Chapter 10

QR-Decomposition for Arbitrary Matrices

10.1 Orthogonal Reflections

Orthogonal symmetries are a very important example of isometries. First let us review the definition of a (linear) projection.

Given a vector space E, let F and G be subspaces of E that form a direct sum $E = F \oplus G$.

Since every $u \in E$ can be written uniquely as $u = v + w$, where $v \in F$ and $w \in G$, we can define the two projections $p_F : E \to F$ and $p_G : E \to G$, such that

\[p_F(u) = v \quad \text{and} \quad p_G(u) = w. \]
It is immediately verified that p_G and p_F are linear maps, and that $p_F^2 = p_F$, $p_G^2 = p_G$, $p_F \circ p_G = p_G \circ p_F = 0$, and $p_F + p_G = \text{id}$.

Definition 10.1. Given a vector space E, for any two subspaces F and G that form a direct sum $E = F \oplus G$, the *symmetry with respect to F and parallel to G, or reflection about F* is the linear map $s : E \rightarrow E$, defined such that

$$s(u) = 2p_F(u) - u,$$

for every $u \in E$.

Because $p_F + p_G = \text{id}$, note that we also have

$$s(u) = p_F(u) - p_G(u)$$

and

$$s(u) = u - 2p_G(u),$$

$s^2 = \text{id}$, s is the identity on F, and $s = -\text{id}$ on G.

We now assume that E is a Euclidean space of finite dimension.

Definition 10.2. Let E be a Euclidean space of finite dimension n. For any two subspaces F and G, if F and G form a direct sum $E = F \oplus G$ and F and G are orthogonal, i.e. $F = G^\perp$, the *orthogonal symmetry with respect to F and parallel to G, or orthogonal reflection about F* is the linear map $s : E \to E$, defined such that

$$s(u) = 2p_F(u) - u,$$

for every $u \in E$.

When F is a hyperplane, we call s an *hyperplane symmetry with respect to F or reflection about $F*, and when G is a plane, we call s a *flip about $F*.

It is easy to show that s is an isometry.
Using Proposition 9.8, it is possible to find an orthonormal basis \((e_1, \ldots, e_n)\) of \(E\) consisting of an orthonormal basis of \(F\) and an orthonormal basis of \(G\).

Assume that \(F\) has dimension \(p\), so that \(G\) has dimension \(n - p\).

With respect to the orthonormal basis \((e_1, \ldots, e_n)\), the symmetry \(s\) has a matrix of the form

\[
\begin{pmatrix}
I_p & 0 \\
0 & -I_{n-p}
\end{pmatrix}
\]
Thus, \(\det(s) = (-1)^{n-p} \), and \(s \) is a rotation iff \(n - p \) is even.

In particular, when \(F \) is a hyperplane \(H \), we have \(p = n - 1 \), and \(n - p = 1 \), so that \(s \) is an improper orthogonal transformation.

When \(F = \{0\} \), we have \(s = -\text{id} \), which is called the symmetry with respect to the origin. The symmetry with respect to the origin is a rotation iff \(n \) is even, and an improper orthogonal transformation iff \(n \) is odd.

When \(n \) is odd, we observe that every improper orthogonal transformation is the composition of a rotation with the symmetry with respect to the origin.
When G is a plane, $p = n - 2$, and $\det(s) = (-1)^2 = 1$, so that a flip about F is a rotation.

In particular, when $n = 3$, F is a line, and a flip about the line F is indeed a rotation of measure π.

When $F = H$ is a hyperplane, we can give an explicit formula for $s(u)$ in terms of any nonnull vector w orthogonal to H.

We get

$$s(u) = u - 2 \frac{(u \cdot w)}{\|w\|^2} w.$$

Such reflections are represented by matrices called *Householder matrices*, and they play an important role in numerical matrix analysis. Householder matrices are symmetric and orthogonal.
Over an orthonormal basis \((e_1, \ldots, e_n)\), a hyperplane reflection about a hyperplane \(H\) orthogonal to a nonnull vector \(w\) is represented by the matrix

\[
H = I_n - 2 \frac{WW^\top}{\|W\|^2} = I_n - 2 \frac{WW^\top}{W^\top W},
\]

where \(W\) is the column vector of the coordinates of \(w\).

Since

\[
p_G(u) = \frac{(u \cdot w)}{\|w\|^2} w,
\]

the matrix representing \(p_G\) is

\[
\frac{WW^\top}{W^\top W},
\]

and since \(p_H + p_G = \text{id}\), the matrix representing \(p_H\) is

\[
I_n - \frac{WW^\top}{W^\top W}.
\]
The following fact is the key to the proof that every isometry can be decomposed as a product of reflections.

Proposition 10.1. Let E be any nontrivial Euclidean space. For any two vectors $u, v \in E$, if $\|u\| = \|v\|$, then there is an hyperplane H such that the reflection s about H maps u to v, and if $u \neq v$, then this reflection is unique.

We now show that Hyperplane reflections can be used to obtain another proof of the QR-decomposition.
10.2 QR-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated in terms of Householder matrices, we obtain the fact advertised earlier that every matrix (not necessarily invertible) has a QR-decomposition.

Proposition 10.2. Let E be a nontrivial Euclidean space of dimension n. Given any orthonormal basis (e_1, \ldots, e_n), for any n-tuple of vectors (v_1, \ldots, v_n), there is a sequence of n isometries h_1, \ldots, h_n, such that h_i is a hyperplane reflection or the identity, and if (r_1, \ldots, r_n) are the vectors given by

$$r_j = h_n \circ \cdots \circ h_2 \circ h_1(v_j),$$

then every r_j is a linear combination of the vectors (e_1, \ldots, e_j), $(1 \leq j \leq n)$. Equivalently, the matrix R whose columns are the components of the r_j over the basis (e_1, \ldots, e_n) is an upper triangular matrix. Furthermore, the h_i can be chosen so that the diagonal entries of R are nonnegative.
Remarks. (1) Since every h_i is a hyperplane reflection or the identity,

$$\rho = h_n \circ \cdots \circ h_2 \circ h_1$$

is an isometry.

(2) If we allow negative diagonal entries in R, the last isometry h_n may be omitted.

(3) Instead of picking $r_{k,k} = \|u''_k\|$, which means that

$$w_k = r_{k,k} e_k - u''_k,$$

where $1 \leq k \leq n$, it might be preferable to pick $r_{k,k} = -\|u''_k\|$ if this makes $\|w_k\|^2$ larger, in which case

$$w_k = r_{k,k} e_k + u''_k.$$

Indeed, since the definition of h_k involves division by $\|w_k\|^2$, it is desirable to avoid division by very small numbers.

Proposition 10.2 immediately yields the QR-decomposition in terms of Householder transformations.
Theorem 10.3. For every real $n \times n$-matrix A, there is a sequence H_1, \ldots, H_n of matrices, where each H_i is either a Householder matrix or the identity, and an upper triangular matrix R, such that

$$R = H_n \cdots H_2 H_1 A.$$

As a corollary, there is a pair of matrices Q, R, where Q is orthogonal and R is upper triangular, such that $A = QR$ (a QR-decomposition of A). Furthermore, R can be chosen so that its diagonal entries are non-negative.

Remarks. (1) Letting

$$A_{k+1} = H_k \cdots H_2 H_1 A,$$

with $A_1 = A$, $1 \leq k \leq n$, the proof of Proposition 10.2 can be interpreted in terms of the computation of the sequence of matrices $A_1, \ldots, A_{n+1} = R$.
The matrix A_{k+1} has the shape

$$A_{k+1} = \begin{pmatrix}
\times & \times & \times & \mathbf{u}_1^{k+1} & \times & \times & \times & \times \\
0 & \times & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \times & \mathbf{u}_k^{k+1} & \times & \times & \times & \times \\
0 & 0 & 0 & \mathbf{u}_{k+1}^{k+1} & \times & \times & \times & \times \\
0 & 0 & 0 & \mathbf{u}_{k+2}^{k+1} & \times & \times & \times & \times \\
\vdots & \vdots \\
0 & 0 & 0 & \mathbf{u}_{n-1}^{k+1} & \times & \times & \times & \times \\
0 & 0 & 0 & \mathbf{u}_n^{k+1} & \times & \times & \times & \times
\end{pmatrix}$$

where the $(k + 1)$th column of the matrix is the vector

$$\mathbf{u}_{k+1} = h_k \circ \cdots \circ h_2 \circ h_1(v_{k+1}),$$

and thus

$$\mathbf{u}'_{k+1} = (u_1^{k+1}, \ldots, u_k^{k+1}),$$

and

$$\mathbf{u}''_{k+1} = (u_{k+1}^{k+1}, u_{k+2}^{k+1}, \ldots, u_n^{k+1}).$$

If the last $n - k - 1$ entries in column $k + 1$ are all zero, there is nothing to do and we let $H_{k+1} = I$.
Otherwise, we kill these $n - k - 1$ entries by multiplying A_{k+1} on the left by the Householder matrix H_{k+1} sending $(0, \ldots, 0, u_{k+1}^{k+1}, \ldots, u_n^{k+1})$ to $(0, \ldots, 0, r_{k+1,k+1}, 0, \ldots, 0)$, where
\[r_{k+1,k+1} = \| (u_{k+1}^{k+1}, \ldots, u_n^{k+1}) \| . \]

(2) If we allow negative diagonal entries in R, the matrix H_n may be omitted ($H_n = I$).

(3) If A is invertible and the diagonal entries of R are positive, it can be shown that Q and R are unique.
(4) The method allows the computation of the determinant of A. We have
\[
\det(A) = (-1)^m r_{1,1} \cdots r_{n,n},
\]
where m is the number of Householder matrices (not the identity) among the H_i.

(5) The condition number of the matrix A is preserved. This is very good for numerical stability.