
Chapter 5

Determinants

5.1 Permutations, Signature of a Permutation

We will follow an algorithmic approach due to Emil Artin.
We need a few preliminaries about permutations on a
finite set.

We need to show that every permutation on n elements
is a product of transpositions, and that the parity of the
number of transpositions involved is an invariant of the
permutation.

Let [n] = {1, 2 . . . , n}, where n 2 N, and n > 0.
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Definition 5.1. A permutation on n elements is a bi-
jection ⇡ : [n] ! [n]. When n = 1, the only function
from [1] to [1] is the constant map: 1 7! 1. Thus, we will
assume that n � 2.

A transposition is a permutation ⌧ : [n] ! [n] such that,
for some i < j (with 1  i < j  n), ⌧ (i) = j, ⌧ (j) = i,
and ⌧ (k) = k, for all k 2 [n] � {i, j}. In other words, a
transposition exchanges two distinct elements i, j 2 [n].

If ⌧ is a transposition, clearly, ⌧ � ⌧ = id.

We will also use the terminology product of permuta-
tions (or transpositions), as a synonym for composition
of permutations.

Clearly, the composition of two permutations is a permu-
tation and every permutation has an inverse which is also
a permutation.

Therefore, the set of permutations on [n] is a group often
denoted Sn and and called the symmetric group on n
elements.
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It is easy to show by induction that the group Sn has n!
elements.

Proposition 5.1. For every n � 2, every permuta-
tion ⇡ : [n] ! [n] can be written as a nonempty com-
position of transpositions.

Remark: When ⇡ = idn is the identity permutation,
we can agree that the composition of 0 transpositions is
the identity.

Proposition 5.1 shows that the transpositions generate
the group of permutations Sn.

A transposition ⌧ that exchanges two consecutive ele-
ments k and k + 1 of [n] (1  k  n � 1) may be
called a basic transposition.

We leave it as a simple exercise to prove that every trans-
position can be written as a product of basic transposi-
tions.

Therefore, the group of permutationsSn is also generated
by the basic transpositions.
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Given a permutation written as a product of transpo-
sitions, we now show that the parity of the number of
transpositions is an invariant.

Definition 5.2. For every n � 2, let � : Zn ! Z be
the function given by

�(x1, . . . , xn) =
Y

1i<jn

(xi � xj).

More generally, for any permutation � 2 Sn, define
�(x�(1), . . . , x�(n)) by

�(x�(1), . . . , x�(n)) =
Y

1i<jn

(x�(i) � x�(j)).

It is clear that if the xi are pairwise distinct, then
�(x1, . . . , xn) 6= 0.
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Proposition 5.2. For every basic transposition ⌧ of
[n] (n � 2), we have

�(x⌧(1), . . . , x⌧(n)) = ��(x1, . . . , xn).

The above also holds for every transposition, and more
generally, for every composition of transpositions
� = ⌧p � · · · � ⌧1, we have

�(x�(1), . . . , x�(n)) = (�1)p�(x1, . . . , xn).

Consequently, for every permutation � of [n], the par-
ity of the number p of transpositions involved in any
decomposition of � as � = ⌧p � · · · � ⌧1 is an invariant
(only depends on �).

In view of Proposition 5.2, the following definition makes
sense:

Definition 5.3. For every permutation � of [n], the par-
ity ✏(�) (or sgn(�)) of the number of transpositions in-
volved in any decomposition of � is called the signature
(or sign) of �.
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Obviously ✏(⌧ ) = �1 for every transposition ⌧ (since
(�1)1 = �1).

Remark: When ⇡ = idn is the identity permutation,
since we agreed that the composition of 0 transpositions
is the identity, it it still correct that (�1)0 = ✏(id) = +1.

From proposition 5.2, it is immediate that

✏(⇡0 � ⇡) = ✏(⇡0)✏(⇡).

In particular, since ⇡�1 � ⇡ = idn, we get

✏(⇡�1) = ✏(⇡).

A simple way to compute the signature of a permutation
is to count its number of inversions.

Definition 5.4. Given any permutation � on n ele-
ments, we say that a pair (i, j) of indices i, j 2 {1, . . . , n}
such that i < j and �(i) > �(j) is an inversion of the
permutation �.
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For example, the permutation � given by
✓
1 2 3 4 5 6
2 4 3 6 5 1

◆

has seven inversions

(1, 6), (2, 3), (2, 6), (3, 6), (4, 5), (4, 6), (5, 6).

Proposition 5.3. The signature ✏(�) of any permu-
tation � is equal to the parity (�1)I(�) of the number
I(�) of inversions in �.

For example, the permutation
✓
1 2 3 4 5 6
2 4 3 6 5 1

◆

has odd signature since it has seven inversions and
(�1)7 = �1.
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5.2 Alternating Multilinear Maps

First, we define multilinear maps, symmetric multilinear
maps, and alternating multilinear maps.

Remark: Most of the definitions and results presented
in this section also hold when K is a commutative ring.

Let E1, . . . , En, and F , be vector spaces over a field K,
where n � 1.

Definition 5.5. A function f : E1 ⇥ . . . ⇥ En ! F is a
multilinear map (or an n-linear map) if it is linear in
each argument, holding the others fixed. More explicitly,
for every i, 1  i  n, for all x1 2 E1 . . ., xi�1 2 Ei�1,
xi+1 2 Ei+1, . . ., xn 2 En, for all x, y 2 Ei, for all
� 2 K,

f (x1, . . . , xi�1, x + y, xi+1, . . . , xn)

= f (x1, . . . , xi�1, x, xi+1, . . . , xn)

+ f (x1, . . . , xi�1, y, xi+1, . . . , xn),

f (x1, . . . , xi�1, �x, xi+1, . . . , xn)

= �f (x1, . . . , xi�1, x, xi+1, . . . , xn).
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When F = K, we call f an n-linear form (or multilin-
ear form).

If n � 2 and E1 = E2 = . . . = En, an n-linear map
f : E ⇥ . . . ⇥ E ! F is called symmetric, if

f (x1, . . . , xn) = f (x⇡(1), . . . , x⇡(n)),

for every permutation ⇡ on {1, . . . , n}.

An n-linear map f : E ⇥ . . . ⇥ E ! F is called
alternating , if

f (x1, . . . , xn) = 0

whenever xi = xi+1, for some i, 1  i  n � 1 (in other
words, when two adjacent arguments are equal).

It does not harm to agree that when n = 1, a linear map
is considered to be both symmetric and alternating, and
we will do so.
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When n = 2, a 2-linear map f : E1 ⇥ E2 ! F is called a
bilinear map. We have already seen several examples of
bilinear maps.

The operation h�, �i : E⇤ ⇥ E ! K applying a linear
form to a vector is a bilinear map.

Symmetric bilinear maps (and multilinear maps) play an
important role in geometry (inner products, quadratic
forms), and in di↵erential calculus (partial derivatives).

A bilinear map is symmetric if

f (u, v) = f (v, u),

for all u, v 2 E.

Alternating multilinear maps satisfy the following simple
but crucial properties.
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Proposition 5.4. Let f : E ⇥ . . . ⇥ E ! F be an
n-linear alternating map, with n � 2. The following
properties hold:

(1)
f (. . . , xi, xi+1, . . .) = �f (. . . , xi+1, xi, . . .)

(2)
f (. . . , xi, . . . , xj, . . .) = 0,

where xi = xj, and 1  i < j  n.

(3)

f (. . . , xi, . . . , xj, . . .) = �f (. . . , xj, . . . , xi, . . .),

where 1  i < j  n.

(4)
f (. . . , xi, . . .) = f (. . . , xi + �xj, . . .),

for any � 2 K, and where i 6= j.

Proposition 5.4 will now be used to show a fundamental
property of alternating multilinear maps.

First, we need to extend the matrix notation a little bit.
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Given an n ⇥ n matrix A = (ai j) over K, we can define
a map L(A) : En ! En as follows:

L(A)1(u) = a1 1u1 + · · · + a1 nun,

. . .

L(A)n(u) = an 1u1 + · · · + an nun,

for all u1, . . . , un 2 E and with u = (u1, . . . , un).

It is immediately verified that L(A) is linear. Then, given
two n⇥n matrice A = (ai j) and B = (bi j), by repeating
the calculations establishing the product of matrices (just
before Definition 1.6), we can show that

L(AB) = L(A) � L(B).

It is then convenient to use the matrix notation to de-
scribe the e↵ect of the linear map L(A), as

0

BB@

L(A)1(u)
L(A)2(u)

...
L(A)n(u)

1

CCA =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

0

BB@

u1

u2
...

un

1

CCA .
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Lemma 5.5. Let f : E ⇥ . . . ⇥ E ! F be an n-linear
alternating map. Let (u1, . . . , un) and (v1, . . . , vn) be
two families of n vectors, such that,

v1 = a1 1u1 + · · · + an 1un,

. . .

vn = a1 nu1 + · · · + an nun.

Equivalently, letting

A =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

assume that we have
0

BB@

v1

v2
...
vn

1

CCA = A>

0

BB@

u1

u2
...

un

1

CCA .

Then,

f (v1, . . . , vn) =
⇣X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n) n

⌘
f (u1, . . . , un),

where the sum ranges over all permutations ⇡ on
{1, . . . , n}.
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The quantity

det(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n) n

is in fact the value of the determinant of A (which, as we
shall see shortly, is also equal to the determinant of A>).

However, working directly with the above definition is
quite ackward, and we will proceed via a slightly indirect
route

Remark: The reader might have been puzzled by the
fact that it is the transpose matrix A> rather than A
itself that appears in Lemma 5.5.
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The reason is that if we want the generic term in the
determinant to be

✏(⇡)a⇡(1) 1 · · · a⇡(n) n,

where the permutation applies to the first index, then we
have to express the vjs in terms of the uis in terms of A>

as we did.

Furthermore, since

vj = a1 ju1 + · · · + ai jui + · · · + an jun,

we see that vj corresponds to the jth column of the matrix
A, and so the determinant is viewed as a function of the
columns of A.

The literature is split on this point. Some authors prefer
to define a determinant as we did. Others use A itself, in
which case we get the expression

X

�2Sn

✏(�)a1 �(1) · · · an �(n).

Corollary 5.8 show that these two expressions are equal,
so it doesn’t matter which is chosen. This is a matter of
taste.
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5.3 Definition of a Determinant

Recall that the set of all square n ⇥ n-matrices with co-
e�cients in a field K is denoted by Mn(K).

Definition 5.6. A determinant is defined as any map

D : Mn(K) ! K,

which, when viewed as a map on (Kn)n, i.e., a map of the
n columns of a matrix, is n-linear alternating and such
that D(In) = 1 for the identity matrix In.

Equivalently, we can consider a vector space E of dimen-
sion n, some fixed basis (e1, . . . , en), and define

D : En ! K

as an n-linear alternating map such that
D(e1, . . . , en) = 1.
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First, we will show that such maps D exist, using an
inductive definition that also gives a recursive method for
computing determinants.

Actually, we will define a family (Dn)n�1 of (finite) sets
of maps D : Mn(K) ! K.

Second, we will show that determinants are in fact uniquely
defined, that is, we will show that each Dn consists of a
single map.

This will show the equivalence of the direct definition
det(A) of Lemma 5.5 with the inductive definition D(A).

Given a matrix A 2 Mn(K), we denote its n columns by
A1, . . . , An.

In order to describe the recursive process to define a de-
terminant we need the notion of a minor.
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Definition 5.7. Given any n ⇥ n matrix with n � 2,
for any two indices i, j with 1  i, j  n, let Aij be the
(n � 1)⇥ (n � 1) matrix obtained by deleting row i and
colummn j from A and called a minor :

Aij =

0

BBBBBBBB@

⇥
⇥

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥
⇥
⇥
⇥

1

CCCCCCCCA

For example, if

A =

0

BBBB@

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

1

CCCCA

then

A2 3 =

0

BB@

2 �1 0 0
0 �1 �1 0
0 0 2 �1
0 0 �1 2

1

CCA .
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Definition 5.8. For every n � 1, we define a finite set
Dn of maps D : Mn(K) ! K inductively as follows:

When n = 1, D1 consists of the single map D such that,
D(A) = a, where A = (a), with a 2 K.

Assume that Dn�1 has been defined, where n � 2. Then,
Dn consists of all the maps D such that, for some i, 1 
i  n,

D(A) = (�1)i+1ai 1D(Ai 1) + · · · + (�1)i+nai nD(Ai n),

where for every j, 1  j  n, D(Ai j) is the result of
applying any D in Dn�1 to the minor Ai j.

Each (�1)i+jD(Ai j) is called the cofactor of ai j, and
the inductive expression for D(A) is called a Laplace ex-
pansion of D according to the i-th row .

Given a matrix A 2 Mn(K), each D(A) is called a de-
terminant of A.
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We can think of each member of Dn as an algorithm to
evaluate “the” determinant of A.

The main point is that these algorithms, which recur-
sively evaluate a determinant using all possible Laplace
row expansions, all yield the same result , det(A).

Given a n ⇥ n-matrix A = (ai j),

A =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

its determinant is denoted by D(A) or det(A), or more
explicitly by

det(A) =

��������

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

��������
.
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Example 5.1.

1. When n = 2, if

A =

✓
a b
c d

◆

expanding according to any row, we have

D(A) = ad � bc.

2. When n = 3, if

A =

0

@
a1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3

1

A

expanding according to the first row, we have

D(A) = a1 1

����
a2 2 a2 3

a3 2 a3 3

�����a1 2

����
a2 1 a2 3

a3 1 a3 3

����+a1 3

����
a2 1 a2 2

a3 1 a3 2

����

that is,

D(A) = a1 1(a2 2a3 3�a3 2a2 3)�a1 2(a2 1a3 3�a3 1a2 3)

+ a1 3(a2 1a3 2 � a3 1a2 2),

which gives the explicit formula

D(A) = a1 1a2 2a3 3 + a2 1a3 2a1 3 + a3 1a1 2a2 3

� a1 1a3 2a2 3 � a2 1a1 2a3 3 � a3 1a2 2a1 3.
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We now show that each D 2 Dn is a determinant (map).

Lemma 5.6. For every n � 1, for every D 2 Dn as
defined in Definition 5.8, D is an alternating multi-
linear map such that D(In) = 1.

Lemma 5.6 shows the existence of determinants. We now
prove their uniqueness.

Theorem 5.7. For every n � 1, for every D 2 Dn,
for every matrix A 2 Mn(K), we have

D(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n) n,

where the sum ranges over all permutations ⇡ on
{1, . . . , n}. As a consequence, Dn consists of a single
map for every n � 1, and this map is given by the
above explicit formula.

From now on, we will favor the notation det(A) over
D(A) for the determinant of a square matrix.
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Remark: There is a geometric interpretation of deter-
minants which we find quite illuminating. Given n lin-
early independent vectors (u1, . . . , un) in Rn, the set

Pn = {�1u1 + · · · + �nun | 0  �i  1, 1  i  n}

is called a parallelotope .

If n = 2, then P2 is a parallelogram and if n = 3, then
P3 is a parallelepiped , a skew box having u1, u2, u3 as
three of its corner sides.

Then, it turns out that det(u1, . . . , un) is the
signed volume of the parallelotope Pn (where volume
means n-dimensional volume).

The sign of this volume accounts for the orientation of Pn

in Rn.

We can now prove some properties of determinants.
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Corollary 5.8. For every matrix A 2 Mn(K), we
have det(A) = det(A>).

A useful consequence of Corollary 5.8 is that the deter-
minant of a matrix is also a multilinear alternating map
of its rows .

This fact, combined with the fact that the determinant of
a matrix is a multilinear alternating map of its columns
is often useful for finding short-cuts in computing deter-
minants.

We illustrate this point on the following example which
shows up in polynomial interpolation.
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Example 5.2.Consider the so-calledVandermonde de-
terminant

V (x1, . . . , xn) =

����������

1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

... ... . . . ...
xn�1

1 xn�1
2 . . . xn�1

n

����������

.

We claim that

V (x1, . . . , xn) =
Y

1i<jn

(xj � xi),

with V (x1, . . . , xn) = 1, when n = 1. This can be proved
by induction on n � 1.

Example 5.3. If A is an n ⇥ n block matrix which is
block upper triangular ,

A =

0

BBBB@

A11 ⇥ ⇥ · · · ⇥
0 A22 ⇥ · · · ⇥
0 0 . . . . . . ...
... ... . . . . . . ...
0 0 0 0 App

1

CCCCA
,

where each Aii is an ni⇥ni matrix, with n1+· · ·+np = n,
then it can be shown by induction on p � 1 that

det(A) = det(A11) det(A22) · · · det(App).
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Lemma 5.5 can be reformulated nicely as follows.

Proposition 5.9. Let f : E ⇥ . . . ⇥ E ! F be an n-
linear alternating map. Let (u1, . . . , un) and (v1, . . . , vn)
be two families of n vectors, such that

v1 = a1 1u1 + · · · + a1 nun,

. . .

vn = an 1u1 + · · · + an nun.

Equivalently, letting

A =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

assume that we have
0

BB@

v1

v2
...
vn

1

CCA = A

0

BB@

u1

u2
...

un

1

CCA .

Then,

f (v1, . . . , vn) = det(A)f (u1, . . . , un).
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As a consequence, we get the very useful property that
the determinant of a product of matrices is the product
of the determinants of these matrices.

Proposition 5.10. For any two n⇥n-matrices A and
B, we have

det(AB) = det(A) det(B).

It should be noted that all the results of this section, up
to now, also hold when K is a commutative ring, and not
necessarily a field.

We can now characterize when an n ⇥ n-matrix A is
invertible in terms of its determinant det(A).
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5.4 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring, and
when needed a field.

Definition 5.9. Let K be a commutative ring. Given a
matrix A 2 Mn(K), let eA = (bi j) be the matrix defined
such that

bi j = (�1)i+j det(Aj i),

the cofactor of aj i. The matrix eA is called the adjugate
of A, and each matrix Aj i is called a minor of the matrix
A.

� Note the reversal of the indices in

bi j = (�1)i+j det(Aj i).

Thus, eA is the transpose of the matrix of cofactors of
elements of A.
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Proposition 5.11. Let K be a commutative ring. For
every matrix A 2 Mn(K), we have

A eA = eAA = det(A)In.

As a consequence, A is invertible i↵ det(A) is invert-
ible, and if so, A�1 = (det(A))�1 eA.

When K is a field, an element a 2 K is invertible i↵
a 6= 0. In this case, the second part of the proposition
can be stated as A is invertible i↵ det(A) 6= 0.

Note in passing that this method of computing the inverse
of a matrix is usually not practical .

We now consider some applications of determinants to
linear independence and to solving systems of linear equa-
tions.

To avoid complications, we assume again that K is a field
(usually, K = R or K = C).
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Let A be an n⇥n-matrix, x a column vectors of variables,
and b another column vector, and let A1, . . . , An denote
the columns of A.

Observe that the system of equation Ax = b,
0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

0

BB@

x1

x2
...

xn

1

CCA =

0

BB@

b1

b2
...
bn

1

CCA

is equivalent to

x1A
1 + · · · + xjA

j + · · · + xnA
n = b,

since the equation corresponding to the i-th row is in both
cases

ai 1x1 + · · · + ai jxj + · · · + ai nxn = bi.

First, we characterize linear independence of the column
vectors of a matrix A in terms of its determinant.
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Proposition 5.12. Given an n ⇥ n-matrix A over
a field K, the columns A1, . . . , An of A are linearly
dependent i↵ det(A) = det(A1, . . . , An) = 0. Equiva-
lently, A has rank n i↵ det(A) 6= 0.

If we combine Proposition 5.12 with Proposition 9.12, we
obtain the following criterion for finding the rank of a
matrix.

Proposition 5.13. Given any m ⇥ n matrix A over
a field K (typically K = R or K = C), the rank of
A is the maximum natural number r such that there
is an r ⇥ r submatrix B of A obtained by selecting r
rows and r columns of A, and such that det(B) 6= 0.
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5.5 Systems of Linear Equations and Determinants

We now characterize when a system of linear equations
of the form Ax = b has a unique solution.

Proposition 5.14. Given an n ⇥ n-matrix A over a
field K, the following properties hold:

(1) For every column vector b, there is a unique col-
umn vector x such that Ax = b i↵ the only solution
to Ax = 0 is the trivial vector x = 0, i↵ det(A) 6= 0.

(2) If det(A) 6= 0, the unique solution of Ax = b is
given by the expressions

xj =
det(A1, . . . , Aj�1, b, Aj+1, . . . , An)

det(A1, . . . , Aj�1, Aj, Aj+1, . . . , An)
,

known as Cramer’s rules.

(3) The system of linear equations Ax = 0 has a nonzero
solution i↵ det(A) = 0.

As pleasing as Cramer’s rules are, it is usually impracti-
cal to solve systems of linear equations using the above
expressions.
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5.6 Determinant of a Linear Map

Given a vector space E of finite dimension n, given a
basis (u1, . . . , un) of E, for every linear map f : E ! E,
if M(f ) is the matrix of f w.r.t. the basis (u1, . . . , un),
we can define

det(f ) = det(M(f )).

Using properties of determinants, it is not hard to show
that det(f ) is independent of the basis of E.

Definition 5.10. Given a vector space E of finite di-
mension, for any linear map f : E ! E, we define the
determinant det(f ) of f as the determinant det(M(f ))
of the matrix of f in any basis (since, from the discus-
sion just before this definition, this determinant does not
depend on the basis).

Proposition 5.15.Given any vector space E of finite
dimension n, a linear map f : E ! E is invertible i↵
det(f ) 6= 0.
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Given a vector space of finite dimension n, it is easily seen
that the set of bijective linear maps f : E ! E such that
det(f ) = 1 is a group under composition.

This group is a subgroup of the general linear group
GL(E).

It is called the special linear group (of E), and it is
denoted by SL(E), or when E = Kn, by SL(n, K), or
even by SL(n).
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5.7 The Cayley–Hamilton Theorem

The results of this section apply to matrices over any
commutative ring K.

First, we need the concept of the characteristic polyno-
mial of a matrix.

Definition 5.11. If K is any commutative ring, for ev-
ery n ⇥ n matrix A 2 Mn(K), the characteristic poly-
nomial PA(X) of A is the determinant

PA(X) = det(XI � A).

The characteristic polynomial PA(X) is a polynomial in
K[X ], the ring of polynomials in the indeterminate X
with coe�cients in the ring K.
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For example, when n = 2, if

A =

✓
a b
c d

◆
,

then

PA(X) =

����
X � a �b

�c X � d

���� = X2 � (a + d)X + ad � bc.

We can substitute the matrix A for the variable X in the
polynomial PA(X), obtaining a matrix PA. If we write

PA(X) = Xn + c1X
n�1 + · · · + cn,

then
PA = An + c1A

n�1 + · · · + cnI.

We have the following remarkable theorem.
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Theorem 5.16. (Cayley–Hamilton) If K is any com-
mutative ring, for every n ⇥ n matrix A 2 Mn(K), if
we let

PA(X) = Xn + c1X
n�1 + · · · + cn

be the characteristic polynomial of A, then

PA = An + c1A
n�1 + · · · + cnI = 0.

As a concrete example, when n = 2, the matrix

A =

✓
a b
c d

◆

satisfies the equation

A2 � (a + d)A + (ad � bc)I = 0.
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Most readers will probably find the proof of Theorem 5.16
rather clever but very mysterious and unmotivated.

The conceptual di�culty is that we really need to under-
stand how polynomials in one variable “act” on vectors,
in terms of the matrix A.

This can be done and yields a more “natural” proof.

Actually, the reasoning is simpler and more general if we
free ourselves from matrices and instead consider a finite-
dimensional vector space E and some given linear map
f : E ! E.

Given any polynomial p(X) = a0Xn+a1Xn�1+ · · ·+an

with coe�cients in the field K, we define the linear map
p(f ) : E ! E by

p(f ) = a0f
n + a1f

n�1 + · · · + anid,

where fk = f � · · · � f , the k-fold composition of f with
itself.

Note that

p(f )(u) = a0f
n(u) + a1f

n�1(u) + · · · + anu,

for every vector u 2 E.
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Then, we define a new kind of scalar multiplication
· : K[X ] ⇥ E ! E by polynomials as follows: for every
polynomial p(X) 2 K[X ], for every u 2 E,

p(X) · u = p(f )(u).

It is easy to verify that this is a “good action,” which
means that

p · (u + v) = p · u + p · v

(p + q) · u = p · u + q · u

(pq) · u = p · (q · u)

1 · u = u,

for all p, q 2 K[X ] and all u, v 2 E.

With this new scalar multiplication, E is a K[X ]-module.
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If p = � is just a scalar in K (a polynomial of degree 0),
then

� · u = (�id)(u) = �u,

which means that K acts on E by scalar multiplication
as before.

If p(X) = X (the monomial X), then

X · u = f (u).

Now, if we pick a basis (e1, . . . , en), if a polynomial p(X) 2
K[X ] has the property that

p(X) · ei = 0, i = 1, . . . , n,

then this means that p(f )(ei) = 0 for i = 1, . . . , n, which
means that the linear map p(f ) vanishes on E.

This suggests the plan of attack for our second proof of
the Cayley–Hamilton theorem.

For simplicity, we state the theorem for vector spaces over
a field. The proof goes through for a free module over a
commutative ring.
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Theorem 5.17. (Cayley–Hamilton) For every finite-
dimensional vector space over a field K, for every lin-
ear map f : E ! E, for every basis (e1, . . . , en), if A
is the matrix over f over the basis (e1, . . . , en) and if

PA(X) = Xn + c1X
n�1 + · · · + cn

is the characteristic polynomial of A, then

PA(f ) = fn + c1f
n�1 + · · · + cnid = 0.

If K is a field, then the characteristic polynomial of a lin-
ear map f : E ! E is independent of the basis (e1, . . . , en)
chosen in E.

To prove this, observe that the matrix of f over another
basis will be of the form P�1AP , for some inverible ma-
trix P , and then

det(XI � P�1AP ) = det(XP�1IP � P�1AP )

= det(P�1(XI � A)P )

= det(P�1) det(XI � A) det(P )

= det(XI � A).
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Therefore, the characteristic polynomial of a linear map
is intrinsic to f , and it is denoted by Pf .

The zeros (roots) of the characteristic polynomial of a
linear map f are called the eigenvalues of f . They play
an important role in theory and applications. We will
come back to this topic later on.
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5.8 Permanents

Recall that the explicit formula for the determinant of an
n ⇥ n matrix is

det(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n) n.

If we drop the sign ✏(⇡) of every permutation from the
above formula, we obtain a quantity known as the per-
manent :

per(A) =
X

⇡2Sn

a⇡(1) 1 · · · a⇡(n) n.

Permanents and determinants were investigated as early
as 1812 by Cauchy. It is clear from the above definition
that the permanent is a multilinear and symmetric form.
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We also have

per(A) = per(A>),

and the following unsigned version of the Laplace expan-
sion formula:

per(A) = ai 1per(Ai 1)+· · ·+ai jper(Ai j)+· · ·+ai nper(Ai n),

for i = 1, . . . , n.

However, unlike determinants which have a clear geomet-
ric interpretation as signed volumes, permanents do not
have any natural geometric interpretation.

Furthermore, determinants can be evaluated e�ciently,
for example using the conversion to row reduced echelon
form, but computing the permanent is hard.
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Permanents turn out to have various combinatorial inter-
pretations. One of these is in terms of perfect matchings
of bipartite graphs which we now discuss.

Recall that a bipartite (undirected) graph G = (V, E)
is a graph whose set of nodes V can be partionned into
two nonempty disjoint subsets V1 and V2, such that every
edge e 2 E has one endpoint in V1 and one endpoint in
V2.

An example of a bipatite graph with 14 nodes is shown
in Figure 5.1; its nodes are partitioned into the two sets
{x1, x2, x3, x4, x5, x6, x7} and {y1, y2, y3, y4, y5, y6, y7}.

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Figure 5.1: A bipartite graph G.
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A matching in a graph G = (V, E) (bipartite or not) is a
set M of pairwise non-adjacent edges, which means that
no two edges in M share a common vertex.

A perfect matching is a matching such that every node
in V is incident to some edge in the matching M (every
node in V is an endpoint of some edge in M).

Figure 5.2 shows a perfect matching (in red) in the bipar-
tite graph G.

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Figure 5.2: A perfect matching in the bipartite graph G.
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Obviously, a perfect matching in a bipartite graph can
exist only if its set of nodes has a partition in two blocks
of equal size, say {x1, . . . , xm} and {y1, . . . , ym}.

Then, there is a bijection between perfect matchings and
bijections ⇡ : {x1, . . . , xm} ! {y1, . . . , ym} such that
⇡(xi) = yj i↵ there is an edge between xi and yj.

Now, every bipartite graph G with a partition of its nodes
into two sets of equal size as above is represented by an
m ⇥ m matrix A = (aij) such that aij = 1 i↵ there is an
edge between xi and yj, and aij = 0 otherwise.

Using the interpretation of perfect machings as bijections
⇡ : {x1, . . . , xm} ! {y1, . . . , ym}, we see that the per-
manent per(A) of the (0, 1)-matrix A representing the
bipartite graph G counts the number of perfect match-
ings in G.
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In a famous paper published in 1979, Leslie Valiant proves
that computing the permanent is a #P-complete prob-
lem.

Such problems are suspected to be intractable. It is
known that if a polynomial-time algorithm existed to
solve a #P-complete problem, then we would have P =
NP , which is believed to be very unlikely.

Another combinatorial interpretation of the permanent
can be given in terms of systems of distinct representa-
tives.

Given a finite set S, let (A1, . . . , An) be any sequence
of nonempty subsets of S (not necessarily distinct). A
system of distinct representatives (for short SDR) of
the sets A1, . . . , An is a sequence of n distinct elements
(a1, . . . , an), with ai 2 Ai for i = 1, . . . , n.
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The number of SDR’s of a sequence of sets plays an im-
portant role in combinatorics.

Now, if S = {1, 2, . . . , n} and if we associate to any se-
quence (A1, . . . , An) of nonempty subsets of S the matrix
A = (aij) defined such that aij = 1 if j 2 Ai and aij = 0
otherwise, then the permanent per(A) counts the num-
ber of SDR’s of the set A1, . . . , An.

This interpretation of permanents in terms of SDR’s can
be used to prove bounds for the permanents of various
classes of matrices.

Interested readers are referred to van Lint and Wilson
[36] (Chapters 11 and 12). In particular, a proof of a
theorem known as Van der Waerden conjecture is given
in Chapter 12.
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This theorem states that for any n ⇥ n matrix A with
nonnegative entries in which all row-sums and column-
sums are 1 (doubly stochastic matrices), we have

per(A) � n!

nn
,

with equality for the matrix in which all entries are equal
to 1/n.

5.9 Further Readings

Thorough expositions of the material covered in Chap-
ters 1–4 and 5 can be found in Strang [32, 31], Lax [25],
Lang [23], Artin [1], Mac Lane and Birkho↵ [26], Ho↵man
and Kunze [21], Bourbaki [5, 6], Van Der Waerden [35],
Serre [29], Horn and Johnson [19], and Bertin [4]. These
notions of linear algebra are nicely put to use in classical
geometry, see Berger [2, 3], Tisseron [33] and Dieudonné
[12].


