CCA .
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6.3 Elementary Matrices and Row Operations

It is easy to figure out what kind of matrices perform the
elementary row operations used during Gaussian elimina-
tion.

The key point is that if A = PB, where A, B are m ⇥ n
matrices and P is a square matrix of dimension m, if (as
usual) we denote the rows of A and B by A1, . . . , Am and
B1, . . . , Bm, then the formula

aij =
mX

k=1

pikbkj

giving the (i, j)th entry in A shows that the ith row of
A is a linear combination of the rows of B:

Ai = pi1B1 + · · · + pimBm.

Therefore, multiplication of a matrix on the left by a
square matrix performs row operations .

Similarly, multiplication of a matrix on the right by a
square matrix performs column operations
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The permutation of the kth row with the ith row is
achieved by multiplying A on the left by the transpo-
sition matrix P (i, k), which is the matrix obtained from
the identity matrix by permuting rows i and k, i.e.,

P (i, k) =

0

BBBBBBBBBBBB@

1
1
0 1
1
. . .

1
1 0

1
1

1

CCCCCCCCCCCCA

.

Observe that det(P (i, k)) = �1. Furthermore, P (i, k) is
symmetric (P (i, k)> = P (i, k)), and

P (i, k)�1 = P (i, k).

During the permutation step (2), if row k and row i need
to be permuted, the matrix A is multiplied on the left by
the matrix Pk such that Pk = P (i, k), else we set Pk = I .
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Adding � times row j to row i is achieved by multiplying
A on the left by the elementary matrix ,

Ei,j;� = I + �ei j,

where

(ei j)k l =

⇢
1 if k = i and l = j
0 if k 6= i or l 6= j,

i.e.,

Ei,j;� =

0

BBBBBBBB@

1
1

1
. . .

1
� 1

1

1

CCCCCCCCA

or

0

BBBBBBBB@

1
1 �
1
. . .

1
1

1

1

CCCCCCCCA

.

On the left, i > j, and on the right, i < j. Observe that
the inverse of Ei,j;� = I + �ei j is
Ei,j;�� = I � �ei j, and that det(Ei,j;�) = 1.

Therefore, during step 3 (the elimination step), the ma-
trix A is multiplied on the left by a product, Ek, of ma-
trices of the form Ei,k;�i,k

, with i > k.
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Consequently, we see that

Ak+1 = EkPkAk,

and then

Ak = Ek�1Pk�1 · · · E1P1A.

This justifies the claim made earlier, that Ak = MkA for
some invertible matrix Mk; we can pick

Mk = Ek�1Pk�1 · · · E1P1,

a product of invertible matrices.

The fact that det(P (i, k)) = �1 and that det(Ei,j;�) = 1
implies immediately the fact claimed above:

We always have

det(Ak) = ± det(A).
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Furthermore, since

Ak = Ek�1Pk�1 · · · E1P1A

and since Gaussian elimination stops for k = n, the ma-
trix

An = En�1Pn�1 · · · E2P2E1P1A

is upper-triangular .

Also note that if we let

M = En�1Pn�1 · · · E2P2E1P1,

then det(M) = ±1, and

det(A) = ± det(An).

The matrices P (i, k) and Ei,j;� are called elementary
matrices .
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Theorem 6.1. (Gaussian Elimination) Let A be an
n ⇥ n matrix (invertible or not). Then there is some
invertible matrix, M , so that U = MA is upper-
triangular. The pivots are all nonzero i↵ A is in-
vertible.

Remark: Obviously, the matrix M can be computed as

M = En�1Pn�1 · · · E2P2E1P1,

but this expression is of no use.

Indeed, what we need is M�1; when no permutations are
needed, it turns out that M�1 can be obtained immedi-
ately from the matrices Ek’s, in fact, from their inverses,
and no multiplications are necessary.
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Remark: Instead of looking for an invertible matrix,
M , so that MA is upper-triangular, we can look for an
invertible matrix, M , so that MA is a diagonal matrix .

Only a simple change to Gaussian elimination is needed.

At every stage, k, after the pivot has been found and piv-
oting been performed, if necessary, in addition to adding
suitable multiples of the kth row to the rows below row
k in order to zero the entries in column k for i = k +
1, . . . , n, also add suitable multiples of the kth row to
the rows above row k in order to zero the entries in col-
umn k for i = 1, . . . , k � 1.

Such steps are also achieved by multiplying on the left by
elementary matrices Ei,k;�i,k

, except that i < k, so that
these matrices are not lower-triangular matrices.

Nevertheless, at the end of the process, we find that
An = MA, is a diagonal matrix.
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This method is called the Gauss-Jordan factorization .
Because it is more expensive than Gaussian elimination,
this method is not used much in practice.

However, Gauss-Jordan factorization can be used to com-
pute the inverse of a matrix, A.

It remains to discuss the choice of the pivot, and also con-
ditions that guarantee that no permutations are needed
during the Gaussian elimination process.

We begin by stating a necessary and su�cient condition
for an invertible matrix to have an LU -factorization (i.e.,
Gaussian elimination does not require pivoting).
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6.4 LU-Factorization

We say that an invertible matrix, A, has an
LU-factorization if it can be written as A = LU , where
U is upper-triangular invertible and L is lower-triangular ,
with Li i = 1 for i = 1, . . . , n.

A lower-triangular matrix with diagonal entries equal to
1 is called a unit lower-triangular matrix.

Given an n ⇥ n matrix, A = (ai j), for any k, with 1 
k  n, let A[1..k, 1..k] denote the submatrix of A whose
entries are ai j, where 1  i, j  k.
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Proposition 6.2. Let A be an invertible n⇥n-matrix.
Then, A, has an LU-factorization, A = LU , i↵ every
matrix A[1..k, 1..k] is invertible for k = 1, . . . , n. Fur-
thermore, when A has an LU-factorization, we have

det(A[1..k, 1..k]) = ⇡1⇡2 · · · ⇡k, k = 1, . . . , n,

where ⇡k is the pivot obtained after k � 1 elimination
steps. Therefore, the kth pivot is given by

⇡k =

8
<

:

a11 = det(A[1..1, 1..1]) if k = 1
det(A[1..k, 1..k])

det(A[1..k � 1, 1..k � 1])
if k = 2, . . . , n.

Corollary 6.3. (LU-Factorization) Let A be an in-
vertible n ⇥ n-matrix. If every matrix A[1..k, 1..k] is
invertible for k = 1, . . . , n, then Gaussian elimination
requires no pivoting and yields an LU-factorization,
A = LU .
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The reader should verify that the example below is indeed
an LU -factorization.

0

BB@

2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

1

CCA =

0

BB@

1 0 0 0
2 1 0 0
4 3 1 0
3 4 1 1

1

CCA

0

BB@

2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2

1

CCA .

One of the main reasons why the existence of an LU -
factorization for a matrix, A, is interesting is that if we
need to solve several linear systems, Ax = b, correspond-
ing to the same matrix, A, we can do this cheaply by
solving the two triangular systems

Lw = b, and Ux = w.

As we will see a bit later, symmetric positive definite
matrices satisfy the condition of Proposition 6.2.

Therefore, linear systems involving symmetric positive
definite matrices can be solved by Gaussian elimination
without pivoting.

Actually, it is possible to do better: This is the Cholesky
factorization.
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There is a certain asymmetry in the LU -decomposition
A = LU of an invertible matrix A. Indeed, the diagonal
entries of L are all 1, but this is generally false for U .

This asymmetry can be eliminated as follows: if

D = diag(u11, u22, . . . , unn)

is the diagonal matrix consisting of the diagonal entries
in U (the pivots), then we if let U 0 = D�1U , we can write

A = LDU 0,

where L is lower- triangular, U 0 is upper-triangular, all di-
agonal entries of both L and U 0 are 1, and D is a diagonal
matrix of pivots.

Such a decomposition is called an LDU-factorization .

We will see shortly than if A is symmetric, then U 0 = L>.
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If a square invertible matrix A has an LU -factorization,
then it is possible to find L and U while performing Gaus-
sian elimination.

Recall that at step k, we pick a pivot ⇡k = a(k)
ik 6= 0 in

the portion consisting of the entries of index j � k of the
k-th column of the matrix Ak obtained so far, we swap
rows i and k if necessary (the pivoting step), and then we
zero the entries of index j = k + 1, . . . , n in column k.

Schematically, we have the following steps:

0

BBBB@

⇥ ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 a(k)

ik ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥

1

CCCCA
pivot
=)

0

BBBB@

⇥ ⇥ ⇥ ⇥ ⇥
0 a(k)

ik ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥

1

CCCCA

elim
=)

0

BBBB@

⇥ ⇥ ⇥ ⇥ ⇥
0 ⇥ ⇥ ⇥ ⇥
0 0 ⇥ ⇥ ⇥
0 0 ⇥ ⇥ ⇥
0 0 ⇥ ⇥ ⇥

1

CCCCA
.
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More precisely, after permuting row k and row i (the
pivoting step), if the entries in column k below row k are
↵k+1k, . . . , ↵nk, then we add �↵jk/⇡k times row k to row
j; this process is illustrated below:

0

BBBBBBB@

a(k)
kk

a(k)
k+1k...

a(k)
ik...

a(k)
nk

1

CCCCCCCA

pivot
=)

0

BBBBBBB@

a(k)
ik

a(k)
k+1k...

a(k)
kk...

a(k)
nk

1

CCCCCCCA

=

0

BBBBBB@

⇡k

↵k+1k
...

↵ik
...

↵nk

1

CCCCCCA

elim
=)

0

BBBBBB@

⇡k

0
...
0
...
0

1

CCCCCCA
.

Then, if we write `jk = ↵jk/⇡k for j = k + 1, . . . , n, the
kth column of L is

0

BBBBBBBB@

0
...
0
1

`k+1k
...

`nk

1

CCCCCCCCA

.
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Observe that the signs of the multipliers �↵jk/⇡k have
been flipped. Thus, we obtain the unit lower triangular
matrix

L =

0

BBBB@

1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
... ... ... . . . 0

`n1 `n2 `n3 · · · 1

1

CCCCA
.

It is easy to see (and this is proven in Theorem 6.5) that
if the result of Gaussian elimination (without pivoting) is
U = En�1 · · · E1A, so that L = E�1

1 E�1
2 · · · E�1

n�1, then

Ek =

0

BBBBBB@

1 · · · 0 0 · · · 0
... . . . ... ... ... ...
0 · · · 1 0 · · · 0
0 · · · �`k+1k 1 · · · 0
... ... ... ... . . . ...
0 · · · �`nk 0 · · · 1

1

CCCCCCA

and
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E�1
k =

0

BBBBBB@

1 · · · 0 0 · · · 0
... . . . ... ... ... ...
0 · · · 1 0 · · · 0
0 · · · `k+1k 1 · · · 0
... ... ... ... . . . ...
0 · · · `nk 0 · · · 1

1

CCCCCCA
,

so the kth column of E�1
k is the kth column of L.

Unfortunately, even though L�1 = En�1 · · · E2E1, the
matrices Ek occur in the wrong order and the kth column
of L�1 is not the kth column of Ek.
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Here is an example illustrating the method. Given

A = A1 =

0

BB@

1 1 1 0
1 �1 0 1
1 1 �1 0
1 �1 0 �1

1

CCA ,

we have the following sequence of steps: The first pivot
is ⇡1 = 1 in row 1, and we substract row 1 from rows 2,
3, and 4. We get

A2 =

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 �2 �1 �1

1

CCA L1 =

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

1

CCA .

The next pivot is ⇡2 = �2 in row 2, and we subtract row
2 from row 4 (and add 0 times row 2 to row 3). We get

A3 =

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA L2 =

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA .

The next pivot is ⇡3 = �2 in row 3, and since the fourth
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entry in column 3 is already a zero, we add 0 times row
3 to row 4. We get

A4 =

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA L3 =

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA .

The procedure is finished, and we have

L = L3 =

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA U = A4 =

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA .

It is easy to check that indeed

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA =

0

BB@

1 1 1 0
1 �1 0 1
1 1 �1 0
1 �1 0 �1

1

CCA ,

namely A = LU .
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We now show how to extend the above method to deal
with pivoting e�ciently. This is the PA = LU factoriza-
tion.
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6.5 PA = LU Factorization

The following easy proposition shows that, in principle,
A can be premultiplied by some permutation matrix, P ,
so that PA can be converted to upper-triangular form
without using any pivoting.

A permutation matrix is a square matrix that has a sin-
gle 1 in every row and every column and zeros everywhere
else.

It is shown in Section 5.1 that every permutation matrix
is a product of transposition matrices (the P (i, k)s), and
that P is invertible with inverse P>.

Proposition 6.4. Let A be an invertible n⇥n-matrix.
Then, there is some permutation matrix, P , so that
(PA)[1..k, 1..k] is invertible for k = 1, . . . , n.
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Remark: One can also prove Proposition 6.4 using a
clever reordering of the Gaussian elimination steps sug-
gested by Trefethen and Bau [34] (Lecture 21).

It is remarkable that if pivoting steps are necessary dur-
ing Gaussian elimination, a very simple modification of
the algorithm for finding an LU -factorization yields the
matrices L, U , and P , such that PA = LU .

To describe this new method, since the diagonal entries
of L are 1s, it is convenient to write

L = I + ⇤.

Then, in assembling the matrix ⇤ while performing Gaus-
sian elimination with pivoting, we make the same trans-
position on the rows of ⇤ (really ⇤k�1) that we make
on the rows of A (really Ak) during a pivoting step
involving row k and row i.

We also assemble P by starting with the identity matrix
and applying to P the same row transpositions that we
apply to A and ⇤.
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Here is an example illustrating this method. Given

A = A1 =

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA ,

we have the following sequence of steps: We initialize
⇤0 = 0 and P0 = I4.

The first pivot is ⇡1 = 1 in row 1, and we substract row
1 from rows 2, 3, and 4. We get

A2 =

0

BB@

1 1 1 0
0 0 �2 0
0 �2 �1 1
0 �2 �1 �1

1

CCA ⇤1 =

0

BB@

0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

1

CCA

P1 =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA .
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The next pivot is ⇡2 = �2 in row 3, so we permute row
2 and 3; we also apply this permutation to ⇤ and P :

A0
3 =

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 �2 �1 �1

1

CCA ⇤0
2 =

0

BB@

0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

1

CCA

P2 =

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA .

Next, we subtract row 2 from row 4 (and add 0 times row
2 to row 3). We get

A3 =

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA ⇤2 =

0

BB@

0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0

1

CCA

P2 =

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA .
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The next pivot is ⇡3 = �2 in row 3, and since the fourth
entry in column 3 is already a zero, we add 0 times row
3 to row 4. We get

A4 =

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA ⇤3 =

0

BB@

0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0

1

CCA

P3 =

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA .

The procedure is finished, and we have

L = ⇤3 + I =

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA U = A4 =

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA

P = P3 =

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA .
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It is easy to check that indeed

LU =

0

BB@

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

1

CCA

0

BB@

1 1 1 0
0 �2 �1 1
0 0 �2 0
0 0 0 �2

1

CCA

=

0

BB@

1 1 1 0
1 �1 0 1
1 1 �1 0
1 �1 0 �1

1

CCA

and

PA =

0

BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA

=

0

BB@

1 1 1 0
1 �1 0 1
1 1 �1 0
1 �1 0 �1

1

CCA .
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Using the idea in the remark before the above example, we
can prove the theorem below which shows the correctness
of the algorithm for computing P, L and U using a simple
adaptation of Gaussian elimination.

We are not aware of a detailed proof of Theorem 6.5 (see
below) in the standard texts.

Although Golub and Van Loan [17] state a version of this
theorem as their Theorem 3.1.4, they say that “The proof
is a messy subscripting argument.”

Meyer [27] also provides a sketch of proof (see the end of
Section 3.10).
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Theorem 6.5. For every invertible n ⇥ n-matrix, A,
the following hold:

(1) There is some permutation matrix, P , some upper-
triangular matrix, U , and some unit lower-triangular
matrix, L, so that PA = LU (recall, Li i = 1 for
i = 1, . . . , n). Furthermore, if P = I, then L and
U are unique and they are produced as a result of
Gaussian elimination without pivoting.

(2) If En�1 . . . E1A = U is the result of Gaussian elim-
ination without pivoting, write as usual
Ak = Ek�1 . . . E1A (with Ak = (a(k)

ij )), and let

`ik = a(k)
ik /a(k)

kk , with 1  k  n � 1 and
k + 1  i  n. Then

L =

0

BBBB@

1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
... ... ... . . . 0

`n1 `n2 `n3 · · · 1

1

CCCCA
,

where the kth column of L is the kth column of
E�1

k , for k = 1, . . . , n � 1.
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(3) If En�1Pn�1 · · · E1P1A = U is the result of Gaus-
sian elimination with some pivoting, write
Ak = Ek�1Pk�1 · · · E1P1A, and define Ek

j , with
1  j  n � 1 and j  k  n � 1, such that, for
j = 1, . . . , n � 2,

Ej
j = Ej

Ek
j = PkE

k�1
j Pk, for k = j + 1, . . . , n � 1,

and
En�1

n�1 = En�1.

Then,

Ek
j = PkPk�1 · · · Pj+1EjPj+1 · · · Pk�1Pk

U = En�1
n�1 · · · En�1

1 Pn�1 · · · P1A,

and if we set

P = Pn�1 · · · P1

L = (En�1
1 )�1 · · · (En�1

n�1)
�1,

then

PA = LU.
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Furthermore,

(Ek
j )

�1 = I + Ek
j , 1  j  n � 1, j  k  n � 1,

where Ek
j is a lower triangular matrix of the form

E (k)
j =

0

BBBBBBB@

0 · · · 0 0 · · · 0
... . . . ... ... ... ...
0 · · · 0 0 · · · 0

0 · · · `(k)
j+1j 0 · · · 0

... ... ... ... . . . ...

0 · · · `(k)
nj 0 · · · 0

1

CCCCCCCA

,

we have
Ek

j = I � Ek
j ,

and

Ek
j = PkEk�1

j , 1  j  n � 2, j + 1  k  n � 1,

where Pk = I or else Pk = P (k, i) for some i such
that k + 1  i  n; if Pk 6= I, this means that
(Ek

j )
�1 is obtained from (Ek�1

j )�1 by permuting the
entries on row i and k in column j.

Because the matrices (Ek
j )

�1 are all lower triangu-
lar, the matrix L is also lower triangular.
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In order to find L, define lower triangular matrices
⇤k of the form

⇤k =

0

BBBBBBBBBBBB@

0 0 0 0 0 · · · · · · 0

�(k)
21 0 0 0 0 ... ... 0

�(k)
31 �(k)

32
. . . 0 0 ... ... 0

... ... . . . 0 0 ... ... ...

�(k)
k+11 �(k)

k+12 · · · �(k)
k+1k 0 · · · · · · 0

�(k)
k+21 �(k)

k+22 · · · �(k)
k+2k 0 . . . · · · 0

... ... . . . ... ... ... . . . ...

�(k)
n1 �(k)

n2 · · · �(k)
nk 0 · · · · · · 0

1

CCCCCCCCCCCCA

to assemble the columns of L iteratively as follows:
let

(�`(k)
k+1k, . . . , �`(k)

nk )

be the last n�k elements of the kth column of Ek,
and define ⇤k inductively by setting

⇤1 =

0

BBB@

0 0 · · · 0

`(1)
21 0 · · · 0
... ... . . . ...

`(1)
n1 0 · · · 0

1

CCCA
,
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then for k = 2, . . . , n � 1, define

⇤0
k = Pk⇤k�1,

and

⇤k = (I + ⇤0
k)E

�1
k � I =

0

BBBBBBBBBBBBB@

0 0 0 0 0 · · · · · · 0

�
0(k�1)
21 0 0 0 0 ... ... 0

�
0(k�1)
31 �

0(k�1)
32

. . . 0 0 ... ... 0
... ... . . . 0 0 ... ... ...

�
0(k�1)
k1 �

0(k�1)
k2 · · · �

0(k�1)
k (k�1) 0 · · · · · · 0

�
0(k�1)
k+11 �

0(k�1)
k+12 · · · �

0(k�1)
k+1 (k�1) `(k)

k+1k
. . . · · · 0

... ... . . . ... ... ... . . . ...

�
0(k�1)
n1 �

0(k�1)
n2 · · · �

0(k�1)
n k�1 `(k)

nk · · · · · · 0

1

CCCCCCCCCCCCCA

,

with Pk = I or Pk = P (k, i) for some i > k.

This means that in assembling L, row k and row i
of ⇤k�1 need to be permuted when a pivoting step
permuting row k and row i of Ak is required.
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Then

I + ⇤k = (Ek
1 )

�1 · · · (Ek
k )

�1

⇤k = Ek
1 · · · Ek

k ,

for k = 1, . . . , n � 1, and therefore

L = I + ⇤n�1.

We emphasize again that part (3) of Theorem 6.5 shows
the remarkable fact that in assembling the matrix L
while performing Gaussian elimination with pivoting,
the only change to the algorithm is to make the same
transposition on the rows of ⇤k�1 that we make on the
rows of A (really Ak) during a pivoting step involving
row k and row i.

We can also assemble P by starting with the identity
matrix and applying to P the same row transpositions
that we apply to A and ⇤.



6.5. PA = LU FACTORIZATION 315

Consider the matrix

A =

0

BB@

1 2 �3 4
4 8 12 �8
2 3 2 1

�3 �1 1 �4

1

CCA .

We set P0 = I4, and we can also set ⇤0 = 0. The first
step is to permute row 1 and row 2, using the pivot 4.
We also apply this permutation to P0:

A0
1 =

0

BB@

4 8 12 �8
1 2 �3 4
2 3 2 1

�3 �1 1 �4

1

CCA P1 =

0

BB@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1

CCA .
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Next, we subtract 1/4 times row 1 from row 2, 1/2 times
row 1 from row 3, and add 3/4 times row 1 to row 4, and
start assembling ⇤:

A2 =

0

BB@

4 8 12 �8
0 0 �6 6
0 �1 �4 5
0 5 10 �10

1

CCA ⇤1 =

0

BB@

0 0 0 0
1/4 0 0 0
1/2 0 0 0

�3/4 0 0 0

1

CCA

P1 =

0

BB@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1

CCA .

Next we permute row 2 and row 4, using the pivot 5. We
also apply this permutation to ⇤ and P :

A0
3 =

0

BB@

4 8 12 �8
0 5 10 �10
0 �1 �4 5
0 0 �6 6

1

CCA ⇤0
2 =

0

BB@

0 0 0 0
�3/4 0 0 0
1/2 0 0 0
1/4 0 0 0

1

CCA

P2 =

0

BB@

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

1

CCA .
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Next we add 1/5 times row 2 to row 3, and update ⇤0
2:

A3 =

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �2 3
0 0 �6 6

1

CCA ⇤2 =

0

BB@

0 0 0 0
�3/4 0 0 0
1/2 �1/5 0 0
1/4 0 0 0

1

CCA

P2 =

0

BB@

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

1

CCA .

Next we permute row 3 and row 4, using the pivot �6.
We also apply this permutation to ⇤ and P :

A0
4 =

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �6 6
0 0 �2 3

1

CCA ⇤0
3 =

0

BB@

0 0 0 0
�3/4 0 0 0
1/4 0 0 0
1/2 �1/5 0 0

1

CCA

P3 =

0

BB@

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

1

CCA .
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Finally, we subtract 1/3 times row 3 from row 4, and
update ⇤0

3:

A4 =

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �6 6
0 0 0 1

1

CCA ⇤3 =

0

BB@

0 0 0 0
�3/4 0 0 0
1/4 0 0 0
1/2 �1/5 1/3 0

1

CCA

P3 =

0

BB@

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

1

CCA .

Consequently, adding the identity to ⇤3, we obtain

L =

0

BB@

1 0 0 0
�3/4 1 0 0
1/4 0 1 0
1/2 �1/5 1/3 1

1

CCA , U =

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �6 6
0 0 0 1

1

CCA ,

P =

0

BB@

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

1

CCA .
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We check that

PA =

0

BB@

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

1

CCA

0

BB@

1 2 �3 4
4 8 12 �8
2 3 2 1

�3 �1 1 �4

1

CCA

=

0

BB@

4 8 12 �8
�3 �1 1 �4
1 2 �3 4
2 3 2 1

1

CCA ,

and that

LU =

0

BB@

1 0 0 0
�3/4 1 0 0
1/4 0 1 0
1/2 �1/5 1/3 1

1

CCA

0

BB@

4 8 12 �8
0 5 10 �10
0 0 �6 6
0 0 0 1

1

CCA

=

0

BB@

4 8 12 �8
�3 �1 1 �4
1 2 �3 4
2 3 2 1

1

CCA = PA.
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Note that if one willing to overwrite the lower triangular
part of the evolving matrix A, one can store the evolving
⇤ there, since these entries will eventually be zero anyway!

There is also no need to save explicitly the permutation
matrix P . One could instead record the permutation
steps in an extra column (record the vector (⇡(1), . . . , ⇡(n))
corresponding to the permutation ⇡ applied to the rows).

We let the reader write such a bold and space-e�cient
version of LU -decomposition!

Proposition 6.6. If an invertible symmetric matrix
A has an LU-decomposition, then A has a factoriza-
tion of the form

A = LDL>,

where L is a lower-triangular matrix whose diagonal
entries are equal to 1, and where D consists of the
pivots. Furthermore, such a decomposition is unique.

Remark: It can be shown that Gaussian elimination +
back-substitution requires n3/3+O(n2) additions, n3/3+
O(n2) multiplications and n2/2 + O(n) divisions.
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6.6 Dealing with Roundo↵ Errors; Pivoting Strategies

Let us now briefly comment on the choice of a pivot.

Although theoretically, any pivot can be chosen, the pos-
sibility of roundo↵ errors implies that it is not a good
idea to pick very small pivots . The following example
illustrates this point.

10�4x + y = 1
x + y = 2.

Since 10�4 is nonzero, it can be taken as pivot, and we
get

10�4x + y = 1
(1 � 104)y = 2 � 104.

Thus, the exact solution is

x =
104

104 � 1
, y =

104 � 2

104 � 1
.
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However, if roundo↵ takes place on the fourth digit, then
104 � 1 = 9999 and 104 � 2 = 9998 will be rounded o↵
both to 9990, and then, the solution is x = 0 and y = 1,
very far from the exact solution where x ⇡ 1 and y ⇡ 1.

The problem is that we picked a very small pivot .

If instead we permute the equations, the pivot is 1, and
after elimination, we get the system

x + y = 2
(1 � 10�4)y = 1 � 2 ⇥ 10�4.

This time, 1� 10�4 = 0.9999 and 1� 2⇥ 10�4 = 0.9998
are rounded o↵ to 0.999 and the solution is
x = 1, y = 1, much closer to the exact solution.
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To remedy this problem, one may use the strategy of
partial pivoting .

This consists of choosing during step k (1  k  n � 1)

one of the entries a(k)
i k such that

|a(k)
i k | = max

kpn
|a(k)

p k |.

By maximizing the value of the pivot, we avoid dividing
by undesirably small pivots.

Remark: A matrix, A, is called strictly column diag-
onally dominant i↵

|aj j| >
nX

i=1, i6=j

|ai j|, for j = 1, . . . , n

(resp. strictly row diagonally dominant i↵

|ai i| >
nX

j=1, j 6=i

|ai j|, for i = 1, . . . , n.)
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It has been known for a long time (before 1900, say by
Hadamard) that if a matrix, A, is strictly column diago-
nally dominant (resp. strictly row diagonally dominant),
then it is invertible. (This is a good exercise, try it!)

It can also be shown that if A is strictly column diago-
nally dominant, then Gaussian elimination with partial
pivoting does not actually require pivoting.

Another strategy, called complete pivoting , consists in
choosing some entry a(k)

i j , where k  i, j  n, such that

|a(k)
i j | = max

kp,qn
|a(k)

p q |.

However, in this method, if the chosen pivot is not in
column k, it is also necessary to permute columns .
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This is achieved by multiplying on the right by a permu-
tation matrix.

However, complete pivoting tends to be too expensive in
practice, and partial pivoting is the method of choice.

A special case where the LU -factorization is particularly
e�cient is the case of tridiagonal matrices, which we now
consider.
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6.7 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

A =

0

BBBBBBBB@

b1 c1

a2 b2 c2

a3 b3 c3
. . . . . . . . .

an�2 bn�2 cn�2

an�1 bn�1 cn�1

an bn

1

CCCCCCCCA

.

Define the sequence

�0 = 1,

�1 = b1,

�k = bk�k�1 � akck�1�k�2, 2  k  n.

Proposition 6.7. If A is the tridiagonal matrix above,
then �k = det(A[1..k, 1..k]), for k = 1, . . . , n.
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Theorem 6.8. If A is the tridiagonal matrix above
and �k 6= 0 for k = 1, . . . , n, then A has the following
LU-factorization:

A =

0

BBBBBBBBBBBBB@

1

a2
�0

�1
1

a3
�1

�2
1

. . . . . .

an�1
�n�3

�n�2
1

an
�n�2

�n�1
1

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBB@

�1

�0
c1

�2

�1
c2

�3

�2
c3

. . . . . .
�n�1

�n�2
cn�1

�n

�n�1

1

CCCCCCCCCCCCCCCA

.
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It follows that there is a simple method to solve a linear
system, Ax = d, where A is tridiagonal (and �k 6= 0 for
k = 1, . . . , n).

For this, it is convenient to “squeeze” the diagonal matrix,
�, defined such that �k k = �k/�k�1, into the factoriza-
tion so that A = (L�)(��1U), and if we let

z1 =
c1

b1
,

zk = ck
�k�1

�k
, 2  k  n � 1,

zn =
�n

�n�1
= bn � anzn�1,

A = (L�)(��1U) is written as
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A =

0

BBBBBBBBBBB@

c1

z1

a2
c2

z2

a3
c3

z3. . . . . .

an�1
cn�1

zn�1
an zn

1

CCCCCCCCCCCA

0

BBBBBBBBBBBBBBBBBBBB@

1 z1

1 z2

1 z3

. . . . . .

1 zn�2

1 zn�1

1

1

CCCCCCCCCCCCCCCCCCCCA

.
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As a consequence, the system Ax = d can be solved by
constructing three sequences: First, the sequence

z1 =
c1

b1
,

zk =
ck

bk � akzk�1
, k = 2, . . . , n � 1,

zn = bn � anzn�1,

corresponding to the recurrence �k = bk�k�1�akck�1�k�2

and obtained by dividing both sides of this equation by
�k�1, next

w1 =
d1

b1
, wk =

dk � akwk�1

bk � akzk�1
, k = 2, . . . , n,

corresponding to solving the system L�w = d, and fi-
nally

xn = wn, xk = wk � zkxk+1, k = n� 1, n� 2, . . . , 1,

corresponding to solving the system ��1Ux = w.
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Remark: It can be verified that this requires 3(n � 1)
additions, 3(n � 1) multiplications, and 2n divisions, a
total of 8n � 6 operations, which is much less that the
O(2n3/3) required by Gaussian elimination in general.

We now consider the special case of symmetric positive
definite matrices (SPD matrices).
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6.8 SPD Matrices and the Cholesky Decomposition

Definition 6.1. A real n ⇥ n matrix A is symmetric
positive definite , for short SPD , i↵ it is symmetric and
if

x>Ax > 0 for all x 2 Rn with x 6= 0.

The following facts about a symmetric positive definite
matrice, A, are easily established:

(1) The matrix A is invertible. (Indeed, if Ax = 0, then
x>Ax = 0, which implies x = 0.)

(2) We have ai i > 0 for i = 1, . . . , n. (Just observe that
for x = ei, the ith canonical basis vector of Rn, we
have e>

i Aei = ai i > 0.)

(3) For every n ⇥ n invertible matrix, Z, the matrix
Z>AZ is symmetric positive definite i↵ A is symmet-
ric positive definite.

Next, we prove that a symmetric positive definite matrix
has a special LU -factorization of the form A = BB>,
where B is a lower-triangular matrix whose diagonal ele-
ments are strictly positive.

This is the Cholesky factorization .
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First, we note that a symmetric positive definite matrix
satisfies the condition of Proposition 6.2.

Proposition 6.9. If A is a symmetric positive def-
inite matrix, then A[1..k, 1..k] is symmetric positive
definite, and thus invertible for k = 1, . . . , n.

Let A be a symmetric positive definite matrix and write

A =

✓
a1 1 W>

W C

◆
,

where C is an (n � 1) ⇥ (n � 1) symmetric matrix and
W is an (n � 1) ⇥ 1 matrix.

Since A is symmetric positive definite, a1 1 > 0, and we
can compute ↵ =

p
a1 1. The trick is that we can factor

A uniquely as

A =

✓
a1 1 W>

W C

◆

=

✓
↵ 0

W/↵ I

◆✓
1 0
0 C � WW>/a1 1

◆✓
↵ W>/↵
0 I

◆
,

i.e., as A = B1A1B>
1 , where B1 is lower-triangular with

positive diagonal entries.
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Thus, B1 is invertible, and by fact (3) above, A1 is also
symmetric positive definite.

Theorem 6.10. (Cholesky Factorization) Let A be
a symmetric positive definite matrix. Then, there is
some lower-triangular matrix, B, so that A = BB>.
Furthermore, B can be chosen so that its diagonal ele-
ments are strictly positive, in which case, B is unique.

Remark: If A = BB>, where B is any invertible ma-
trix, then A is symmetric positive definite.

The proof of Theorem 6.10 immediately yields an algo-
rithm to compute B from A. For j = 1, . . . , n,

bj j =

 
aj j �

j�1X

k=1

b2
j k

!1/2

,

and for i = j + 1, . . . , n (and j = 1, . . . , n � 1)

bi j =

 
ai j �

j�1X

k=1

bi kbj k

!
/bj j.
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The above formulae are used to compute the jth column
of B from top-down, using the first j � 1 columns of B
previously computed, and the matrix A.

For example, if

A =

0

BBBBBB@

1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4 4
1 2 3 4 5 5
1 2 3 4 5 6

1

CCCCCCA
,

we find that

B =

0

BBBBBB@

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

1

CCCCCCA
.
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The Cholesky factorization can be used to solve linear
systems, Ax = b, where A is symmetric positive definite:

Solve the two systems Bw = b and B>x = w.

Remark: It can be shown that this methods requires
n3/6 + O(n2) additions, n3/6 + O(n2) multiplications,
n2/2+O(n) divisions, and O(n) square root extractions.

Thus, the Cholesky method requires half of the num-
ber of operations required by Gaussian elimination (since
Gaussian elimination requires n3/3 + O(n2) additions,
n3/3+O(n2) multiplications, and n2/2+O(n) divisions).

It also requires half of the space (only B is needed, as
opposed to both L and U).

Furthermore, it can be shown that Cholesky’s method is
numerically stable.
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We now give three more criteria for a symmetric matrix
to be positive definite.

Proposition 6.11. Let A be any n ⇥ n symmetric
matrix. The following conditions are equivalent:

(a) A is positive definite.

(b) All principal minors of A are positive; that is:
det(A[1..k, 1..k]) > 0 for k = 1, . . . , n (Sylvester’s
criterion).

(c) A has an LU-factorization and all pivots are pos-
itive.

(d) A has an LDL>-factorization and all pivots in D
are positive.

For more on the stability analysis and e�cient implemen-
tation methods of Gaussian elimination, LU -factoring
and Cholesky factoring, see Demmel [11], Trefethen and
Bau [34], Ciarlet [9], Golub and Van Loan [17], Strang
[31, 32], and Kincaid and Cheney [22].
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6.9 Reduced Row Echelon Form (RREF)

Gaussian elimination described in Section 6.2 can also be
applied to rectangular matrices.

This yields a method for determining whether a system
Ax = b is solvable, and a description of all the solutions
when the system is solvable, for any rectangular m ⇥ n
matrix A.

It turns out that the discussion is simpler if we rescale
all pivots to be 1, and for this we need a third kind of
elementary matrix.

For any � 6= 0, let Ei,� be the n ⇥ n diagonal matrix

Ei,� =

0

BBBBBBBB@

1
. . .

1
�

1
. . .

1

1

CCCCCCCCA

,

with (Ei,�)ii = � (1  i  n).
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Note that Ei,� is also given by

Ei,� = I + (� � 1)ei i,

and that Ei,� is invertible with

E�1
i,� = Ei,��1.

Now, after k � 1 elimination steps, if the bottom portion

(a(k)
kk , a(k)

k+1k, . . . , a
(k)
mk)

of the kth column of the current matrix Ak is nonzero so
that a pivot ⇡k can be chosen, after a permutation of rows
if necessary, we also divide row k by ⇡k to obtain the pivot
1, and not only do we zero all the entries i = k+1, . . . , m
in column k, but also all the entries i = 1, . . . , k � 1, so
that the only nonzero entry in column k is a 1 in row k.

These row operations are achieved by multiplication on
the left by elementary matrices.

If a(k)
kk = a(k)

k+1k = · · · = a(k)
mk = 0, we move on to column

k + 1.
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When the kth column contains a pivot, the kth stage of
the procedure for converting a matrix to rref consists of
the following three steps illustrated below:

0

BBBBBB@

1 ⇥ 0 ⇥ ⇥ ⇥ ⇥
0 0 1 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 a(k)

ik ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥

1

CCCCCCA

pivot
=)

0

BBBBBB@

1 ⇥ 0 ⇥ ⇥ ⇥ ⇥
0 0 1 ⇥ ⇥ ⇥ ⇥
0 0 0 a(k)

ik ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥

1

CCCCCCA

rescale
=)

0

BBBBBB@

1 ⇥ 0 ⇥ ⇥ ⇥ ⇥
0 0 1 ⇥ ⇥ ⇥ ⇥
0 0 0 1 ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥
0 0 0 ⇥ ⇥ ⇥ ⇥

1

CCCCCCA

elim
=)

0

BBBBBB@

1 ⇥ 0 0 ⇥ ⇥ ⇥
0 0 1 0 ⇥ ⇥ ⇥
0 0 0 1 ⇥ ⇥ ⇥
0 0 0 0 ⇥ ⇥ ⇥
0 0 0 0 ⇥ ⇥ ⇥
0 0 0 0 ⇥ ⇥ ⇥

1

CCCCCCA
.

If the kth column does not contain a pivot, we simply
move on to the next column.
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Here is an example illustrating this process: Starting from
the matrix

A1 =

0

@
1 0 2 1 5
1 1 5 2 7
1 2 8 4 12

1

A

we perform the following steps

A1 �! A2 =

0

@
1 0 2 1 5
0 1 3 1 2
0 2 6 3 7

1

A ,

by subtracting row 1 from row 2 and row 3;

A2 �!

0

@
1 0 2 1 5
0 2 6 3 7
0 1 3 1 2

1

A �!

0

@
1 0 2 1 5
0 1 3 3/2 7/2
0 1 3 1 2

1

A

�! A3 =

0

@
1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 �1/2 �3/2

1

A ,

after choosing the pivot 2 and permuting row 2 and row
3, dividing row 2 by 2, and subtracting row 2 from row 3;
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A3 �!

0

@
1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 1 3

1

A �! A4 =

0

@
1 0 2 0 2
0 1 3 0 �1
0 0 0 1 3

1

A ,

after dividing row 3 by �1/2, subtracting row 3 from row
1, and subtracting (3/2)⇥ row 3 from row 2.

It is clear that columns 1, 2 and 4 are linearly indepen-
dent, that column 3 is a linear combination of columns
1 and 2, and that column 5 is a linear combinations of
columns 1, 2, 4.

The result is that after performing such elimination steps,
we obtain a matrix that has a special shape known as a
reduced row echelon matrix , for short rref .
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In general, the sequence of steps leading to a reduced
echelon matrix is not unique.

For example, we could have chosen 1 instead of 2 as the
second pivot in matrix A2.

Nevertherless, the reduced row echelon matrix obtained
from any given matrix is unique; that is, it does not de-
pend on the the sequence of steps that are followed during
the reduction process.

If we want to solve a linear system of equations of the
form Ax = b, we apply elementary row operations to
both the matrix A and the right-hand side b.

To do this conveniently, we form the augmented matrix
(A, b), which is the m⇥(n+1) matrix obtained by adding
b as an extra column to the matrix A.
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For example if

A =

0

@
1 0 2 1
1 1 5 2
1 2 8 4

1

A and b =

0

@
5
7
12

1

A ,

then the augmented matrix is

(A, b) =

0

@
1 0 2 1 5
1 1 5 2 7
1 2 8 4 12

1

A .

Now, for any matrix M , since

M(A, b) = (MA, Mb),

performing elementary row operations on (A, b) is equiv-
alent to simultaneously performing operations on both A
and b.
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For example, consider the system

x1 + 2x3 + x4 = 5
x1 + x2 + 5x3 + 2x4 = 7
x1 + 2x2 + 8x3 + 4x4 = 12.

Its augmented matrix is the matrix

(A, b) =

0

@
1 0 2 1 5
1 1 5 2 7
1 2 8 4 12

1

A

considered above, so the reduction steps applied to this
matrix yield the system

x1 + 2x3 = 2
x2 + 3x3 = �1

x4 = 3.
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This reduced system has the same set of solutions as
the original, and obviously x3 can be chosen arbitrarily.
Therefore, our system has infinitely many solutions given
by

x1 = 2 � 2x3, x2 = �1 � 3x3, x4 = 3,

where x3 is arbitrary.

The following proposition shows that the set of solutions
of a system Ax = b is preserved by any sequence of row
operations.

Proposition 6.12. Given any m ⇥ n matrix A and
any vector b 2 Rm, for any sequence of elementary
row operations E1, . . . , Ek, if P = Ek · · · E1 and (A0, b0) =
P (A, b), then the solutions of Ax = b are the same as
the solutions of A0x = b0.
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Another important fact is this:

Proposition 6.13. Given a m ⇥ n matrix A, for
any sequence of row operations E1, . . . , Ek, if P =
Ek · · · E1 and B = PA, then the subspaces spanned by
the rows of A and the rows of B are identical. There-
fore, A and B have the same row rank. Furthermore,
the matrices A and B also have the same (column)
rank.

Remark: The subspaces spanned by the columns of A
and B can be di↵erent! However, their dimension must
be the same.

We already know from Proposition 9.11 that the row rank
is equal to the column rank.

We will see that the reduction to row echelon form pro-
vides another proof of this important fact.
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Definition 6.2. A m ⇥ n matrix A is a reduced row
echelon matrix i↵ the following conditions hold:

(a) The first nonzero entry in every row is 1. This entry
is called a pivot .

(b) The first nonzero entry of row i + 1 is to the right of
the first nonzero entry of row i.

(c) The entries above a pivot are zero.

If a matrix satisfies the above conditions, we also say that
it is in reduced row echelon form , for short rref .

Note that condition (b) implies that the entries below a
pivot are also zero. For example, the matrix

A =

0

@
1 6 0 1
0 0 1 2
0 0 0 0

1

A

is a reduced row echelon matrix.
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In general, a matrix in rref has the following shape:
0

BBBBBBBB@

1 0 0 ⇥ ⇥ 0 0 ⇥
0 1 0 ⇥ ⇥ 0 0 ⇥
0 0 1 ⇥ ⇥ 0 0 ⇥
0 0 0 0 0 1 0 ⇥
0 0 0 0 0 0 1 ⇥
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1

CCCCCCCCA

if the last row consists of zeros, or
0

BBBBBB@

1 0 0 ⇥ ⇥ 0 0 ⇥ 0 ⇥
0 1 0 ⇥ ⇥ 0 0 ⇥ 0 ⇥
0 0 1 ⇥ ⇥ 0 0 ⇥ 0 ⇥
0 0 0 0 0 1 0 ⇥ 0 ⇥
0 0 0 0 0 0 1 ⇥ ⇥ 0
0 0 0 0 0 0 0 0 1 ⇥

1

CCCCCCA

if the last row contains a pivot.
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Proposition 6.14.Given any m⇥n matrix A, there
is a sequence of row operations E1, . . . , Ek such that if
P = Ek · · · E1, then U = PA is a reduced row echelon
matrix.

Remark: There is a Matlab function named rref that
converts any matrix to its reduced row echelon form.

If A is any matrix and if R is a reduced row echelon
form of A, the second part of Proposition 6.13 can be
sharpened a little.

Namely, the rank of A is equal to the number of pivots
in R.

Given a system of the form Ax = b, we can apply the
reduction procedure to the augmented matrix (A, b) to
obtain a reduced row echelon matrix (A0, b0) such that the
system A0x = b0 has the same solutions as the original
system Ax = b.
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The advantage of the reduced system A0x = b0 is that
there is a simple test to check whether this system is
solvable, and to find its solutions if it is solvable.

Indeed, if any row of the matrix A0 is zero and if the
corresponding entry in b0 is nonzero, then it is a pivot
and we have the “equation”

0 = 1,

which means that the system A0x = b0 has no solution.

On the other hand, if there is no pivot in b0, then for every
row i in which b0

i 6= 0, there is some column j in A0 where
the entry on row i is 1 (a pivot).

Consequently, we can assign arbitrary values to the vari-
able xk if column k does not contain a pivot, and then
solve for the pivot variables.
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For example, if we consider the reduced row echelon ma-
trix

(A0, b0) =

0

@
1 6 0 1 0
0 0 1 2 0
0 0 0 0 1

1

A ,

there is no solution to A0x = b0 because the third equation
is 0 = 1.

On the other hand, the reduced system

(A0, b0) =

0

@
1 6 0 1 1
0 0 1 2 3
0 0 0 0 0

1

A

has solutions. We can pick the variables x2, x4 corre-
sponding to nonpivot columns arbitrarily, and then solve
for x3 (using the second equation) and x1 (using the first
equation).
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The above reasoning proved the following theorem:

Theorem 6.15. Given any system Ax = b where A
is a m⇥n matrix, if the augmented matrix (A, b) is a
reduced row echelon matrix, then the system Ax = b
has a solution i↵ there is no pivot in b. In that case,
an arbitrary value can be assigned to the variable xj

if column j does not contain a pivot.

Nonpivot variables are often called free variables .

Putting Proposition 6.14 and Theorem 6.15 together we
obtain a criterion to decide whether a system Ax = b has
a solution:

Convert the augmented system (A, b) to a row reduced
echelon matrix (A0, b0) and check whether b0 has no pivot.
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If we have a homogeneous system Ax = 0, which means
that b = 0, of course x = 0 is always a solution, but
Theorem 6.15 implies that if the system Ax = 0 has
more variables than equations, then it has some nonzero
solution (we call it a nontrivial solution).

Proposition 6.16. Given any homogeneous system
Ax = 0 of m equations in n variables, if m < n, then
there is a nonzero vector x 2 Rn such that Ax = 0.

Theorem 6.15 can also be used to characterize when a
square matrix is invertible. First, note the following sim-
ple but important fact:

If a square n ⇥ n matrix A is a row reduced echelon
matrix, then either A is the identity or the bottom row
of A is zero.
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Proposition 6.17. Let A be a square matrix of di-
mension n. The following conditions are equivalent:

(a) The matrix A can be reduced to the identity by a
sequence of elementary row operations.

(b) The matrix A is a product of elementary matrices.

(c) The matrix A is invertible.

(d) The system of homogeneous equations Ax = 0 has
only the trivial solution x = 0.

Proposition 6.17 yields a method for computing the in-
verse of an invertible matrix A: reduce A to the identity
using elementary row operations, obtaining

Ep · · · E1A = I.

Multiplying both sides by A�1 we get

A�1 = Ep · · · E1.
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From a practical point of view, we can build up the prod-
uct Ep · · · E1 by reducing to row echelon form the aug-
mented n ⇥ 2n matrix (A, In) obtained by adding the n
columns of the identity matrix to A.

This is just another way of performing the Gauss–Jordan
procedure.

Here is an example: let us find the inverse of the matrix

A =

✓
5 4
6 5

◆
.

We form the 2 ⇥ 4 block matrix

(A, I) =

✓
5 4 1 0
6 5 0 1

◆

and apply elementary row operations to reduce A to the
identity.
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For example:

(A, I) =

✓
5 4 1 0
6 5 0 1

◆
�!

✓
5 4 1 0
1 1 �1 1

◆

by subtracting row 1 from row 2,
✓
5 4 1 0
1 1 �1 1

◆
�!

✓
1 0 5 �4
1 1 �1 1

◆

by subtracting 4⇥ row 2 from row 1,

✓
1 0 5 �4
1 1 �1 1

◆
�!

✓
1 0 5 �4
0 1 �6 5

◆
= (I, A�1),

by subtracting row 1 from row 2. Thus

A�1 =

✓
5 �4

�6 5

◆
.
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Proposition 6.17 can also be used to give an elementary
proof of the fact that if a square matrix A has a left
inverse B (resp. a right inverse B), so that BA = I
(resp. AB = I), then A is invertible and A�1 = B. This
is an interesting exercise, try it!

For the sake of completeness, we prove that the reduced
row echelon form of a matrix is unique.

Proposition 6.18. Let A be any m ⇥ n matrix. If U
and V are two reduced row echelon matrices obtained
from A by applying two sequences of elementary row
operations E1, . . . , Ep and F1, . . . , Fq, so that

U = Ep · · · E1A and V = Fq · · · F1A,

then U = V . In other words, the reduced row echelon
form of any matrix is unique.

Observe that C = Ep · · · E1F
�1
1 · · · F�1

q is not necessar-
ily the identity matrix Im. However, C = Im if r = m
(A has row rank m).

The reduction to row echelon form also provides a method
to describe the set of solutions of a linear system of the
form Ax = b.
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6.10 Solving Linear Systems Using RREF

Proposition 6.19. Let A be any m ⇥ n matrix and
let b 2 Rm be any vector. If the system Ax = b has a
solution, then the set Z of all solutions of this system
is the set

Z = x0 + Ker (A) = {x0 + x | Ax = 0},

where x0 2 Rn is any solution of the system Ax = b,
which means that Ax0 = b (x0 is called a special so-
lution or a particular solution), and where Ker (A) =
{x 2 Rn | Ax = 0}, the set of solutions of the homo-
geneous system associated with Ax = b.

Given a linear system Ax = b, reduce the augmented
matrix (A, b) to its row echelon form (A0, b0).

As we showed before, the system Ax = b has a solution
i↵ b0 contains no pivot. Assume that this is the case.

Then, if (A0, b0) has r pivots, which means that A0 has
r pivots since b0 has no pivot, we know that the first r
columns of Im appear in A0.
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We can permute the columns of A0 and renumber the vari-
ables in x correspondingly so that the first r columns of
Im match the first r columns of A0, and then our reduced
echelon matrix is of the form (R, b0) with

R =

✓
Ir F

0m�r,r 0m�r,n�r

◆

and

b0 =

✓
d

0m�r

◆
,

where F is a r ⇥ (n � r) matrix and d 2 Rr. Note that
R has m � r zero rows.

Then, because
✓

Ir F
0m�r,r 0m�r,n�r

◆✓
d

0n�r

◆
=

✓
d

0m�r

◆
= b0,

we see that

x0 =

✓
d

0n�r

◆

is a special solution of Rx = b0, and thus to Ax = b.
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In other words, we get a special solution by assigning the
first r components of b0 to the pivot variables and setting
the nonpivot variables (the free variables) to zero.

We can also find a basis of the kernel (nullspace) of A
using F .

If x = (u, v) is in the kernel of A, with u 2 Rr and
v 2 Rn�r, then x is also in the kernel of R, which means
that Rx = 0; that is,

✓
Ir F

0m�r,r 0m�r,n�r

◆✓
u
v

◆
=

✓
u + Fv
0m�r

◆
=

✓
0r

0m�r

◆
.

Therefore, u = �Fv, and Ker (A) consists of all vectors
of the form

✓
�Fv

v

◆
=

✓
�F
In�r

◆
v,

for any arbitrary v 2 Rn�r.
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It follows that the n � r columns of the matrix

N =

✓
�F
In�r

◆

form a basis of the kernel of A.

In summary, if N 1, . . . , Nn�r are the columns of N , then
the general solution of the equation Ax = b is given by

x =

✓
d

0n�r

◆
+ xr+1N

1 + · · · + xnN
n�r,

where xr+1, . . . , xn are the free variables, that is, the non-
pivot variables.

In the general case where the columns corresponding to
pivots are mixed with the columns corresponding to free
variables, we find the special solution as follows.

Let i1 < · · · < ir be the indices of the columns corre-
sponding to pivots. Then, assign b0

k to the pivot variable
xik for k = 1, . . . , r, and set all other variables to 0.
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To find a basis of the kernel, we form the n � r vectors
Nk obtained as follows.

Let j1 < · · · < jn�r be the indices of the columns corre-
sponding to free variables.

For every column jk corresponding to a free variable
(1  k  n � r), form the vector Nk defined so that the
entries Nk

i1
, . . . , Nk

ir are equal to the negatives of the first
r entries in column jk (flip the sign of these entries); let
Nk

jk
= 1, and set all other entries to zero.

Schematically, if the column of index jk (corresponding
to the free variable xjk) is

0

BBBBBB@

↵1
...

↵r

0
...
0

1

CCCCCCA
,
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then the vector Nk is given by

1
...

i1 � 1
i1

i1 + 1
...

ir � 1
ir

ir + 1
...

jk � 1
jk

jk + 1
...
n

0

BBBBBBBBBBBBBBBBBBBBBBBB@

0
...
0

�↵1

0
...
0

�↵r

0
...
0
1
0
...
0

1

CCCCCCCCCCCCCCCCCCCCCCCCA

.

The presence of the 1 in position jk guarantees thatN 1, . . .,
Nn�r are linearly independent.
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An illustration of the above method, consider the problem
of finding a basis of the subspace V of n ⇥ n matrices
A 2 Mn(R) satisfying the following properties:

1. The sum of the entries in every row has the same value
(say c1);

2. The sum of the entries in every column has the same
value (say c2).

It turns out that c1 = c2 and that the 2n � 2 equations
corresponding to the above conditions are linearly inde-
pendent.

By the duality theorem, the dimension of the space V of
matrices satisying the above equations is n2 � (2n � 2).
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Let us consider the case n = 4. There are 6 equations,
and the space V has dimension 10. The equations are

a11 + a12 + a13 + a14 � a21 � a22 � a23 � a24 = 0

a21 + a22 + a23 + a24 � a31 � a32 � a33 � a34 = 0

a31 + a32 + a33 + a34 � a41 � a42 � a43 � a44 = 0

a11 + a21 + a31 + a41 � a12 � a22 � a32 � a42 = 0

a12 + a22 + a32 + a42 � a13 � a23 � a33 � a43 = 0

a13 + a23 + a33 + a43 � a14 � a24 � a34 � a44 = 0.

Performing rref on the above matrix and applying the
method for finding a basis of its kernel, we obtain 10
matrices listed in the notes (linalg.pdf).
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Recall that a magic square is a square matrix that sat-
isfies the two conditions about the sum of the entries in
each row and in each column to be the same number,
and also the additional two constraints that the main de-
scending and the main ascending diagonals add up to this
common number.

Furthermore, the entries are also required to be positive
integers.

For n = 4, the additional two equations are

a22 + a33 + a44 � a12 � a13 � a14 = 0

a41 + a32 + a23 � a11 � a12 � a13 = 0,

and the 8 equations stating that a matrix is a magic
square are linearly independent.
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Again, by running row elimination, we get a basis of
the “generalized magic squares” whose entries are not
restricted to be positive integers. We find a basis of 8
matrices.

For n = 3, we find a basis of 3 matrices.

A magic square is said to be normal if its entries are
precisely the integers 1, 2 . . . , n2.

Then, since the sum of these entries is

1 + 2 + 3 + · · · + n2 =
n2(n2 + 1)

2
,

and since each row (and column) sums to the same num-
ber, this common value (the magic sum) is

n(n2 + 1)

2
.

It is easy to see that there are no normal magic squares
for n = 2.

For n = 3, the magic sum is 15, for n = 4, it is 34, and
for n = 5, it is 65.
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In the case n = 3, we have the additional condition that
the rows and columns add up to 15, so we end up with a
solution parametrized by two numbers x1, x2; namely,

0

@
x1 + x2 � 5 10 � x2 10 � x1

20 � 2x1 � x2 5 2x1 + x2 � 10
x1 x2 15 � x1 � x2

1

A .

Thus, in order to find a normal magic square, we have
the additional inequality constraints

x1 + x2 > 5

x1 < 10

x2 < 10

2x1 + x2 < 20

2x1 + x2 > 10

x1 > 0

x2 > 0

x1 + x2 < 15,

and all 9 entries in the matrix must be distinct.
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After a tedious case analysis, we discover the remarkable
fact that there is a unique normal magic square (up to
rotations and reflections):

0

@
2 7 6
9 5 1
4 3 8

1

A .

It turns out that there are 880 di↵erent normal magic
squares for n = 4, and 275, 305, 224 normal magic squares
for n = 5 (up to rotations and reflections).

Finding the number of magic squares for n > 5 is an open
problem!

Even for n = 4, it takes a fair amount of work to enu-
merate them all!
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6.11 Elementary Matrices and Columns Operations

Instead of performing elementary row operations on a ma-
trix A, we can perform elementary columns operations,
which means that we multiply A by elementary matrices
on the right.

We can define the notion of a reduced column echelon
matrix and show that every matrix can be reduced to a
unique reduced column echelon form.

Now, given any m ⇥ n matrix A, if we first convert A to
its reduced row echelon form R, it is easy to see that we
can apply elementary column operations that will reduce
R to a matrix of the form

✓
Ir 0r,n�r

0m�r,r 0m�r,n�r

◆
,

where r is the number of pivots (obtained during the row
reduction).
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Therefore, for every m ⇥ n matrix A, there exist two se-
quences of elementary matricesE1, . . . , Ep and F1, . . . , Fq,
such that

Ep · · · E1AF1 · · · Fq =

✓
Ir 0r,n�r

0m�r,r 0m�r,n�r

◆
.

The matrix on the right-hand side is called the rank nor-
mal form of A.

Clearly, r is the rank of A. It is easy to see that the rank
normal form also yields a proof of the fact that A and its
transpose A> have the same rank.


