
Chapter 13

Eigenvectors and Eigenvalues

13.1 Eigenvectors and Eigenvalues of a Linear Map

Given a finite-dimensional vector space E, let f : E ! E
be any linear map. If, by luck, there is a basis (e1, . . . , en)
of E with respect to which f is represented by a diagonal
matrix

D =

0

BB@

�1 0 . . . 0
0 �2

. . . ...
... . . . . . . 0
0 . . . 0 �n

1

CCA ,

then the action of f on E is very simple; in every “direc-
tion” ei, we have

f (ei) = �iei.
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We can think of f as a transformation that stretches or
shrinks space along the direction e1, . . . , en (at least if E
is a real vector space).

In terms of matrices, the above property translates into
the fact that there is an invertible matrix P and a di-
agonal matrix D such that a matrix A can be factored
as

A = PDP�1.

When this happens, we say that f (or A) is diagonaliz-
able , the �is are called the eigenvalues of f , and the eis
are eigenvectors of f .

For example, we will see that every symmetric matrix
can be diagonalized .
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Unfortunately, not every matrix can be diagonalized .

For example, the matrix

A1 =

✓
1 1
0 1

◆

can’t be diagonalized.

Sometimes, a matrix fails to be diagonalizable because its
eigenvalues do not belong to the field of coe�cients, such
as

A2 =

✓
0 �1
1 0

◆
,

whose eigenvalues are ±i.

This is not a serious problem because A2 can be diago-
nalized over the complex numbers.

However, A1 is a “fatal” case! Indeed, its eigenvalues are
both 1 and the problem is that A1 does not have enough
eigenvectors to span E.
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The next best thing is that there is a basis with respect
to which f is represented by an upper triangular matrix.

In this case we say that f can be triangularized .

As we will see in Section 13.2, if all the eigenvalues of
f belong to the field of coe�cients K, then f can be
triangularized. In particular, this is the case if K = C.

Now, an alternative to triangularization is to consider the
representation of f with respect to two bases (e1, . . . , en)
and (f1, . . . , fn), rather than a single basis.

In this case, if K = R or K = C, it turns out that we can
even pick these bases to be orthonormal , and we get a
diagonal matrix ⌃ with nonnegative entries , such that

f (ei) = �ifi, 1  i  n.

The nonzero �is are the singular values of f , and the
corresponding representation is the singular value de-
composition , or SVD .
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The notion of eigenvalue of a linear map f : E ! E
defined on an infinite-dimensional space E is quite subtle
because it cannot be defined in terms of eigenvectors as
in the finite-dimensional case.

The problem is that the map � id � f (with � 2 C)
could be noninvertible (because it is not surjective) and
yet injective.

In finite dimension this cannot happen, so until further
notice we assume that E is of finite dimension n.
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Definition 13.1. Given any vector space E of finite
dimension n and any linear map f : E ! E, a scalar
� 2 K is called an eigenvalue, or proper value, or
characteristic value of f if there is some nonzero vector
u 2 E such that

f (u) = �u.

Equivalently, � is an eigenvalue of f if Ker (� id � f ) is
nontrivial (i.e., Ker (� id � f ) 6= {0}).

A vector u 2 E is called an eigenvector, or proper vec-
tor, or characteristic vector of f if u 6= 0 and if there
is some � 2 K such that

f (u) = �u;

the scalar � is then an eigenvalue, and we say that u is
an eigenvector associated with �.

Given any eigenvalue � 2 K, the nontrivial subspace
Ker (� id � f ) consists of all the eigenvectors associated
with � together with the zero vector; this subspace is
denoted by E�(f ), orE(�, f ), or even byE�, and is called
the eigenspace associated with �, or proper subspace
associated with �.
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Remark: As we emphasized in the remark following
Definition 7.4, we require an eigenvector to be nonzero.

This requirement seems to have more benefits than incon-
venients, even though it may considered somewhat inel-
egant because the set of all eigenvectors associated with
an eigenvalue is not a subspace since the zero vector is
excluded.

Note that distinct eigenvectors may correspond to the
same eigenvalue, but distinct eigenvalues correspond to
disjoint sets of eigenvectors.

Proposition 13.1. Let E be any vector space of finite
dimension n and let f be any linear map
f : E ! E. The eigenvalues of f are the roots (in K)
of the polynomial

det(� id � f ).
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Proof. A scalar � 2 K is an eigenvalue of f i↵ there is
some vector u 6= 0 in E such that

f (u) = �u

i↵
(� id � f )(u) = 0

i↵ (� id � f ) is not invertible

i↵ by Proposition 5.15,

det(� id � f ) = 0.

Definition 13.2. Given any vector space E of dimen-
sion n, for any linear map f : E ! E, the polynomial
Pf(X) = �f(X) = det(X id � f ) is called the charac-
teristic polynomial of f . For any square matrix A, the
polynomial PA(X) = �A(X) = det(XI � A) is called
the characteristic polynomial of A.

Note that we already encountered the characteristic poly-
nomial in Section 5.7; see Definition 5.11.
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Given any basis (e1, . . . , en), if A = M(f ) is the matrix
of f w.r.t. (e1, . . . , en), we can compute the characteristic
polynomial �f(X) = det(X id�f ) of f by expanding the
following determinant:

det(XI � A) =

��������

X � a1 1 �a1 2 . . . �a1 n

�a2 1 X � a2 2 . . . �a2 n
... ... . . . ...

�an 1 �an 2 . . . X � an n

��������
.

If we expand this determinant, we find that

�A(X) = det(XI � A) = Xn � (a1 1 + · · ·+ an n)X
n�1

+ · · · + (�1)n det(A).

The sum tr(A) = a1 1+ · · ·+an n of the diagonal elements
of A is called the trace of A.

Since the characteristic polynomial depends only on f ,
tr(A) has the same value for all matrices A representing
f . We let tr(f ) = tr(A) be the trace of f .
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Remark: The characteristic polynomial of a linear map
is sometimes defined as det(f � X id). Since

det(f � X id) = (�1)n det(X id � f ),

this makes essentially no di↵erence but the version
det(XI � f ) has the small advantage that the coe�cient
of Xn is +1.

If we write

�A(X) = det(XI � A) = Xn � ⌧1(A)Xn�1

+ · · · + (�1)k⌧k(A)Xn�k + · · · + (�1)n⌧n(A),

then we just proved that

⌧1(A) = tr(A) and ⌧n(A) = det(A).
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It is also possible to express ⌧k(A) in terms of determi-
nants of certain submatrices of A.

For any nonempty ordered subset, I ✓ {1, . . . , n}, say
I = {i1 < · · · < ik}, let AI,I be the k ⇥ k submatrix of
A obtained by first selecting the columns whose indices
belong to I , and then the rows whose indices also belong
to I .

Then, it can be shown that

⌧k(A) =
X

I✓{1,...,n}
I={i1,...,ik}
i1<···<ik

det(AI,I).

If all the roots, �1, . . . , �n, of the polynomial det(XI�A)
belong to the field K, then we can write

det(XI � A) = (X � �1) · · · (X � �n),

where some of the �is may appear more than once.
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Consequently,

�A(X) = det(XI � A) = Xn � �1(�)X
n�1

+ · · · + (�1)k�k(�)X
n�k + · · · + (�1)n�n(�),

where

�k(�) =
X

I✓{1,...,n}
|I|=k

Y

i2I

�i,

the kth elementary symmetric polynomial (or func-
tion) of the �i’s, with � = (�1, . . . , �n).
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For n = 5, the elementary symmetric polynomials are
listed below:

�0(�) = 1

�1(�) = �1 + �2 + �3 + �4 + �5

�2(�) = �1�2 + �1�3 + �1�4 + �1�5 + �2�3 + �2�4 + �2�5

+ �3�4 + �3�5 + �4�5

�3(�) = �3�4�5 + �2�4�5 + �2�3�5 + �2�3�4 + �1�4�5

+ �1�3�5 + �1�3�4 + �1�2�5 + �1�2�4 + �1�2�3

�4(�) = �1�2�3�4 + �1�2�3�5 + �1�2�4�5

+ �1�3�4�5 + �2�3�4�5

�5(�) = �1�2�3�4�5.

Since

�A(X) = Xn � ⌧1(A)Xn�1 + · · · + (�1)k⌧k(A)Xn�k

+ · · · + (�1)n⌧n(A)

= Xn � �1(�)X
n�1 + · · · + (�1)k�k(�)X

n�k

+ · · · + (�1)n�n(�),

we have

�k(�) = ⌧k(A), k = 1, . . . , n.
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In particular, the product of the eigenvalues of f is equal
to det(A) = det(f ), and the sum of the eigenvalues of f
is equal to the trace tr(A) = tr(f ), of f .

For the record,

tr(f ) = �1 + · · · + �n

det(f ) = �1 · · · �n,

where �1, . . . , �n are the eigenvalues of f (and A), where
some of the �is may appear more than once.

In particular, f is not invertible i↵ it admits 0 has an
eigenvalue.

Remark: Depending on the field K, the characteristic
polynomial �A(X) = det(XI �A) may or may not have
roots in K.

This motivates considering algebraically closed fields .
For example, over K = R, not every polynomial has real
roots. For example, for the matrix

A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
,

the characteristic polynomial det(XI � A) has no real
roots unless ✓ = k⇡.
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However, over the fieldC of complex numbers, every poly-
nomial has roots. For example, the matrix above has the
roots cos ✓ ± i sin ✓ = e±i✓.

Definition 13.3. Let A be an n⇥n matrix over a field,
K. Assume that all the roots of the characteristic poly-
nomial �A(X) = det(XI � A) of A belong to K, which
means that we can write

det(XI � A) = (X � �1)
k1 · · · (X � �m)

km,

where �1, . . . , �m 2 K are the distinct roots of
det(XI � A) and k1 + · · · + km = n.

The integer, ki, is called the algebraic multiplicity of
the eigenvalue �i and the dimension of the eigenspace,
E�i = Ker(�iI �A), is called the geometric multiplicity
of �i. We denote the algebraic multiplicity of �i by alg(�i)
and its geometric multiplicity by geo(�i).

By definition, the sum of the algebraic multiplicities is
equal to n but the sum of the geometric multiplicities
can be strictly smaller.
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Proposition 13.2. Let A be an n ⇥ n matrix over a
field K and assume that all the roots of the charac-
teristic polynomial �A(X) = det(XI � A) of A belong
to K. For every eigenvalue �i of A, the geometric
multiplicity of �i is always less than or equal to its
algebraic multiplicity, that is,

geo(�i)  alg(�i).

Proposition 13.3. Let E be any vector space of fi-
nite dimension n and let f be any linear map. If
u1, . . . , um are eigenvectors associated with pairwise
distinct eigenvalues �1, . . . , �m, then the family
(u1, . . . , um) is linearly independent.

Thus, from Proposition 13.3, if �1, . . . , �m are all the
pairwise distinct eigenvalues of f (where m  n), we
have a direct sum

E�1 � · · · � E�m

of the eigenspaces E�i.

Unfortunately, it is not always the case that

E = E�1 � · · · � E�m.
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When
E = E�1 � · · · � E�m,

we say that f is diagonalizable (and similarly for any
matrix associated with f ).

Indeed, picking a basis in each E�i, we obtain a matrix
which is a diagonal matrix consisting of the eigenvalues,
each �i occurring a number of times equal to the dimen-
sion of E�i.

This happens if the algebraic multiplicity and the geo-
metric multiplicity of every eigenvalue are equal.

In particular, when the characteristic polynomial has n
distinct roots, then f is diagonalizable .

It can also be shown that symmetric matrices have real
eigenvalues and can be diagonalized.
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For a negative example, we leave as exercise to show that
the matrix

M =

✓
1 1
0 1

◆

cannot be diagonalized, even though 1 is an eigenvalue.

The problem is that the eigenspace of 1 only has dimen-
sion 1.

The matrix

A =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆

cannot be diagonalized either, because it has no real eigen-
values, unless ✓ = k⇡.

However, over the field of complex numbers, it can be
diagonalized.
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13.2 Reduction to Upper Triangular Form

Unfortunately, not every linear map on a complex vector
space can be diagonalized.

The next best thing is to “triangularize,” which means to
find a basis over which the matrix has zero entries below
the main diagonal.

Fortunately, such a basis always exist.

We say that a square matrix A is an upper triangular
matrix if it has the following shape,

0

BBBBBB@

a1 1 a1 2 a1 3 . . . a1 n�1 a1 n

0 a2 2 a2 3 . . . a2 n�1 a2 n

0 0 a3 3 . . . a3 n�1 a3 n
... ... ... . . . ... ...
0 0 0 . . . an�1 n�1 an�1 n

0 0 0 . . . 0 an n

1

CCCCCCA
,

i.e., ai j = 0 whenever j < i, 1  i, j  n.
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Theorem 13.4. Given any finite dimensional vector
space over a field K, for any linear map f : E ! E,
there is a basis (u1, . . . , un) with respect to which f is
represented by an upper triangular matrix (in Mn(K))
i↵ all the eigenvalues of f belong to K. Equivalently,
for every n⇥n matrix A 2 Mn(K), there is an invert-
ible matrix P and an upper triangular matrix T (both
in Mn(K)) such that

A = PTP�1

i↵ all the eigenvalues of A belong to K.

If A = PTP�1 where T is upper triangular, note that
the diagonal entries of T are the eigenvalues �1, . . . , �n

of A.

Also, if A is a real matrix whose eigenvalues are all real,
then P can be chosen to real, and if A is a rational matrix
whose eigenvalues are all rational, then P can be chosen
rational.
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Since any polynomial over C has all its roots in C, The-
orem 13.4 implies that every complex n ⇥ n matrix can
be triangularized .

If � is an eigenvalue of the matrix A and if u is an eigen-
vector associated with �, from

Au = �u,

we obtain

A2u = A(Au) = A(�u) = �Au = �2u,

which shows that �2 is an eigenvalue of A2 for the eigen-
vector u.

An obvious induction shows that �k is an eigenvalue of
Ak for the eigenvector u, for all k � 1.

Now, if all eigenvalues �1, . . . , �n of A are in K, it follows
that �k

1, . . . , �
k
n are eigenvalues of Ak.
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However, it is not obvious that Ak does not have other
eigenvalues. In fact, this can’t happen, and this can be
proved using Theorem 13.4.

Proposition 13.5.Given any n⇥n matrix A 2 Mn(K)
with coe�cients in a field K, if all eigenvalues
�1, . . . , �n of A are in K, then for every polynomial
q(X) 2 K[X ], the eigenvalues of q(A) are exactly
(q(�1), . . . , q(�n)).

If E is a Hermitian space, the proof of Theorem 13.4 can
be easily adapted to prove that there is an orthonormal
basis (u1, . . . , un) with respect to which the matrix of f
is upper triangular. This is usually known as Schur’s
lemma .
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Theorem 13.6. (Schur decomposition) Given any lin-
ear map f : E ! E over a complex Hermitian space
E, there is an orthonormal basis (u1, . . . , un) with re-
spect to which f is represented by an upper trian-
gular matrix. Equivalently, for every n ⇥ n matrix
A 2 Mn(C), there is a unitary matrix U and an upper
triangular matrix T such that

A = UTU ⇤.

If A is real and if all its eigenvalues are real, then
there is an orthogonal matrix Q and a real upper tri-
angular matrix T such that

A = QTQ>.

Using, Theorem 13.6, we can derive two very important
results.
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Proposition 13.7. If A is a Hermitian matrix (i.e.
A⇤ = A), then its eigenvalues are real and A can
be diagonalized with respect to an orthonormal ba-
sis of eigenvectors. In matrix terms, there is a uni-
tary matrix U and a real diagonal matrix D such that
A = UDU⇤. If A is a real symmetric matrix (i.e.
A> = A), then its eigenvalues are real and A can be
diagonalized with respect to an orthonormal basis of
eigenvectors. In matrix terms, there is an orthogo-
nal matrix Q and a real diagonal matrix D such that
A = QDQ>.

When a real matrix A has complex eigenvalues, there is
a version of Theorem 13.6 involving only real matrices
provided that we allow T to be block upper-triangular
(the diagonal entries may be 2⇥2 matrices or real entries).

Theorem 13.6 is not a very practical result but it is a
useful theoretical result to cope with matrices that cannot
be diagonalized.

For example, it can be used to prove that every complex
matrix is the limit of a sequence of diagonalizable ma-
trices that have distinct eigenvalues !
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13.3 Location of Eigenvalues

If A is an n ⇥ n complex (or real) matrix A, it would be
useful to know, even roughly, where the eigenvalues of A
are located in the complex plane C.

The Gershgorin discs provide some precise information
about this.

Definition 13.4. For any complex n ⇥ n matrix A, for
i = 1, . . . , n, let

R0
i(A) =

nX

j=1
j 6=i

|ai j|

and let

G(A) =
n[

i=1

{z 2 C | |z � ai i|  R0
i(A)}.

Each disc {z 2 C | |z � ai i|  R0
i(A)} is called a

Gershgorin disc and their union G(A) is called the
Gershgorin domain .
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Theorem 13.8. (Gershgorin’s disc theorem) For any
complex n ⇥ n matrix A, all the eigenvalues of A be-
long to the Gershgorin domain G(A). Furthermore
the following properties hold:

(1) If A is strictly row diagonally dominant, that is

|ai i| >
nX

j=1, j 6=i

|ai j|, for i = 1, . . . , n,

then A is invertible.

(2) If A is strictly row diagonally dominant, and if
ai i > 0 for i = 1, . . . , n, then every eigenvalue of
A has a strictly positive real part.

In particular, Theorem 13.8 implies that if a symmetric
matrix is strictly row diagonally dominant and has strictly
positive diagonal entries, then it is positive definite.

Theorem 13.8 is sometimes called the
Gershgorin–Hadamard theorem .
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Since A and A> have the same eigenvalues (even for com-
plex matrices) we also have a version of Theorem 13.8 for
the discs of radius

C 0
j(A) =

nX

i=1
i 6=j

|ai j|,

whose domain is denoted by G(A>).

Theorem 13.9. For any complex n⇥n matrix A, all
the eigenvalues of A belong to the intersection of the
Gershgorin domains, G(A)\G(A>). Furthermore the
following properties hold:

(1) If A is strictly column diagonally dominant, that
is

|ai i| >
nX

i=1, i6=j

|ai j|, for j = 1, . . . , n,

then A is invertible.

(2) If A is strictly column diagonally dominant, and
if ai i > 0 for i = 1, . . . , n, then every eigenvalue
of A has a strictly positive real part.
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There are refinements of Gershgorin’s theorem and eigen-
value location results involving other domains besides
discs; for more on this subject, see Horn and Johnson
[19], Sections 6.1 and 6.2.

Remark: Neither strict row diagonal dominance nor strict
column diagonal dominance are necessary for invertibility.
Also, if we relax all strict inequalities to inequalities, then
row diagonal dominance (or column diagonal dominance)
is not a su�cient condition for invertibility.
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13.4 Conditioning of Eigenvalue Problems

The following n ⇥ n matrix

A =

0

BBBBBB@

0
1 0
1 0
. . . . . .

1 0
1 0

1

CCCCCCA

has the eigenvalue 0 with multiplicity n.

However, if we perturb the top rightmost entry of A by
✏, it is easy to see that the characteristic polynomial of
the matrix

A(✏) =

0

BBBBBB@

0 ✏
1 0
1 0
. . . . . .

1 0
1 0

1

CCCCCCA

is Xn � ✏.
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It follows that if n = 40 and ✏ = 10�40, A(10�40) has the
eigenvalues ek2⇡i/4010�1 with k = 1, . . . , 40.

Thus, we see that a very small change (✏ = 10�40) to the
matrix A causes a significant change to the eigenvalues of
A (from 0 to ek2⇡i/4010�1 ).

Indeed, the relative error is 10�39.

Worse, due to machine precision, since very small num-
bers are treated as 0, the error on the computation of
eigenvalues (for example, of the matrix A(10�40)) can be
very large.

This phenomenon is similar to the phenomenon discussed
in Section 7.3 where we studied the e↵ect of a small per-
tubation of the coe�cients of a linear system Ax = b on
its solution.
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In Section 7.3, we saw that the behavior of a linear system
under small perturbations is governed by the condition
number cond(A) of the matrix A.

In the case of the eigenvalue problem (finding the eigen-
values of a matrix), we will see that the conditioning of the
problem depends on the condition number of the change
of basis matrix P used in reducing the matrix A to its
diagonal form D = P�1AP , rather than on the condition
number of A itself.

The following proposition in which we assume that A is
diagonalizable and that the matrix norm k k satisfies a
special condition (satisfied by the operator norms k kp
for p = 1, 2, 1), is due to Bauer and Fike (1960).
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Proposition 13.10. Let A 2 Mn(C) be a diagonal-
izable matrix, P be an invertible matrix and, D be a
diagonal matrix D = diag(�1, . . . , �n) such that

A = PDP�1,

and let k k be a matrix norm such that

kdiag(↵1, . . . , ↵n)k = max
1in

|↵i|,

for every diagonal matrix. Then, for every perturba-
tion matrix �A, if we write

Bi = {z 2 C | |z � �i|  cond(P ) k�Ak},

for every eigenvalue � of A + �A, we have

� 2
n[

k=1

Bk.
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Proposition 13.10 implies that for any diagonalizable ma-
trix A, if we define �(A) by

�(A) = inf{cond(P ) | P�1AP = D},

then for every eigenvalue � of A + �A, we have

� 2
n[

k=1

{z 2 Cn | |z � �k|  �(A) k�Ak}.

Definition 13.5. The number �(A) is called the con-
ditioning of A relative to the eigenvalue problem .

If A is a normal matrix, since by Theorem 14.22, A can be
diagonalized with respect to a unitary matrix U , and since
for the spectral norm kUk2 = 1, we see that �(A) = 1.
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Therefore, normal matrices are very well conditionned
w.r.t. the eigenvalue problem. In fact, for every eigen-
value � of A + �A (with A normal), we have

� 2
n[

k=1

{z 2 Cn | |z � �k|  k�Ak2}.

If A and A+�A are both symmetric (or Hermitian), there
are sharper results; see Proposition 14.28.

Note that the matrix A(✏) from the beginning of the sec-
tion is not normal.
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13.5 Eigenvalues of the Matrix Exponential

The Schur decomposition yields a characterization of the
eigenvalues of the matrix exponential eA in terms of the
eigenvalues of the matrix A.

Proposition 13.11. Let A and U be (real or complex)
matrices and assume that U is invertible. Then

eUAU�1
= UeAU�1.

Proposition 13.12. Given any complex n ⇥ n ma-
trix A, if �1, . . . , �n are the eigenvalues of A, then
e�1, . . . , e�n are the eigenvalues of eA. Furthermore, if
u is an eigenvector of A for �i, then u is an eigenvec-
tor of eA for e�i.

As a consequence, we obtain the following result.
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Proposition 13.13. For every complex (or real) square
matrix A, we have

det(eA) = etr(A),

where tr(A) is the trace of A, i.e., the sum a1 1+ · · ·+
an n of its diagonal entries.

If B is a skew symmetric matrix, since tr(B) = 0, we
deduce that det(eB) = e0 = 1. This allows us to obtain
the following result. Recall that the (real) vector space
of skew symmetric matrices is denoted by so(n).

Proposition 13.14. For every skew symmetric ma-
trix B 2 so(n), we have eB 2 SO(n), that is, eB is a
rotation.

Proposition 13.14 shows that the map B 7! eB is a map
exp : so(n) ! SO(n). It is not injective, but it can
be shown (using one of the spectral theorems) that it is
surjective.
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If B is a (real) symmetric matrix, then

(eB)> = eB>
= eB,

so eB is also symmetric.

Since the eigenvalues �1, . . . , �n of B are real, by Propo-
sition 13.12, since the eigenvalues of eB are e�1, . . . , e�n

and the �i are real, we have e�i > 0 for i = 1, . . . , n,
which implies that eB is symmetric positive definite .

In fact, it can be shown that for every symmetric positive
definite matrix A, there is a unique symmetric matrix B
such that A = eB; see Gallier [14].
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