Chapter 14

Spectral Theorems in Euclidean and
Hermitian Spaces

14.1 Normal Linear Maps

Let E be a real Euclidean space (or a complex Hermitian
space) with inner product u, v — (u, v).

In the real Euclidean case, recall that (—, —) is bilinear,
symmetric and positive definite (i.e., (u,u) > 0 for all

u # 0).

In the complex Hermitian case, recall that (—, —) is
sesquilinear, which means that it linear in the first argu-
ment, semilinear in the second argument (i.e.,

(u, pvy = w{u,v)), (v,u) = (u,v), and positive definite
(as above).
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In both cases we let ||u|| = \/{u,u) and the map

u — ||ul| is a norm.

Recall that every linear map, f: £ — E, has an adjoint
f* which is a linear map, f*: E — FE, such that

(flu),v) = (u, f*(v)),

for all u,v € E.

Since (—, —) is symmetric, it is obvious that f** = f.

Definition 14.1. Given a Euclidean (or Hermitian) space,
FE, alinear map f: £ — FE is normal ift

fof"=[ o
A linear map f: E — E is self-adjoint it f = f*, skew-
self-adjoint if f = —f*, and orthogonal if
fof=fof=id



14.1. NORMAL LINEAR MAPS 683

Our first goal is to show that for every normal linear map
f: E — E (where E is a Euclidean space), there is an
orthonormal basis (w.rt. (—, —)) such that the matrix
of f over this basis has an especially nice form:

It is a block diagonal matriz in which the blocks are ei-
ther one-dimensional matrices (i.e., single entries) or two-
dimensional matrices of the form

A p
—1 A

This normal form can be further refined it f is self-adjoint,
skew-self-adjoint, or orthogonal.

As a first step, we show that f and f* have the same
kernel when f is normal.

Proposition 14.1. Given a Fuclidean space E, if

f: E— E is a normal linear map, then
Ker f = Ker f*.
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Assuming again that E is a Hermitian space, observe
that Proposition 14.1 also holds. We deduce the following
corollary:.

Proposition 14.2. Given a Hermatian space E, for
any normal linear map f: E — E, we have Ker (f) N

Im(f) = (0).

Proposition 14.3. Given a Hermitian space E, for
any normal linear map f: E — FE, a vector u 1s an
eigenvector of f for the eigenvalue A (in C) iff u is
an eigenvector of f* for the eigenvalue ).

The next proposition shows a very important property of
normal linear maps: eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal.

Proposition 14.4. Given a Hermaitian space E, for
any normal linear map f: E — E, if u and v are
ergenvectors of [ associated with the eigenvalues \

and p (in C) where X\ # u, then (u,v) = 0.
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Proposition 14.5. Given a Hermitian space E, the
ergenvalues of any self-adjoint linear map f: £ — E
are real.

There is also a version of Proposition 14.5 for a (real)
Euclidean space F/ and a self-adjoint map f: £ — F.

To show this result, we need to embed a real vector space
E into a complex vector space Ec.
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Definition 14.2. Given a real vector space E. let E¢
be the structure £/ X E under the addition operation

(w1, ug) + (v1, v9) = (uy + vy, us + Vo),

and multiplication by a complex scalar z = x+1y defined
such that

(@ +1y) - (u, v) = (2u — yv, yu + av).
The space E¢ is called the complezification of E.

[t is easily shown that the structure Ec is a complex
vector space.

It is also immediate that
(0, v) = i(v, 0),

and thus, identifying E with the subspace of E¢ consist-
ing of all vectors of the form (u, 0), we can write

(u, v) = u + .

Given a vector w = u + v, its conjugate w is the vector
W= U —10.
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Observe that if (eq1,...,e,) is a basis of E' (a real vector
space), then (e, ..., e,) is also a basis of E¢ (recall that
e; is an abreviation for (e;, 0)).

Given a linear map f: £ — FE, the map f can be ex-
tended to a linear map fc: Ec — E¢ defined such that

fe(u+w) = flu) +if(v).

For any basis (e1,...,e,) of E, the matrix M(f) rep-

resenting f over (eg,...,e,) is identical to the matrix
M/ fc) representing fc over (eg,...,e,), where we view
(é1,...,€e,) as a basis of Fg.

As a consequence, det(z] — M(f)) = det(zl — M(fc)),
which means that f and fc have the same character-
istic polynomial (which has real coefficients).

We know that every polynomial of degree n with real (or
complex) coefficients always has n complex roots (counted

with their multiplicity), and the roots of det(zI — M ( fc))
that are real (if any) are the eigenvalues of f.
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Next, we need to extend the inner product on E to an
inner product on Eg.

The inner product (—, —) on a Euclidean space E is ex-
tended to the Hermitian positive definite form (—, —)¢
on E¢ as follows:

<U1 + iUl, U9 + ’i02>(c
= (uy, uz) + (v, vo) + i({vy, ug) — (uy, vo)).

Then, given any linear map f: E — FE, it is easily verified
that the map f¢ defined such that

felu+iv) = fH(u) +if*(v)

for all u,v € E, is the adjoint of fc w.rt. (—, —)c.
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Proposition 14.6. Given a Fuclidean space E,

of 1 B — E is any self-adjoint linear map, then every
ergenvalue A of fc is real and is actually an eigenvalue
of f (which means that there is some real eigenvector
u € F such that f(u) = Au). Therefore, all the eigen-
values of f are real.

Proposition 14.7. Giwen a Hermaitian space E, for
any linear map f: B — E, if f is skew-self-adjoint,
then f has eigenvalues that are pure imaginary or

zero, and if f is unitary, then f has eigenvalues of
absolute value 1.



690 CHAPTER 14. SPECTRAL THEOREMS

14.2 Spectral Theorem for Normal Linear Maps

The next step is to show that for every linear map

f: B — E, there is some subspace W of dimension 1 or
2 such that f(W) C W.

When dim(W) = 1, W is actually an eigenspace for some
real eigenvalue of f.

Furthermore, when f is normal, there is a subspace W of

dimension 1 or 2 such that f(W) C W and f*(W) C W.

The difficulty is that the eigenvalues of f are not nec-
essarily real. One way to get around this problem is to
complexify both the vector space F and the inner prod-
uct (—, —), as explained in Section 14.1.

Given any subspace W of a Hermitian space E, recall
that the orthogonal W+ of W is the subspace defined
such that

W+={ue€FE| {uw)=0,foralwecW}.
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Recall that E = W @ W+ (construct an orthonormal ba-
sis of E using the Gram—Schmidt orthonormalization pro-
cedure). The same result also holds for Euclidean spaces.

As a warm up for the proof of Theorem 14.12, let us
prove that every self-adjoint map on a Euclidean space
can be diagonalized with respect to an orthonormal basis
of eigenvectors.

Theorem 14.8. Given a Euclidean space E of dimen-
sion n, for every self-adjoint linear map f: £ — F,
there is an orthonormal basis (ey, ..., e,) of eigenvec-
tors of f such that the matriz of f w.r.t. this basis is
a diagonal matriz

Ay ..

with \; € R.
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One of the key points in the proot of Theorem 14.8 is that

we found a subspace W with the property that
f(W) C W implies that f(W+) C W+,

In general, this does not happen, but normal maps satisfy
a stronger property which ensures that such a subspace
exists.

The following proposition provides a condition that will
allow us to show that a normal linear map can be diago-
nalized. It actually holds for any linear map.

Proposition 14.9. Given a Hermatian space E, for

any linear map f: E — E and any subspace W of E,
if f(W) C W, then f*(W+) C W+,

Consequently, if f(W) C W and f*(W) C W, then
f(WL) C W+ and f*(WL) C W+,

The above Proposition also holds for Fuclidean spaces.
Although we are ready to prove that for every normal
linear map f (over a Hermitian space) there is an or-
thonormal basis of eigenvectors, we now return to real
Euclidean spaces.
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Proposition 14.10. If f: £ — E is a linear map
and w = u + 1w 1s an eigenvector of fc: Ec — E¢
for the eigenvalue z = A\ + iu, where u,v € E and
A€ R, then

flu)=Iu—pv and f(v)=pu+Iv. (¥
As a consequence,
felu— iv) = flu) — if (v) = (A — ip) u — iv),
which shows that W = u — v s an eigenvector of fc

forz =\ —1pu.

Using this fact, we can prove the following proposition:
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Proposition 14.11. Given a Fuclidean space E, for
any normal linear map f: E — E, of w = u+ v 1S
an eigenvector of fc associated with the eigenvalue
2= A+iu (where u,v € E and \,u € R), if u # 0
(i.e., z is not real) then (u,v) =0 and (u,u) = (v, v),
whach implies that w and v are linearly independent,
and if W 1is the subspace spanned by u and v, then
fW) =W and f*(W) =W. Furthermore, with re-
spect to the (orthogonal) basis (u,v), the restriction of
f to W has the matrix

(24):

If £ =20, then X 1s a real eigenvalue of f and either u
or v is an eigenvector of f for A. If W 1s the subspace
spanned by u if u # 0, or spanned by v # 0 if u = 0,
then f(W) C W and f*(W) C W.
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Theorem 14.12. (Main Spectral Theorem) Given a
Fuclidean space E of dimension n, for every normal

linear map f: E — E, there is an orthonormal basis
(é1,-..,en) such that the matriz of f w.r.t. this basis
1 a block diagonal matrix of the form

Ay ...
A,

such that each block A; is either a one-dimensional
matriz (i.e., a real scalar) or a two-dimensional ma-

triz of the form
Yy
A = [ J
! (Mj Aj )

where A;, 1 € R, with p; > 0.
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After this relatively hard work, we can easily obtain some
nice normal forms for the matrices of self-adjoint, skew-
self-adjoint, and orthogonal, linear maps.

However, for the sake of completeness, we state the fol-
lowing theorem.

Theorem 14.13. Given a Hermitian space E of di-
mension n, for every normal linear map f: E — FE,
there is an orthonormal basis (ey, ..., e,) of eigenvec-
tors of f such that the matrixz of f w.r.t. this basis 1s
a diagonal matriz

where \; € C.

Remark: There is a converse to Theorem 14.13, namely,
if there is an orthonormal basis (eq, ..., e,) of eigenvec-
tors of f, then f is normal.
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14.3 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal
Linear Maps

Theorem 14.14. Given a Euclidean space E of di-
mension n, for every self-adjoint linear map

f: E — E, there is an orthonormal basis (e, ..., e,)
of eigenvectors of f such that the matrix of f w.r.t.
this basis is a diagonal matriz

Ay ..

where \; € R.

Theorem 14.14 implies that if Aq, ..., A, are the distinct
real eigenvalues of f and FEj; is the eigenspace associated
with A;, then

E:El@"'@Epv

where E; and E; are othogonal for all 7 # 7.
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Theorem 14.15. Given a Euclidean space E of di-
mension n, for every skew-self-adjoint linear map

f: E — E, there is an orthonormal basis (e, ..., €e,)
such that the matrix of f w.r.t. this basis is a block
diagonal matriz of the form

Ay ...
A,

such that each block Aj 18 either O or a two-dimensional
matrix of the form

where p; € R, with p; > 0. In particular, the eigen-

values of fc are pure imaginary of the form xip;, or
0.
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Theorem 14.16. Given a Euclidean space E of di-
mension n, for every orthogonal linear map

f: E — E, there is an orthonormal basis (e, ..., €e,)
such that the matrix of f w.r.t. this basis is a block
diagonal matriz of the form

Ay ...
A,

such that each block A; 1is either 1, —1, or a two-
dimensional matrixz of the form

A = <COS 0; —sin 9]-)

sin (9j COS Qj

where 0 < 0; < .

In particular, the eigenvalues of fc are of the form
cos; £isinb;, or 1, or —1.
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It is obvious that we can reorder the orthonormal basis of
eigenvectors given by Theorem 14.16, so that the matrix
of f w.r.t. this basis is a block diagonal matrix of the

form
(A

A,

Y

where each block Aj 1s a two-dimensional rotation matrix
A; # 1 of the form

A cosf; —sin0;
7 \sinf; cosb;

with 0 < 0; < .

The linear map f has an eigenspace E(1, f) = Ker (f — id)
of dimension p for the eigenvalue 1, and an eigenspace
E(—1,f) = Ker(f +1id) of dimension ¢ for the eigen-
value —1.
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If det(f) = +1 (f is a rotation), the dimension ¢ of
E(—1, f) must be even, and the entries in —I, can be
paired to form two-dimensional blocks, if we wish.

Remark: Theorem 14.16 can be used to prove a sharper
version of the Cartan-Dieudonné Theorem.

Theorem 14.17. Let E be a Euclidean space of di-
mension n > 2. For every isometry f € O(F), if
p = dim(E(1, f)) = dim(Ker (f —id)), then f is the

composition of n —p reflections and n — p 1s minimal.

The theorems of this section and of the previous section
can be immediately applied to matrices.
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14.4 Normal, Symmetric, Skew-Symmetric, Orthogo-
nal, Hermitian, Skew-Hermitian, and Unitary Ma-
trices

First, we consider real matrices.

Definition 14.3. Given a real m x n matrix A, the
transpose A" of A is the n x m matrix A" = (a/;)

L]
defined such that
-
iJ
forall 7,7, 1 <7 <m,1 <35 <n. Areal n X n matrix
A is

1. normal ift

a :CLjZ'

AAT = AT A,

2. symmetric ift

Al = A
3. skew-symmetric ift

AT = A,

4. orthogonal ift
AA"'=A"A=1,.
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Theorem 14.18. For every normal matriz A, there

18 an orthogonal matrix P and a block diagonal matrix
D such that A= PD P, where D is of the form

such that each block Dj s either a one-dimensional
matriz (i.e., a real scalar) or a two-dimensional ma-

trixz of the form
p PRy
D= (7Y J
! (Mj Aj )

where A;, p; € R, with p; > 0.
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Theorem 14.19. For every symmetric matriz A, there

1s an orthogonal matrix P and a diagonal matriz D
such that A= PD P, where D is of the form

where \; € R.
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Theorem 14.20. For every skew-symmetric matriz
A, there 1s an orthogonal matriz P and a block diag-
onal matriz D such that A = PD P", where D is of
the form

such that each block D; s either 0 or a two-dimensional
matriz of the form

0 —u;
D. — J
! (u; 0 )

where p; € R, with p; > 0. In particular, the eigen-
values of A are pure itmaginary of the form xip;, or
0.
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Theorem 14.21. For every orthogonal matrix A, there

18 an orthogonal matrix P and a block diagonal matrix
D such that A= PD P, where D is of the form

such that each block D; s either 1, —1, or a two-
dimensional matrixz of the form

D, — (COS 0; —sin 9j>

sin (9j COS Gj

where 0 < 0; < .

In particular, the eigenvalues of A are of the form
cosf); = esinf;, or 1, or —1.

We now consider complex matrices.
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Definition 14.4. Given a complex m X n matrix A,
the transpose A" of A is the n x m matrix A" = (a,,)

iJ
defined such that
-
ij B
forall 4,7, 1 <i<m,1<j <n. The conjugate A of
A is the m x n matrix A = (b;;) defined such that

a :CLjZ'

bij = aij

forall 2,7, 1 <7 <m,1 <35 <n Givenann Xn
complex matrix A, the adjoint A* of A is the matrix
defined such that

A= (AT) = (A"

A complex n X n matrix A is

1. normal ift

AA" = AA,
2. Hermitian iff
A" = A,
3. skew-Hermatian ift
A" =—A,

4. unitary iff
AA*=A"A=1,.
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Theorem 14.13 can be restated in terms of matrices as
follows. We can also say a little more about eigenvalues
(easy exercise left to the reader).

Theorem 14.22. For every compler normal matrix
A, there is a unitary matriz U and a diagonal matriz
D such that A =UDU*. Furthermore, if A is Hermi-
tian, D s a real matriz, if A is skew-Hermaitian, then
the entries in D are pure tmaginary or null, and if A

18 unitary, then the entries in D have absolute value
1.
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14.5 Rayleigh Ratios and Eigenvalue Interlacing

A fact that is used frequently in optimization problems
is that the eigenvalues of a symmetric matrix are charac-
terized in terms of what is known as the Rayleigh ratio,

defined by

x| Ax

R(A)(z) =

—, z€R"z#0.
x'x

The following proposition is often used to prove the cor-
rectness of various optimization or approximation prob-
lems (for example PCA).
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Proposition 14.23. (Rayleigh—Ritz) If A is a sym-
metric n X n matriz with eigenvalues A\ < Ay <
coo < Ny oand if (uy, ..., uy,) 1s any orthonormal basis
of eigenvectors of A, where u; 1s a unit eigenvector
associated with X\;, then

r! Ax
max ——— =
x#0 T'X

An

(with the mazimum attained for x = u, ), and

r! Ax

max — = Ap—k
QZ#O,IE{un_k+1,...,un}l T
(with the mazimum attained for x = u,_j), where

1 <k <n-—1. FEquwalently, if Vi 1s the subspace
spanned by (uy, ..., ug), then

! Ax
A = max —,
x#0,2€V, ' X

E=1,...,n.
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For our purposes, we need the version of Proposition 14.23
applying to min instead of max, whose proof is obtained
by a trivial modification of the prootf of Proposition 14.23.

Proposition 14.24. (Rayleigh—Ritz) If A is a sym-
metric n X n matrix with eigenvalues A1 < Ay <
oo < Ay and if (uy, ..., uy,) is any orthonormal basis

of eigenvectors of A, where u; 1s a unit eigenvector
associated with X\;, then

r!' Ax _

min
x#£0 x'x

(with the minimum attained for x = uy), and
, x! Ax
min =

x%()?xe{ul?"'?uZ_].}J_ x—rx

Ai

(with the minimum attained for x = w;), where 2 <
i < n. Equivalently, if Wy, = V;-, denotes the sub-
space spanned by (ug, ..., u,) (with Vo = (0)), then

v Az r' Az

AL = 1min —— = min —
x#0,0eW,. ' X x%o’xg\/ki_l r' T

., k=1,...,n.
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Propositions 14.23 and 14.24 together are known as the
Rayletgh—Ritz theorem.

Observe that Proposition 14.24 implies immediately that
a symmetric matrixz is positive definite iff its eigen-
values are (strictly) positive.

As an application of Propositions 14.23 and 14.24, we
prove a proposition which allows us to compare the eigen-
values of two symmetric matrices A and B = R' AR,
where R is a rectangular matrix satisfying the equation

R'R=1

First, we need a definition. Given an n X n symmetric
matrix A and an m X m symmetric B, with m < n,
if Ay < A < --o < N\, are the eigenvalues of A and
< o < -+ <y, are the eigenvalues of B, then we
say that the eigenvalues of B interlace the eigenvalues of

A if

)\iguig)\n—erz’; ZZl,,m
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For example, if n = 5 and m = 3, we have

A< 1 < A3
Ay < g < Ay
A3 <z < As.

Proposition 14.25. Let A be an n X n symmetric
matriz, R be an n X m matriz such that R'R = [
(withm < n), and let B= R' AR (an m xm matriz).
The following properties hold:

(a) The eigenvalues of B interlace the eigenvalues of

A.

(b) If Ay < Aoy < -+ <\, are the eigenvalues of A and
1 < o < oo <y, are the etgenvalues of B, and
if \i = u;, then there is an eigenvector v of B with
eigenvalue p; such that Rv is an eigenvector of A
with eigenvalue A;.

Proposition 14.25 immediately implies the Poincaré sep-
aration theorem. It can be used in situations, such as
in quantum mechanics, where one has information about
the inner products u; Au;.
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Proposition 14.26. (Poincaré separation theorem)
Let A be a n x n symmetric (or Hermitian) matrix,
let m be some integer with 1 < m < n, and let

(ut, ..., up) be m orthonormal vectors. Let B = (u; Au,)
(an m X m matriz), let \(A) < ... < A\, (A) be the
eigenvalues of A and \(B) < ... < A\n(B) be the
ergenvalues of B; then we have

>\/<:(A> < >\k’<B) < >\k+n—m<A>7 k=1,...,m.
Observe that Proposition 14.25 implies that

MA A+ Ay <t(RTAR) < Mt + - + A
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If P is the the n x (n — 1) matrix obtained from the
identity matrix by dropping its last column, we have
PP, = I, and the matrix B = P, AP, is the ma-
trix obtained from A by deleting its last row and its last
column. In this case, the interlacing result is

M <SS <<y < A1 < a1 <A,

a genuine interlacing.

We obtain similar results with the matrix P,_,, obtained
by dropping the last n —r columns of the identity matrix
and setting B = P AP,_,, (B is the m x m matrix
obtained from A by deleting its last n — m rows and
columns).

In this case, we have the following interlacing inequalities
known as Cauchy interlacing theorem:

AkéﬂkSAk—m—m, k’:1,...,m. (*)
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14.6 The Courant—Fischer Theorem; Perturbation Re-
sults

Another useful tool to prove eigenvalue equalities is the
Courant—Fischer characterization of the eigenvalues of a
symmetric matrix, also known as the Min-max (and Max-
min) theorem.

Theorem 14.27. (Courant—Fischer) Let A be a sym-
metric n X n matrix with eigenvalues Ay < Ay < -+ <
An. If Vi denotes the set of subspaces of R" of dzmen-
ston k, then

! Ax
AL = max min —
WwevV, i1 2eWa#0 T'T
! Az
A = min max

WeV, aeWa0 ' x

The Courant—Fischer theorem yields the following useful
result about perturbing the eigenvalues of a symmetric
matrix due to Hermann Weyl.
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Proposition 14.28. Given two n X n symmetric ma-
trices A and B = A+ 0A, ifa; < as < --- < q, are
the eigenvalues of A and by < By < --- < 3, are the
ergenvalues of B, then

‘Ozk—ﬁﬂ Sp((SA) < H(sAHQ, k= 1,...,77,.

Proposition 14.28 also holds for Hermitian matrices.

A pretty result of Wielandt and Hoffman asserts that

n

> (=B < |I0A7,

k=1

where || || » is the Frobenius norm. However, the proof is
significantly harder than the above proof; see Lax [25].

The Courant—Fischer theorem can also be used to prove
some famous inequalities due to Hermann Weyl.
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Given two symmetric (or Hermitian) matrices A and B,
let \j(A), \i(B), and \;(A+ B) denote the ith eigenvalue
of A, B, and A+ B, respectively, arranged in nondecreas-
ing order.

Proposition 14.29. (Weyl) Given two symmetric (or
Hermitian) n x n matrices A and B, the following in-
equalities hold: For all 1,7,k with 1 < 1,7,k < n:

I.Ifi+75=Fk+1, then

ANi(A) + X(B) < M\(A+ B).
2.1f 1+ 75 =k-+n, then

M(A+ B) < Ni(A)+ \i(B).

In the special case 1 = 7 = k, we obtain

M(A)+X(B) < M(A+B), M(A+B) < M\ (A)+X\,(B).

It follows that A; is concave, while A, is convex.
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If : =k and j = 1, we obtain

Me(A) + M(B) < A(A+ B),
and if 2 = k£ and 7 = n, we obtain

Me(A+ B) < M(A) + \o(B),

and combining them, we get
Me(A) + M(B) < A M(A+ B) < A\(A) + \u(B).

In particular, if B is positive semidefinite, since its eigen-
values are nonnegative, we obtain the following inequality
known as the monotonicity theorem for symmetric (or
Hermitian) matrices:

if A and B are symmetric (or Hermitian) and B is positive
semidefinite, then

>\k<A) S)\k<A—|—B> E=1,...,n.
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