
Chapter 13

Spectral Theorems in Euclidean and
Hermitian Spaces

13.1 Normal Linear Maps

Let E be a real Euclidean space (or a complex Hermitian
space) with inner product u, v 7! hu, vi.

In the real Euclidean case, recall that h�, �i is bilinear,
symmetric and positive definite (i.e., hu, ui > 0 for all
u 6= 0).

In the complex Hermitian case, recall that h�, �i is
sesquilinear, which means that it linear in the first argu-
ment, semilinear in the second argument (i.e.,
hu, µvi = µhu, vi), hv, ui = hu, vi, and positive definite
(as above).
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In both cases we let kuk =
p

hu, ui and the map
u 7! kuk is a norm .

Recall that every linear map, f : E ! E, has an adjoint
f ⇤ which is a linear map, f ⇤ : E ! E, such that

hf (u), vi = hu, f ⇤(v)i,

for all u, v 2 E.

Since h�, �i is symmetric, it is obvious that f ⇤⇤ = f .

Definition 13.1.Given a Euclidean (or Hermitian) space,
E, a linear map f : E ! E is normal i↵

f � f ⇤ = f ⇤ � f.

A linear map f : E ! E is self-adjoint if f = f ⇤, skew-
self-adjoint if f = �f ⇤, and orthogonal if
f � f ⇤ = f ⇤ � f = id.
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Our first goal is to show that for every normal linear map
f : E ! E (where E is a Euclidean space), there is an
orthonormal basis (w.r.t. h�, �i) such that the matrix
of f over this basis has an especially nice form:

It is a block diagonal matrix in which the blocks are ei-
ther one-dimensional matrices (i.e., single entries) or two-
dimensional matrices of the form

✓
� µ

�µ �

◆

This normal form can be further refined if f is self-adjoint,
skew-self-adjoint, or orthogonal.

As a first step, we show that f and f ⇤ have the same
kernel when f is normal.

Proposition 13.1. Given a Euclidean space E, if
f : E ! E is a normal linear map, then
Ker f = Ker f ⇤.
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The next step is to show that for every linear map
f : E ! E, there is some subspace W of dimension 1 or
2 such that f (W ) ✓ W .

When dim(W ) = 1, W is actually an eigenspace for some
real eigenvalue of f .

Furthermore, when f is normal, there is a subspace W of
dimension 1 or 2 such that f (W ) ✓ W and f ⇤(W ) ✓ W .

The di�culty is that the eigenvalues of f are not nec-
essarily real. One way to get around this problem is to
complexify both the vector space E and the inner prod-
uct h�, �i.

First, we need to embed a real vector space E into a
complex vector space EC.
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Definition 13.2. Given a real vector space E, let EC
be the structure E ⇥ E under the addition operation

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2),

and multiplication by a complex scalar z = x+iy defined
such that

(x + iy) · (u, v) = (xu � yv, yu + xv).

The space EC is called the complexification of E.

It is easily shown that the structure EC is a complex
vector space.

It is also immediate that

(0, v) = i(v, 0),

and thus, identifying E with the subspace of EC consist-
ing of all vectors of the form (u, 0), we can write

(u, v) = u + iv.

Given a vector w = u+ iv, its conjugate w is the vector
w = u � iv.
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Observe that if (e1, . . . , en) is a basis of E (a real vector
space), then (e1, . . . , en) is also a basis of EC (recall that
ei is an abreviation for (ei, 0)).

Given a linear map f : E ! E, the map f can be ex-
tended to a linear map fC : EC ! EC defined such that

fC(u + iv) = f (u) + if (v).

For any basis (e1, . . . , en) of E, the matrix M(f ) rep-
resenting f over (e1, . . . , en) is identical to the matrix
M(fC) representing fC over (e1, . . . , en), where we view
(e1, . . . , en) as a basis of EC.

As a consequence, det(zI � M(f )) = det(zI � M(fC)),
which means that f and fC have the same character-
istic polynomial (which has real coe�cients).

We know that every polynomial of degree n with real (or
complex) coe�cients always has n complex roots (counted
with their multiplicity), and the roots of det(zI�M(fC))
that are real (if any) are the eigenvalues of f .
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Next, we need to extend the inner product on E to an
inner product on EC.

The inner product h�, �i on a Euclidean space E is ex-
tended to the Hermitian positive definite form h�, �iC
on EC as follows:

hu1 + iv1, u2 + iv2iC
= hu1, u2i + hv1, v2i + i(hu2, v1i � hu1, v2i).

Then, given any linear map f : E ! E, it is easily verified
that the map f ⇤

C defined such that

f ⇤
C(u + iv) = f ⇤(u) + if ⇤(v)

for all u, v 2 E, is the adjoint of fC w.r.t. h�, �iC.
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Assuming again that E is a Hermitian space, observe
that Proposition 13.1 also holds. We deduce the following
corollary.

Proposition 13.2. Given a Hermitian space E, for
any normal linear map f : E ! E, we have Ker (f ) \
Im(f ) = (0).

Proposition 13.3. Given a Hermitian space E, for
any normal linear map f : E ! E, a vector u is an
eigenvector of f for the eigenvalue � (in C) i↵ u is
an eigenvector of f ⇤ for the eigenvalue �.

The next proposition shows a very important property of
normal linear maps: eigenvectors corresponding to dis-
tinct eigenvalues are orthogonal.

Proposition 13.4. Given a Hermitian space E, for
any normal linear map f : E ! E, if u and v are
eigenvectors of f associated with the eigenvalues �
and µ (in C) where � 6= µ, then hu, vi = 0.
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We can also show easily that the eigenvalues of a self-
adjoint linear map are real.

Proposition 13.5. Given a Hermitian space E, the
eigenvalues of any self-adjoint linear map f : E ! E
are real.

There is also a version of Proposition 13.5 for a (real)
Euclidean space E and a self-adjoint map f : E ! E.

Proposition 13.6. Given a Euclidean space E,
if f : E ! E is any self-adjoint linear map, then every
eigenvalue � of fC is real and is actually an eigenvalue
of f (which means that there is some real eigenvector
u 2 E such that f (u) = �u). Therefore, all the eigen-
values of f are real.

Given any subspace W of a Hermitian space E, recall
that the orthogonal W? of W is the subspace defined
such that

W? = {u 2 E | hu, wi = 0, for all w 2 W}.



654 CHAPTER 13. SPECTRAL THEOREMS

Recall that E = W �W? (construct an orthonormal ba-
sis of E using the Gram–Schmidt orthonormalization pro-
cedure). The same result also holds for Euclidean spaces.

As a warm up for the proof of Theorem 13.10, let us
prove that every self-adjoint map on a Euclidean space
can be diagonalized with respect to an orthonormal basis
of eigenvectors.

Theorem 13.7.Given a Euclidean space E of dimen-
sion n, for every self-adjoint linear map f : E ! E,
there is an orthonormal basis (e1, . . . , en) of eigenvec-
tors of f such that the matrix of f w.r.t. this basis is
a diagonal matrix

0

BB@

�1 . . .
�2 . . .

... ... . . . ...
. . . �n

1

CCA ,

with �i 2 R.
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One of the key points in the proof of Theorem 13.7 is that
we found a subspace W with the property that
f (W ) ✓ W implies that f (W?) ✓ W?.

In general, this does not happen, but normal maps satisfy
a stronger property which ensures that such a subspace
exists.

The following proposition provides a condition that will
allow us to show that a normal linear map can be diago-
nalized. It actually holds for any linear map.

Proposition 13.8. Given a Hermitian space E, for
any linear map f : E ! E and any subspace W of E,
if f (W ) ✓ W , then f ⇤�W?� ✓ W?.

Consequently, if f (W ) ✓ W and f ⇤(W ) ✓ W , then
f
�
W?� ✓ W? and f ⇤�W?� ✓ W?.

The above Proposition also holds for Euclidean spaces .
Although we are ready to prove that for every normal
linear map f (over a Hermitian space) there is an or-
thonormal basis of eigenvectors, we now return to real
Euclidean spaces.
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If f : E ! E is a linear map and w = u + iv is an
eigenvector of fC : EC ! EC for the eigenvalue
z = � + iµ, where u, v 2 E and �, µ 2 R, since

fC(u + iv) = f (u) + if (v)

and

fC(u + iv) = (� + iµ)(u + iv)

= �u � µv + i(µu + �v),

we have

f (u) = �u � µv and f (v) = µu + �v,

from which we immediately obtain

fC(u � iv) = (� � iµ)(u � iv),

which shows that w = u � iv is an eigenvector of fC for
z = � � iµ. Using this fact, we can prove the following
proposition:
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Proposition 13.9. Given a Euclidean space E, for
any normal linear map f : E ! E, if w = u + iv is
an eigenvector of fC associated with the eigenvalue
z = � + iµ (where u, v 2 E and �, µ 2 R), if µ 6= 0
(i.e., z is not real) then hu, vi = 0 and hu, ui = hv, vi,
which implies that u and v are linearly independent,
and if W is the subspace spanned by u and v, then
f (W ) = W and f ⇤(W ) = W . Furthermore, with re-
spect to the (orthogonal) basis (u, v), the restriction of
f to W has the matrix

✓
� µ

�µ �

◆
.

If µ = 0, then � is a real eigenvalue of f and either u
or v is an eigenvector of f for �. If W is the subspace
spanned by u if u 6= 0, or spanned by v 6= 0 if u = 0,
then f (W ) ✓ W and f ⇤(W ) ✓ W .
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Theorem 13.10. (Main Spectral Theorem) Given a
Euclidean space E of dimension n, for every normal
linear map f : E ! E, there is an orthonormal basis
(e1, . . . , en) such that the matrix of f w.r.t. this basis
is a block diagonal matrix of the form

0

BB@

A1 . . .
A2 . . .

... ... . . . ...
. . . Ap

1

CCA

such that each block Aj is either a one-dimensional
matrix (i.e., a real scalar) or a two-dimensional ma-
trix of the form

Aj =

✓
�j �µj

µj �j

◆

where �j, µj 2 R, with µj > 0.
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After this relatively hard work, we can easily obtain some
nice normal forms for the matrices of self-adjoint, skew-
self-adjoint, and orthogonal, linear maps.

However, for the sake of completeness, we state the fol-
lowing theorem.

Theorem 13.11. Given a Hermitian space E of di-
mension n, for every normal linear map f : E ! E,
there is an orthonormal basis (e1, . . . , en) of eigenvec-
tors of f such that the matrix of f w.r.t. this basis is
a diagonal matrix

0

BB@

�1 . . .
�2 . . .

... ... . . . ...
. . . �n

1

CCA

where �j 2 C.

Remark : There is a converse to Theorem 13.11, namely,
if there is an orthonormal basis (e1, . . . , en) of eigenvec-
tors of f , then f is normal.
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13.2 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal
Linear Maps

Theorem 13.12. Given a Euclidean space E of di-
mension n, for every self-adjoint linear map
f : E ! E, there is an orthonormal basis (e1, . . . , en)
of eigenvectors of f such that the matrix of f w.r.t.
this basis is a diagonal matrix

0

BB@

�1 . . .
�2 . . .

... ... . . . ...
. . . �n

1

CCA

where �i 2 R.

Theorem 13.12 implies that if �1, . . . , �p are the distinct
real eigenvalues of f and Ei is the eigenspace associated
with �i, then

E = E1 � · · · � Ep,

where Ei and Ej are othogonal for all i 6= j.



13.2. SELF-ADJOINT AND OTHER SPECIAL LINEAR MAPS 661

Theorem 13.13. Given a Euclidean space E of di-
mension n, for every skew-self-adjoint linear map
f : E ! E, there is an orthonormal basis (e1, . . . , en)
such that the matrix of f w.r.t. this basis is a block
diagonal matrix of the form

0

BB@

A1 . . .
A2 . . .

... ... . . . ...
. . . Ap

1

CCA

such that each block Aj is either 0 or a two-dimensional
matrix of the form

Aj =

✓
0 �µj

µj 0

◆

where µj 2 R, with µj > 0. In particular, the eigen-
values of fC are pure imaginary of the form ±iµj, or
0.
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Theorem 13.14. Given a Euclidean space E of di-
mension n, for every orthogonal linear map
f : E ! E, there is an orthonormal basis (e1, . . . , en)
such that the matrix of f w.r.t. this basis is a block
diagonal matrix of the form

0

BB@

A1 . . .
A2 . . .

... ... . . . ...
. . . Ap

1

CCA

such that each block Aj is either 1, �1, or a two-
dimensional matrix of the form

Aj =

✓
cos ✓j � sin ✓j

sin ✓j cos ✓j

◆

where 0 < ✓j < ⇡.

In particular, the eigenvalues of fC are of the form
cos ✓j ± i sin ✓j, or 1, or �1.
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It is obvious that we can reorder the orthonormal basis of
eigenvectors given by Theorem 13.14, so that the matrix
of f w.r.t. this basis is a block diagonal matrix of the
form

0

BBBB@

A1 . . .
... . . . ... ...

. . . Ar

�Iq

. . . Ip

1

CCCCA

where each block Aj is a two-dimensional rotation matrix
Aj 6= ±I2 of the form

Aj =

✓
cos ✓j � sin ✓j

sin ✓j cos ✓j

◆

with 0 < ✓j < ⇡.

The linear map f has an eigenspaceE(1, f ) = Ker (f � id)
of dimension p for the eigenvalue 1, and an eigenspace
E(�1, f ) = Ker (f + id) of dimension q for the eigen-
value �1.
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If det(f ) = +1 (f is a rotation), the dimension q of
E(�1, f ) must be even, and the entries in �Iq can be
paired to form two-dimensional blocks, if we wish.

Remark : Theorem 13.14 can be used to prove a sharper
version of the Cartan-Dieudonné Theorem.

Theorem 13.15. Let E be a Euclidean space of di-
mension n � 2. For every isometry f 2 O(E), if
p = dim(E(1, f )) = dim(Ker (f � id)), then f is the
composition of n�p reflections and n�p is minimal.

The theorems of this section and of the previous section
can be immediately applied to matrices.
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13.3 Normal, Symmetric, Skew-Symmetric, Orthogo-
nal, Hermitian, Skew-Hermitian, and Unitary Ma-
trices

First, we consider real matrices.

Definition 13.3. Given a real m ⇥ n matrix A, the
transpose A> of A is the n ⇥ m matrix A> = (a>

i j)
defined such that

a>
i j = aj i

for all i, j, 1  i  m, 1  j  n. A real n ⇥ n matrix
A is

1. normal i↵
A A> = A>A,

2. symmetric i↵
A> = A,

3. skew-symmetric i↵

A> = �A,

4. orthogonal i↵

A A> = A>A = In.
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Theorem 13.16. For every normal matrix A, there
is an orthogonal matrix P and a block diagonal matrix
D such that A = PD P>, where D is of the form

D =

0

BB@

D1 . . .
D2 . . .

... ... . . . ...
. . . Dp

1

CCA

such that each block Dj is either a one-dimensional
matrix (i.e., a real scalar) or a two-dimensional ma-
trix of the form

Dj =

✓
�j �µj

µj �j

◆

where �j, µj 2 R, with µj > 0.
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Theorem 13.17. For every symmetric matrix A, there
is an orthogonal matrix P and a diagonal matrix D
such that A = PD P>, where D is of the form

D =

0

BB@

�1 . . .
�2 . . .

... ... . . . ...
. . . �n

1

CCA

where �i 2 R.
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Theorem 13.18. For every skew-symmetric matrix
A, there is an orthogonal matrix P and a block diag-
onal matrix D such that A = PD P>, where D is of
the form

D =

0

BB@

D1 . . .
D2 . . .

... ... . . . ...
. . . Dp

1

CCA

such that each block Dj is either 0 or a two-dimensional
matrix of the form

Dj =

✓
0 �µj

µj 0

◆

where µj 2 R, with µj > 0. In particular, the eigen-
values of A are pure imaginary of the form ±iµj, or
0.
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Theorem 13.19. For every orthogonal matrix A, there
is an orthogonal matrix P and a block diagonal matrix
D such that A = PD P>, where D is of the form

D =

0

BB@

D1 . . .
D2 . . .

... ... . . . ...
. . . Dp

1

CCA

such that each block Dj is either 1, �1, or a two-
dimensional matrix of the form

Dj =

✓
cos ✓j � sin ✓j

sin ✓j cos ✓j

◆

where 0 < ✓j < ⇡.

In particular, the eigenvalues of A are of the form
cos ✓j ± i sin ✓j, or 1, or �1.

We now consider complex matrices.
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Definition 13.4. Given a complex m ⇥ n matrix A,
the transpose A> of A is the n ⇥ m matrix A> = (a>

i j)
defined such that

a>
i j = aj i

for all i, j, 1  i  m, 1  j  n. The conjugate A of
A is the m ⇥ n matrix A = (bi j) defined such that

bi j = ai j

for all i, j, 1  i  m, 1  j  n. Given an n ⇥ n
complex matrix A, the adjoint A⇤ of A is the matrix
defined such that

A⇤ = (A>) = (A)>.

A complex n ⇥ n matrix A is

1. normal i↵
AA⇤ = A⇤A,

2. Hermitian i↵
A⇤ = A,

3. skew-Hermitian i↵

A⇤ = �A,

4. unitary i↵
AA⇤ = A⇤A = In.
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Theorem 13.11 can be restated in terms of matrices as
follows. We can also say a little more about eigenvalues
(easy exercise left to the reader).

Theorem 13.20. For every complex normal matrix
A, there is a unitary matrix U and a diagonal matrix
D such that A = UDU⇤. Furthermore, if A is Hermi-
tian, D is a real matrix, if A is skew-Hermitian, then
the entries in D are pure imaginary or null, and if A
is unitary, then the entries in D have absolute value
1.
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13.4 Conditioning of Eigenvalue Problems

The following n ⇥ n matrix

A =

0

BBBBBB@

0
1 0
1 0
. . . . . .

1 0
1 0

1

CCCCCCA

has the eigenvalue 0 with multiplicity n.

However, if we perturb the top rightmost entry of A by
✏, it is easy to see that the characteristic polynomial of
the matrix

A(✏) =

0

BBBBBB@

0 ✏
1 0
1 0
. . . . . .

1 0
1 0

1

CCCCCCA

is Xn � ✏.
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It follows that if n = 40 and ✏ = 10�40, A(10�40) has the
eigenvalues ek2⇡i/4010�1 with k = 1, . . . , 40.

Thus, we see that a very small change (✏ = 10�40) to the
matrix A causes a significant change to the eigenvalues of
A (from 0 to ek2⇡i/4010�1 ).

Indeed, the relative error is 10�39.

Worse, due to machine precision, since very small num-
bers are treated as 0, the error on the computation of
eigenvalues (for example, of the matrix A(10�40)) can be
very large.

This phenomenon is similar to the phenomenon discussed
in Section 6.3 where we studied the e↵ect of a small per-
tubation of the coe�cients of a linear system Ax = b on
its solution.
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In Section 6.3, we saw that the behavior of a linear system
under small perturbations is governed by the condition
number cond(A) of the matrix A.

In the case of the eigenvalue problem (finding the eigen-
values of a matrix), we will see that the conditioning of the
problem depends on the condition number of the change
of basis matrix P used in reducing the matrix A to its
diagonal form D = P�1AP , rather than on the condition
number of A itself.

The following proposition in which we assume that A is
diagonalizable and that the matrix norm k k satisfies a
special condition (satisfied by the operator norms k kp
for p = 1, 2, 1), is due to Bauer and Fike (1960).
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Proposition 13.21. Let A 2 Mn(C) be a diagonal-
izable matrix, P be an invertible matrix and, D be a
diagonal matrix D = diag(�1, . . . , �n) such that

A = PDP�1,

and let k k be a matrix norm such that

kdiag(↵1, . . . , ↵n)k = max
1in

|↵i|,

for every diagonal matrix. Then, for every perturba-
tion matrix �A, if we write

Bi = {z 2 C | |z � �i|  cond(P ) k�Ak},

for every eigenvalue � of A + �A, we have

� 2
n[

k=1

Bk.
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Proposition 13.21 implies that for any diagonalizable ma-
trix A, if we define �(A) by

�(A) = inf{cond(P ) | P�1AP = D},

then for every eigenvalue � of A + �A, we have

� 2
n[

k=1

{z 2 Cn | |z � �k|  �(A) k�Ak}.

The number �(A) is called the conditioning of A relative
to the eigenvalue problem .

If A is a normal matrix, since by Theorem 13.20, A can be
diagonalized with respect to a unitary matrix U , and since
for the spectral norm kUk2 = 1, we see that �(A) = 1.
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Therefore, normal matrices are very well conditionned
w.r.t. the eigenvalue problem. In fact, for every eigen-
value � of A + �A (with A normal), we have

� 2
n[

k=1

{z 2 Cn | |z � �k|  k�Ak2}.

If A and A+�A are both symmetric (or Hermitian), there
are sharper results; see Proposition 13.27.

Note that the matrix A(✏) from the beginning of the sec-
tion is not normal.
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13.5 Rayleigh Ratios and the Courant-Fischer Theo-
rem

A fact that is used frequently in optimization problems
is that the eigenvalues of a symmetric matrix are charac-
terized in terms of what is known as the Rayleigh ratio,
defined by

R(A)(x) =
x>Ax

x>x
, x 2 Rn, x 6= 0.

The following proposition is often used to prove the cor-
rectness of various optimization or approximation prob-
lems (for example PCA).
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Proposition 13.22. (Rayleigh–Ritz) If A is a sym-
metric n ⇥ n matrix with eigenvalues �1  �2 
· · ·  �n and if (u1, . . . , un) is any orthonormal basis
of eigenvectors of A, where ui is a unit eigenvector
associated with �i, then

max
x 6=0

x>Ax

x>x
= �n

(with the maximum attained for x = un), and

max
x 6=0,x2{un�k+1,...,un}?

x>Ax

x>x
= �n�k

(with the maximum attained for x = un�k), where
1  k  n � 1. Equivalently, if Vk is the subspace
spanned by (u1, . . . , uk), then

�k = max
x 6=0,x2Vk

x>Ax

x>x
, k = 1, . . . , n.
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For our purposes, we need the version of Proposition 13.22
applying to min instead of max, whose proof is obtained
by a trivial modification of the proof of Proposition 13.22.

Proposition 13.23. (Rayleigh–Ritz) If A is a sym-
metric n ⇥ n matrix with eigenvalues �1  �2 
· · ·  �n and if (u1, . . . , un) is any orthonormal basis
of eigenvectors of A, where ui is a unit eigenvector
associated with �i, then

min
x 6=0

x>Ax

x>x
= �1

(with the minimum attained for x = u1), and

min
x 6=0,x2{u1,...,ui�1}?

x>Ax

x>x
= �i

(with the minimum attained for x = ui), where 2 
i  n. Equivalently, if Wk = V ?

k�1 denotes the sub-
space spanned by (uk, . . . , un) (with V0 = (0)), then

�k = min
x 6=0,x2Wk

x>Ax

x>x
= min

x 6=0,x2V ?
k�1

x>Ax

x>x
, k = 1, . . . , n.
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Propositions 13.22 and 13.23 together are known the
Rayleigh–Ritz theorem .

As an application of Propositions 13.22 and 13.23, we
prove a proposition which allows us to compare the eigen-
values of two symmetric matrices A and B = R>AR,
where R is a rectangular matrix satisfying the equation
R>R = I .

First, we need a definition. Given an n ⇥ n symmetric
matrix A and an m ⇥ m symmetric B, with m  n,
if �1  �2  · · ·  �n are the eigenvalues of A and
µ1  µ2  · · ·  µm are the eigenvalues of B, then we
say that the eigenvalues of B interlace the eigenvalues of
A if

�i  µi  �n�m+i, i = 1, . . . , m.
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Proposition 13.24. Let A be an n ⇥ n symmetric
matrix, R be an n ⇥ m matrix such that R>R = I
(with m  n), and let B = R>AR (an m⇥m matrix).
The following properties hold:

(a) The eigenvalues of B interlace the eigenvalues of
A.

(b) If �1  �2  · · ·  �n are the eigenvalues of A and
µ1  µ2  · · ·  µm are the eigenvalues of B, and
if �i = µi, then there is an eigenvector v of B with
eigenvalue µi such that Rv is an eigenvector of A
with eigenvalue �i.

Proposition 13.24 immediately implies the Poincaré sep-
aration theorem. It can be used in situations, such as
in quantum mechanics, where one has information about
the inner products u>

i Auj.



13.5. RAYLEIGH RATIOS AND THE COURANT-FISCHER THEOREM 683

Proposition 13.25. (Poincaré separation theorem)
Let A be a n⇥n symmetric (or Hermitian) matrix, let
r be some integer with 1  r  n, and let (u1, . . . , ur)
be r orthonormal vectors. Let B = (u>

i Auj) (an r ⇥ r
matrix), let �1(A)  . . .  �n(A) be the eigenvalues
of A and �1(B)  . . .  �r(B) be the eigenvalues of
B; then we have

�k(A)  �k(B)  �k+n�r(A), k = 1, . . . , r.

Observe that Proposition 13.24 implies that

�1 + · · · + �m  tr(R>AR)  �n�m+1 + · · · + �n.
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If P1 is the the n ⇥ (n � 1) matrix obtained from the
identity matrix by dropping its last column, we have
P>

1 P1 = I , and the matrix B = P>
1 AP1 is the ma-

trix obtained from A by deleting its last row and its last
column. In this case, the interlacing result is

�1  µ1  �2  µ2  · · ·  µn�2  �n�1  µn�1  �n,

a genuine interlacing.

We obtain similar results with the matrix Pn�r obtained
by dropping the last n�r columns of the identity matrix
and setting B = P>

n�rAPn�r (B is the r ⇥ r matrix ob-
tained fromA by deleting its last n�r rows and columns).

In this case, we have the following interlacing inequalities
known as Cauchy interlacing theorem :

�k  µk  �k+n�r, k = 1, . . . , r. (⇤)
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Another useful tool to prove eigenvalue equalities is the
Courant–Fischer characterization of the eigenvalues of a
symmetric matrix, also known as the Min-max (and Max-
min) theorem.

Theorem 13.26. (Courant–Fischer) Let A be a sym-
metric n⇥n matrix with eigenvalues �1  �2  · · · 
�n. If Vk denotes the set of subspaces of Rn of dimen-
sion k, then

�k = max
W2Vn�k+1

min
x2W,x6=0

x>Ax

x>x

�k = min
W2Vk

max
x2W,x6=0

x>Ax

x>x
.

The Courant–Fischer theorem yields the following useful
result about perturbing the eigenvalues of a symmetric
matrix due to Hermann Weyl.
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Proposition 13.27.Given two n⇥n symmetric ma-
trices A and B = A + �A, if ↵1  ↵2  · · ·  ↵n are
the eigenvalues of A and �1  �2  · · ·  �n are the
eigenvalues of B, then

|↵k � �k|  ⇢(�A)  k�Ak2 , k = 1, . . . , n.

Proposition 13.27 also holds for Hermitian matrices.

A pretty result of Wielandt and Ho↵man asserts that
nX

k=1

(↵k � �k)
2  k�Ak2

F ,

where k kF is the Frobenius norm. However, the proof is
significantly harder than the above proof; see Lax [25].

The Courant–Fischer theorem can also be used to prove
some famous inequalities due to Hermann Weyl.



13.5. RAYLEIGH RATIOS AND THE COURANT-FISCHER THEOREM 687

Given two symmetric (or Hermitian) matrices A and B,
let �i(A), �i(B), and �i(A+B) denote the ith eigenvalue
of A, B, and A+B, respectively, arranged in nondecreas-
ing order.

Proposition 13.28. (Weyl) Given two symmetric (or
Hermitian) n⇥n matrices A and B, the following in-
equalities hold: For all i, j, k with 1  i, j, k  n:

1. If i + j = k + 1, then

�i(A) + �j(B)  �k(A + B).

2. If i + j = k + n, then

�k(A + B)  �i(A) + �j(B).

In the special case i = j = k, we obtain

�1(A)+�1(B)  �1(A+B), �n(A+B)  �n(A)+�n(B).

It follows that �1 is concave, while �n is convex.
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If i = 1 and j = k, we obtain

�1(A) + �k(B)  �k(A + B),

and if i = k and j = n, we obtain

�k(A + B)  �k(A) + �n(B),

and combining them, we get

�1(A) + �k(B)  �k(A + B)  �k(A) + �n(B).

In particular, if B is positive semidefinite, since its eigen-
values are nonnegative, we obtain the following inequality
known as the monotonicity theorem for symmetric (or
Hermitian) matrices:

ifA andB are symmetric (or Hermitian) andB is positive
semidefinite, then

�k(A)  �k(A + B) k = 1, . . . , n.


