
Chapter 3

Haar Bases, Haar Wavelets

3.1 Introduction to Signal Compression Using Haar
Wavelets

We begin by considering Haar wavelets in R4.

Wavelets play an important role in audio and video signal
processing, especially for compressing long signals into
much smaller ones than still retain enough information
so that when they are played, we can’t see or hear any
di↵erence.

Consider the four vectors w1, w2, w3, w4 given by

w1 =

0

BB@

1
1
1
1

1

CCA w2 =

0

BB@

1
1

�1
�1

1

CCA w3 =
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Note that these vectors are pairwise orthogonal, so they
are indeed linearly independent (we will see this in a later
chapter).

Let W = {w1, w2, w3, w4} be the Haar basis , and let
U = {e1, e2, e3, e4} be the canonical basis of R4.
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The change of basis matrix W = PW ,U from U to W is
given by

W =

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA ,

and we easily find that the inverse of W is given by

W�1 =

0

BB@

1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2

1

CCA

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 0 0
0 0 1 �1

1

CCA .

So, the vector v = (6, 4, 5, 1) over the basis U becomes
c = (c1, c2, c3, c4) = (4, 1, 1, 2) over the Haar basis W ,
with

0
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0 1/4 0 0
0 0 1/2 0
0 0 0 1/2

1

CCA

0

BB@

1 1 1 1
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Given a signal v = (v1, v2, v3, v4), we first transform v
into its coe�cients c = (c1, c2, c3, c4) over the Haar basis
by computing c = W�1v. Observe that

c1 =
v1 + v2 + v3 + v4

4

is the overall average value of the signal v. The coe�cient
c1 corresponds to the background of the image (or of the
sound).

Then, c2 gives the coarse details of v, whereas, c3 gives
the details in the first part of v, and c4 gives the details
in the second half of v.

Reconstruction of the signal consists in computing
v = Wc.
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The trick for good compression is to throw away some
of the coe�cients of c (set them to zero), obtaining a
compressed signal bc, and still retain enough crucial in-
formation so that the reconstructed signal bv = Wbc
looks almost as good as the original signal v.

Thus, the steps are:

inputv �! coe�cients c = W�1v �! compressed bc
�! compressed bv = Wbc.

This kind of compression scheme makes modern video
conferencing possible.

It turns out that there is a faster way to find c = W�1v,
without actually using W�1. This has to do with the
multiscale nature of Haar wavelets.
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Given the original signal v = (6, 4, 5, 1) shown in Figure
3.1, we compute averages and half di↵erences obtaining

6 4 5 1

Figure 3.1: The original signal v

Figure 3.2: We get the coe�cients c3 = 1 and c4 = 2.

5 5 3 3

1

�1

2

�2

Figure 3.2: First averages and first half di↵erences

Note that the original signal v can be reconstruced from
the two signals in Figure 3.2.

Then, again we compute averages and half di↵erences ob-
taining Figure 3.3.

4 4 4 4
1 1

�1 �1

Figure 3.3: Second averages and second half di↵erences

We get the coe�cients c1 = 4 and c2 = 1.
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Again, the signal on the left of Figure 3.2 can be recon-
structed from the two signals in Figure 3.3.

3.2 Haar Bases and Haar Matrices, Scaling Properties
of Haar Wavelets

This method can be generalized to signals of any length
2n. The previous case corresponds to n = 2.

Let us consider the case n = 3.

The Haar basis (w1, w2, w3, w4, w5, w6, w7, w8) is given
by the matrix

W =

0

BBBBBBBBBB@

1 1 1 0 1 0 0 0
1 1 1 0 �1 0 0 0
1 1 �1 0 0 1 0 0
1 1 �1 0 0 �1 0 0
1 �1 0 1 0 0 1 0
1 �1 0 1 0 0 �1 0
1 �1 0 �1 0 0 0 1
1 �1 0 �1 0 0 0 �1

1

CCCCCCCCCCA
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The columns of this matrix are orthogonal and it is easy
to see that

W�1 = diag(1/8, 1/8, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2)W>.

A pattern is begining to emerge. It looks like the second
Haar basis vector w2 is the “mother” of all the other
basis vectors, except the first, whose purpose is to perform
averaging.

Indeed, in general, given

w2 = (1, . . . , 1, �1, . . . , �1)| {z }
2n

,

the other Haar basis vectors are obtained by a “scaling
and shifting process.”
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Starting from w2, the scaling process generates the vec-
tors

w3, w5, w9, . . . , w2j+1, . . . , w2n�1+1,

such that w2j+1+1 is obtained from w2j+1 by forming two
consecutive blocks of 1 and �1 of half the size of the
blocks in w2j+1, and setting all other entries to zero. Ob-
serve that w2j+1 has 2

j blocks of 2n�j elements.

The shifting process, consists in shifting the blocks of
1 and �1 in w2j+1 to the right by inserting a block of
(k � 1)2n�j zeros from the left, with 0  j  n � 1 and
1  k  2j.

Thus, we obtain the following formula for w2j+k:

w2j+k(i) =8
>>>><

>>>>:

0 1  i  (k � 1)2n�j

1 (k � 1)2n�j + 1  i  (k � 1)2n�j + 2n�j�1

�1 (k � 1)2n�j + 2n�j�1 + 1  i  k2n�j

0 k2n�j + 1  i  2n,

with 0  j  n � 1 and 1  k  2j.
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Of course
w1 = (1, . . . , 1)| {z }

2n

.

The above formulae look a little better if we change our
indexing slightly by letting k vary from 0 to 2j � 1 and
using the index j instead of 2j.

In this case, the Haar basis is denoted by

w1, h
0
0, h

1
0, h

1
1, h

2
0, h

2
1, h

2
2, h

2
3, . . . , h

j
k, . . . , h

n�1
2n�1�1

,

and

hj
k(i) =

8
>>>><

>>>>:

0 1  i  k2n�j

1 k2n�j + 1  i  k2n�j + 2n�j�1

�1 k2n�j + 2n�j�1 + 1  i  (k + 1)2n�j

0 (k + 1)2n�j + 1  i  2n,

with 0  j  n � 1 and 0  k  2j � 1.
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It turns out that there is a way to understand these for-
mulae better if we interpret a vector u = (u1, . . . , um) as
a piecewise linear function over the interval [0, 1).

We define the function plf(u) such that

plf(u)(x) = ui,
i � 1

m
 x <

i

m
, 1  i  m.

In words, the function plf(u) has the value u1 on the
interval [0, 1/m), the value u2 on [1/m, 2/m), etc., and
the value um on the interval [(m � 1)/m, 1).

For example, the piecewise linear function associated with
the vector

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, �1.1, �1.3)

is shown in Figure 3.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 3.4: The piecewise linear function plf(u)
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Then, each basis vector hj
k corresponds to the function

 j
k = plf(hj

k).

In particular, for all n, the Haar basis vectors

h0
0 = w2 = (1, . . . , 1, �1, . . . , �1)| {z }

2n

yield the same piecewise linear function  given by

 (x) =

8
><

>:

1 if 0  x < 1/2

�1 if 1/2  x < 1

0 otherwise,

whose graph is shown in Figure 3.5.

1

1

�1

0

Figure 3.5: The Haar wavelet  
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Then, it is easy to see that  j
k is given by the simple

expression

 j
k(x) =  (2jx � k), 0  j  n � 1, 0  k  2j � 1.

The above formula makes it clear that  j
k is obtained from

 by scaling and shifting.

The function �0
0 = plf(w1) is the piecewise linear function

with the constant value 1 on [0, 1), and the functions  j
k

together with �0
0 are known as the Haar wavelets .

Rather than using W�1 to convert a vector u to a vec-
tor c of coe�cients over the Haar basis, and the matrix
W to reconstruct the vector u from its Haar coe�cients
c, we can use faster algorithms that use averaging and
di↵erencing.
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If c is a vector of Haar coe�cients of dimension 2n, we
compute the sequence of vectors u0, u1, . . ., un as follows:

u0 = c

uj+1 = uj

uj+1(2i � 1) = uj(i) + uj(2j + i)

uj+1(2i) = uj(i) � uj(2j + i),

for j = 0, . . . , n � 1 and i = 1, . . . , 2j.

The reconstructed vector (signal) is u = un.

If u is a vector of dimension 2n, we compute the sequence
of vectors cn, cn�1, . . . , c0 as follows:

cn = u

cj = cj+1

cj(i) = (cj+1(2i � 1) + cj+1(2i))/2

cj(2j + i) = (cj+1(2i � 1) � cj+1(2i))/2,

for j = n � 1, . . . , 0 and i = 1, . . . , 2j.

The vector over the Haar basis is c = c0.
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Here is an example of the conversion of a vector to its
Haar coe�cients for n = 3.

Given the sequence u = (31, 29, 23, 17, �6, �8, �2, �4),
we get the sequence

c3 = (31, 29, 23, 17, �6, �8, �2, �4)

c2 = (30, 20, �7, �3, 1, 3, 1, 1)

c1 = (25, �5, 5, �2, 1, 3, 1, 1)

c0 = (10, 15, 5, �2, 1, 3, 1, 1).

Conversely, given c = (10, 15, 5, �2, 1, 3, 1, 1), we get the
sequence

u0 = (10, 15, 5, �2, 1, 3, 1, 1),

u1 = (25, �5, 5, �2, 1, 3, 1, 1)

u2 = (30, 20, �7, �3, 1, 3, 1, 1)

u3 = (31, 29, 23, 17, �6, �8, �2, �4),

which gives back u = (31, 29, 23, 17, �6, �8, �2, �4).
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3.3 Kronecker Product Construction of Haar Matrices

There is another recursive method for constructing the
Haar matrixWn of dimension 2n that makes it clearer why
the columns of Wn are pairwise orthogonal, and why the
above algorithms are indeed correct (which nobody seems
to prove!). If we split Wn into two 2n ⇥ 2n�1 matrices,
then the second matrix containing the last 2n�1 columns
of Wn has a very simple structure: it consists of the vector

(1, �1, 0, . . . , 0)| {z }
2n

and 2n�1 � 1 shifted copies of it, as illustrated below for
n = 3: 0

BBBBBBBBBB@

1 0 0 0
�1 0 0 0
0 1 0 0
0 �1 0 0
0 0 1 0
0 0 �1 0
0 0 0 1
0 0 0 �1

1

CCCCCCCCCCA

.
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Observe that this matrix can be obtained from the iden-
tity matrix I2n�1, in our example

I4 =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA ,

by forming the 2n ⇥ 2n�1 matrix obtained by replacing
each 1 by the column vector

✓
1

�1

◆

and each zero by the column vector
✓
0
0

◆
.
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Now the first half of Wn, that is the matrix consisting of
the first 2n�1 columns of Wn, can be obtained from Wn�1

by forming the 2n ⇥ 2n�1 matrix obtained by replacing
each 1 by the column vector

✓
1
1

◆
,

each �1 by the column vector
✓

�1
�1

◆
,

and each zero by the column vector
✓
0
0

◆
.

For n = 3, the first half of W3 is the matrix
0

BBBBBBBBBB@

1 1 1 0
1 1 1 0
1 1 �1 0
1 1 �1 0
1 �1 0 1
1 �1 0 1
1 �1 0 �1
1 �1 0 �1

1

CCCCCCCCCCA
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which is indeed obtained from

W2 =

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA

using the process that we just described.
bbdskip These matrix manipulations can be described

conveniently using a product operation on matrices known
as the Kronecker product.

Definition 3.1. Given a m ⇥ n matrix A = (aij) and a
p⇥q matrix B = (bij), theKronecker product (or tensor
product) A ⌦ B of A and B is the mp ⇥ nq matrix

A ⌦ B =

0

BB@

a11B a12B · · · a1nB
a21B a22B · · · a2nB
... ... . . . ...

am1B am2B · · · amnB

1

CCA .

It can be shown that ⌦ is associative and that

(A ⌦ B)(C ⌦ D) = AC ⌦ BD

(A ⌦ B)> = A> ⌦ B>,

whenever AC and BD are well defined.
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Then it is immediately verified that Wn is given by the
following neat recursive equations:

Wn =

✓
Wn�1 ⌦

✓
1
1

◆
I2n�1 ⌦

✓
1

�1

◆◆
,

with W0 = (1).

If we let

B1 = 2

✓
1 0
0 1

◆
=

✓
2 0
0 2

◆

and for n � 1,

Bn+1 = 2

✓
Bn 0
0 I2n

◆
,

then it is not hard to use the Kronecker product formu-
lation of Wn to obtain a rigorous proof of the equation

W>
n Wn = Bn, for all n � 1.

The above equation o↵ers a clean justification of the fact
that the columns of Wn are pairwise orthogonal.

Observe that the right block (of size 2n ⇥ 2n�1) shows
clearly how the detail coe�cients in the second half of
the vector c are added and subtracted to the entries in
the first half of the partially reconstructed vector after
n � 1 steps.
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3.4 Multiresolution Signal Analysis with Haar Bases

An important and attractive feature of the Haar basis is
that it provides a multiresolution analysis of a signal.

Indeed, given a signal u, if c = (c1, . . . , c2n) is the vector
of its Haar coe�cients, the coe�cients with low index give
coarse information about u, and the coe�cients with high
index represent fine information.

This multiresolution feature of wavelets can be exploited
to compress a signal, that is, to use fewer coe�cients to
represent it. Here is an example.

Consider the signal

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, �1.1, �1.3),

whose Haar transform is

c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1).

The piecewise-linear curves corresponding to u and c are
shown in Figure 3.6.

Since some of the coe�cients in c are small (smaller than
or equal to 0.2) we can compress c by replacing them by
0.
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Figure 3.6: A signal and its Haar transform

We get
c2 = (2, 0, 0, 3, 0, 0, 2, 0),

and the reconstructed signal is

u2 = (2, 2, 2, 2, 7, 3, �1, �1).

The piecewise-linear curves corresponding to u2 and c2

are shown in Figure 3.7.
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Figure 3.7: A compressed signal and its compressed Haar transform
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An interesting (and amusing) application of the Haar
wavelets is to the compression of audio signals.

It turns out that if your type load handel in Matlab
an audio file will be loaded in a vector denoted by y, and
if you type sound(y), the computer will play this piece
of music.

You can convert y to its vector of Haar coe�cients, c.
The length of y is 73113, so first tuncate the tail of y to
get a vector of length 65536 = 216.

A plot of the signals corresponding to y and c is shown
in Figure 3.8.
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Figure 3.8: The signal “handel” and its Haar transform
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Then, run a program that sets all coe�cients of c whose
absolute value is less that 0.05 to zero. This sets 37272
coe�cients to 0.

The resulting vector c2 is converted to a signal y2. A
plot of the signals corresponding to y2 and c2 is shown in
Figure 3.9.
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Figure 3.9: The compressed signal “handel” and its Haar transform

When you type sound(y2), you find that the music
doesn’t di↵er much from the original, although it sounds
less crisp.
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3.5 Haar Transform for Digital Images

Another neat property of the Haar transform is that it can
be instantly generalized to matrices (even rectangular)
without any extra e↵ort!

This allows for the compression of digital images. But
first, we address the issue of normalization of the Haar
coe�cients.

As we observed earlier, the 2n ⇥ 2n matrix Wn of Haar
basis vectors has orthogonal columns, but its columns do
not have unit length.

As a consequence, W>
n is not the inverse of Wn, but rather

the matrix
W�1

n = DnW
>
n

with

Dn = diag
⇣
2�n, 2�n|{z}

20

, 2�(n�1), 2�(n�1)
| {z }

21

,

2�(n�2), . . . , 2�(n�2)
| {z }

22

, . . . , 2�1, . . . , 2�1
| {z }

2n�1

⌘
.
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Therefore, we define the orthogonal matrix

Hn = WnD
1
2
n

whose columns are the normalized Haar basis vectors,
with

D
1
2
n = diag

⇣
2�n

2 , 2�n
2|{z}

20

, 2�n�1
2 , 2�n�1

2| {z }
21

,

2�n�2
2 , . . . , 2�n�2

2| {z }
22

, . . . , 2�1
2 , . . . , 2�1

2| {z }
2n�1

⌘
.

We call Hn the normalized Haar transform matrix.

Because Hn is orthogonal, H�1
n = H>

n .

Given a vector (signal) u, we call c = H>
n u the normal-

ized Haar coe�cients of u.
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When computing the sequence of ujs, use

uj+1(2i � 1) = (uj(i) + uj(2j + i))/
p
2

uj+1(2i) = (uj(i) � uj(2j + i))/
p
2,

and when computing the sequence of cjs, use

cj(i) = (cj+1(2i � 1) + cj+1(2i))/
p
2

cj(2j + i) = (cj+1(2i � 1) � cj+1(2i))/
p
2.

Note that things are now more symmetric, at the expense
of a division by

p
2. However, for long vectors, it turns

out that these algorithms are numerically more stable.



168 CHAPTER 3. HAAR BASES, HAAR WAVELETS

Let us now explain the 2D version of the Haar transform.

We describe the version using the matrix Wn, the method
using Hn being identical (except that H�1

n = H>
n , but

this does not hold for W�1
n ).

Given a 2m ⇥ 2n matrix A, we can first convert the
rows of A to their Haar coe�cients using the Haar trans-
form W�1

n , obtaining a matrix B, and then convert the
columns of B to their Haar coe�cients, using the matrix
W�1

m .

Because columns and rows are exchanged in the first step,

B = A(W�1
n )>,

and in the second step C = W�1
m B, thus, we have

C = W�1
m A(W�1

n )> = DmW>
mAWn Dn.
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In the other direction, given a matrix C of Haar coe�-
cients, we reconstruct the matrix A (the image) by first
applying Wm to the columns of C, obtaining B, and then
W>

n to the rows of B. Therefore

A = WmCW>
n .

Of course, we dont actually have to invert Wm and Wn

and perform matrix multiplications. We just have to use
our algorithms using averaging and di↵erencing.

Here is an example. If the data matrix (the image) is the
8 ⇥ 8 matrix

A =

0

BBBBBBBBBB@

64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1

1

CCCCCCCCCCA

,

then applying our algorithms, we find that
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C =

0

BBBBBBBBBB@

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 �4 4 �4
0 0 0 0 4 �4 4 �4
0 0 0.5 0.5 27 �25 23 �21
0 0 �0.5 �0.5 �11 9 �7 5
0 0 0.5 0.5 �5 7 �9 11
0 0 �0.5 �0.5 21 �23 25 �27

1

CCCCCCCCCCA

.

As we can see, C has more zero entries than A; it is a
compressed version of A. We can further compress C
by setting to 0 all entries of absolute value at most 0.5.
Then, we get

C2 =

0

BBBBBBBBBB@

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 �4 4 �4
0 0 0 0 4 �4 4 �4
0 0 0 0 27 �25 23 �21
0 0 0 0 �11 9 �7 5
0 0 0 0 �5 7 �9 11
0 0 0 0 21 �23 25 �27

1

CCCCCCCCCCA

.



3.5. HAAR TRANSFORM FOR DIGITAL IMAGES 171

We find that the reconstructed image is

A2 =

0

BBBBBBBBBB@

63.5 1.5 3.5 61.5 59.5 5.5 7.5 57.5
9.5 55.5 53.5 11.5 13.5 51.5 49.5 15.5
17.5 47.5 45.5 19.5 21.5 43.5 41.5 23.5
39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5
31.5 33.5 35.5 29.5 27.5 37.5 39.5 25.5
41.5 23.5 21.5 43.5 45.5 19.5 17.5 47.5
49.5 15.5 13.5 51.5 53.5 11.5 9.5 55.5
7.5 57.5 59.5 5.5 3.5 61.5 63.5 1.5

1

CCCCCCCCCCA

,

which is pretty close to the original image matrix A.

It turns out that Matlab has a wonderful command,
image(X), which displays the matrix X has an image.

The images corresponding to A and C are shown in Fig-
ure 3.10. The compressed images corresponding to A2

and C2 are shown in Figure 3.11.

The compressed versions appear to be indistinguishable
from the originals!
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Figure 3.10: An image and its Haar transform

Figure 3.11: Compressed image and its Haar transform
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If we use the normalized matrices Hm and Hn, then the
equations relating the image matrix A and its normalized
Haar transform C are

C = H>
mAHn

A = HmCH>
n .

The Haar transform can also be used to send large images
progressively over the internet.

Observe that instead of performing all rounds of averaging
and di↵erencing on each row and each column, we can
perform partial encoding (and decoding).

For example, we can perform a single round of averaging
and di↵erencing for each row and each column.

The result is an image consisting of four subimages, where
the top left quarter is a coarser version of the original,
and the rest (consisting of three pieces) contain the finest
detail coe�cients.
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We can also perform two rounds of averaging and di↵er-
encing, or three rounds, etc. This process is illustrated on
the image shown in Figure 3.12. The result of performing

Figure 3.12: Original drawing by Durer

one round, two rounds, three rounds, and nine rounds of
averaging is shown in Figure 3.13.
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Since our images have size 512 ⇥ 512, nine rounds of av-
eraging yields the Haar transform, displayed as the image
on the bottom right. The original image has completely
disappeared!

Figure 3.13: Haar tranforms after one, two, three, and nine rounds of averaging
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We can find easily a basis of 2n ⇥ 2n = 22n vectors wij

(2n ⇥ 2n matrices) for the linear map that reconstructs
an image from its Haar coe�cients, in the sense that for
any matrix C of Haar coe�cients, the image matrix A is
given by

A =
2nX

i=1

2nX

j=1

cijwij.

Indeed, the matrix wij is given by the so-called outer
product

wij = wi(wj)
>.

Similarly, there is a basis of 2n ⇥ 2n = 22n vectors hij

(2n⇥2n matrices) for the 2D Haar transform, in the sense
that for any matrix A, its matrix C of Haar coe�cients
is given by

C =
2nX

i=1

2nX

j=1

aijhij.

If the columns of W�1 are w0
1, . . . , w

0
2n, then

hij = w0
i(w

0
j)

>.


