Chapter 13

Spectral Theorems in Euclidean and Hermitian Spaces

13.1 Normal Linear Maps

Let E be a real Euclidean space (or a complex Hermitian space) with inner product $u, v \mapsto\langle u, v\rangle$.

In the real Euclidean case, recall that $\langle-,-\rangle$ is bilinear, symmetric and positive definite (i.e., $\langle u, u\rangle>0$ for all $u \neq 0)$.

In the complex Hermitian case, recall that $\langle-,-\rangle$ is sesquilinear, which means that it linear in the first argument, semilinear in the second argument (i.e.,
$\langle u, \mu v\rangle=\bar{\mu}\langle u, v\rangle),\langle v, u\rangle=\overline{\langle u, v\rangle}$, and positive definite (as above).

In both cases we let $\|u\|=\sqrt{\langle u, u\rangle}$ and the map $u \mapsto\|u\|$ is a norm.

Recall that every linear map, $f: E \rightarrow E$, has an adjoint f^{*} which is a linear map, $f^{*}: E \rightarrow E$, such that

$$
\langle f(u), v\rangle=\left\langle u, f^{*}(v)\right\rangle
$$

for all $u, v \in E$.

Since $\langle-,-\rangle$ is symmetric, it is obvious that $f^{* *}=f$.

Definition 13.1. Given a Euclidean (or Hermitian) space, E, a linear map $f: E \rightarrow E$ is normal iff

$$
f \circ f^{*}=f^{*} \circ f
$$

A linear map $f: E \rightarrow E$ is self-adjoint if $f=f^{*}$, skew-self-adjoint if $f=-f^{*}$, and orthogonal if $f \circ f^{*}=f^{*} \circ f=\mathrm{id}$.

Our first goal is to show that for every normal linear map $f: E \rightarrow E$ (where E is a Euclidean space), there is an orthonormal basis (w.r.t. $\langle-,-\rangle$) such that the matrix of f over this basis has an especially nice form:

It is a block diagonal matrix in which the blocks are either one-dimensional matrices (i.e., single entries) or twodimensional matrices of the form

$$
\left(\begin{array}{cc}
\lambda & \mu \\
-\mu & \lambda
\end{array}\right)
$$

This normal form can be further refined if f is self-adjoint, skew-self-adjoint, or orthogonal.

As a first step, we show that f and f^{*} have the same kernel when f is normal.

Proposition 13.1. Given a Euclidean space E, if $f: E \rightarrow E$ is a normal linear map, then
Ker $f=\operatorname{Ker} f^{*}$.

The next step is to show that for every linear map $f: E \rightarrow E$, there is some subspace W of dimension 1 or 2 such that $f(W) \subseteq W$.

When $\operatorname{dim}(W)=1, W$ is actually an eigenspace for some real eigenvalue of f.

Furthermore, when f is normal, there is a subspace W of dimension 1 or 2 such that $f(W) \subseteq W$ and $f^{*}(W) \subseteq W$.

The difficulty is that the eigenvalues of f are not necessarily real. One way to get around this problem is to complexify both the vector space E and the inner product $\langle-,-\rangle$.

First, we need to embed a real vector space E into a complex vector space $E_{\mathbb{C}}$.

Definition 13.2. Given a real vector space E, let $E_{\mathbb{C}}$ be the structure $E \times E$ under the addition operation

$$
\left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)
$$

and multiplication by a complex scalar $z=x+i y$ defined such that

$$
(x+i y) \cdot(u, v)=(x u-y v, y u+x v)
$$

The space $E_{\mathbb{C}}$ is called the complexification of E.

It is easily shown that the structure $E_{\mathbb{C}}$ is a complex vector space.

It is also immediate that

$$
(0, v)=i(v, 0)
$$

and thus, identifying E with the subspace of $E_{\mathbb{C}}$ consisting of all vectors of the form $(u, 0)$, we can write

$$
(u, v)=u+i v
$$

Given a vector $w=u+i v$, its conjugate \bar{w} is the vector $\bar{w}=u-i v$.

Observe that if $\left(e_{1}, \ldots, e_{n}\right)$ is a basis of E (a real vector space), then $\left(e_{1}, \ldots, e_{n}\right)$ is also a basis of $E_{\mathbb{C}}$ (recall that e_{i} is an abreviation for $\left.\left(e_{i}, 0\right)\right)$.

Given a linear map $f: E \rightarrow E$, the map f can be extended to a linear map $f_{\mathbb{C}}: E_{\mathbb{C}} \rightarrow E_{\mathbb{C}}$ defined such that

$$
f_{\mathbb{C}}(u+i v)=f(u)+i f(v)
$$

For any basis $\left(e_{1}, \ldots, e_{n}\right)$ of E, the matrix $M(f)$ representing f over $\left(e_{1}, \ldots, e_{n}\right)$ is identical to the matrix $M\left(f_{\mathbb{C}}\right)$ representing $f_{\mathbb{C}}$ over $\left(e_{1}, \ldots, e_{n}\right)$, where we view $\left(e_{1}, \ldots, e_{n}\right)$ as a basis of $E_{\mathbb{C}}$.

As a consequence, $\operatorname{det}(z I-M(f))=\operatorname{det}\left(z I-M\left(f_{\mathbb{C}}\right)\right)$, which means that f and $f_{\mathbb{C}}$ have the same characteristic polynomial (which has real coefficients).

We know that every polynomial of degree n with real (or complex) coefficients always has n complex roots (counted with their multiplicity), and the roots of $\operatorname{det}\left(z I-M\left(f_{\mathbb{C}}\right)\right)$ that are real (if any) are the eigenvalues of f.

Next, we need to extend the inner product on E to an inner product on $E_{\mathbb{C}}$.

The inner product $\langle-,-\rangle$ on a Euclidean space E is extended to the Hermitian positive definite form $\langle-,\rangle_{\mathbb{C}}$ on $E_{\mathbb{C}}$ as follows:

$$
\begin{aligned}
& \left\langle u_{1}+i v_{1}, u_{2}+i v_{2}\right\rangle_{\mathbb{C}} \\
& \quad=\left\langle u_{1}, u_{2}\right\rangle+\left\langle v_{1}, v_{2}\right\rangle+i\left(\left\langle u_{2}, v_{1}\right\rangle-\left\langle u_{1}, v_{2}\right\rangle\right) .
\end{aligned}
$$

Then, given any linear map $f: E \rightarrow E$, it is easily verified that the map $f_{\mathbb{C}}^{*}$ defined such that

$$
f_{\mathbb{C}}^{*}(u+i v)=f^{*}(u)+i f^{*}(v)
$$

for all $u, v \in E$, is the adjoint of $f_{\mathbb{C}}$ w.r.t. $\langle-,-\rangle_{\mathbb{C}}$.

Assuming again that E is a Hermitian space, observe that Proposition 13.1 also holds. We deduce the following corollary.

Proposition 13.2. Given a Hermitian space E, for any normal linear map $f: E \rightarrow E$, we have $\operatorname{Ker}(f) \cap$ $\operatorname{Im}(f)=(0)$.

Proposition 13.3. Given a Hermitian space E, for any normal linear map $f: E \rightarrow E$, a vector u is an eigenvector of f for the eigenvalue λ (in \mathbb{C}) iff u is an eigenvector of f^{*} for the eigenvalue $\bar{\lambda}$.

The next proposition shows a very important property of normal linear maps: eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proposition 13.4. Given a Hermitian space E, for any normal linear map $f: E \rightarrow E$, if u and v are eigenvectors of f associated with the eigenvalues λ and μ (in \mathbb{C}) where $\lambda \neq \mu$, then $\langle u, v\rangle=0$.

We can also show easily that the eigenvalues of a selfadjoint linear map are real.

Proposition 13.5. Given a Hermitian space E, the eigenvalues of any self-adjoint linear map $f: E \rightarrow E$ are real.

There is also a version of Proposition 13.5 for a (real) Euclidean space E and a self-adjoint map $f: E \rightarrow E$.

Proposition 13.6. Given a Euclidean space E, if $f: E \rightarrow E$ is any self-adjoint linear map, then every eigenvalue λ of $f_{\mathbb{C}}$ is real and is actually an eigenvalue of f (which means that there is some real eigenvector $u \in E$ such that $f(u)=\lambda u)$. Therefore, all the eigenvalues of f are real.

Given any subspace W of a Hermitian space E, recall that the orthogonal W^{\perp} of W is the subspace defined such that

$$
W^{\perp}=\{u \in E \mid\langle u, w\rangle=0, \text { for all } w \in W\}
$$

Recall that $E=W \oplus W^{\perp}$ (construct an orthonormal basis of E using the Gram-Schmidt orthonormalization procedure). The same result also holds for Euclidean spaces.

As a warm up for the proof of Theorem 13.10, let us prove that every self-adjoint map on a Euclidean space can be diagonalized with respect to an orthonormal basis of eigenvectors.

Theorem 13.7. Given a Euclidean space E of dimension n, for every self-adjoint linear map $f: E \rightarrow E$, there is an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal matrix

$$
\left(\begin{array}{cccc}
\lambda_{1} & & \ldots & \\
& \lambda_{2} & \ldots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \ldots & \lambda_{n}
\end{array}\right)
$$

with $\lambda_{i} \in \mathbb{R}$.

One of the key points in the proof of Theorem 13.7 is that we found a subspace W with the property that $f(W) \subseteq W$ implies that $f\left(W^{\perp}\right) \subseteq W^{\perp}$.

In general, this does not happen, but normal maps satisfy a stronger property which ensures that such a subspace exists.

The following proposition provides a condition that will allow us to show that a normal linear map can be diagonalized. It actually holds for any linear map.

Proposition 13.8. Given a Hermitian space E, for any linear map $f: E \rightarrow E$ and any subspace W of E, if $f(W) \subseteq W$, then $f^{*}\left(W^{\perp}\right) \subseteq W^{\perp}$.

Consequently, if $f(W) \subseteq W$ and $f^{*}(W) \subseteq W$, then $f\left(W^{\perp}\right) \subseteq W^{\perp}$ and $f^{*}\left(W^{\perp}\right) \subseteq W^{\perp}$.

The above Proposition also holds for Euclidean spaces. Although we are ready to prove that for every normal linear map f (over a Hermitian space) there is an orthonormal basis of eigenvectors, we now return to real Euclidean spaces.

If $f: E \rightarrow E$ is a linear map and $w=u+i v$ is an eigenvector of $f_{\mathbb{C}}: E_{\mathbb{C}} \rightarrow E_{\mathbb{C}}$ for the eigenvalue $z=\lambda+i \mu$, where $u, v \in E$ and $\lambda, \mu \in \mathbb{R}$, since

$$
f_{\mathbb{C}}(u+i v)=f(u)+i f(v)
$$

and

$$
\begin{aligned}
f_{\mathbb{C}}(u+i v)=(\lambda+i \mu)(u+i v) & \\
& =\lambda u-\mu v+i(\mu u+\lambda v)
\end{aligned}
$$

we have

$$
f(u)=\lambda u-\mu v \quad \text { and } \quad f(v)=\mu u+\lambda v
$$

from which we immediately obtain

$$
f_{\mathbb{C}}(u-i v)=(\lambda-i \mu)(u-i v)
$$

which shows that $\bar{w}=u-i v$ is an eigenvector of $f_{\mathbb{C}}$ for $\bar{z}=\lambda-i \mu$. Using this fact, we can prove the following proposition:

Proposition 13.9. Given a Euclidean space E, for any normal linear map $f: E \rightarrow E$, if $w=u+i v$ is an eigenvector of $f_{\mathbb{C}}$ associated with the eigenvalue $z=\lambda+i \mu$ (where $u, v \in E$ and $\lambda, \mu \in \mathbb{R}$), if $\mu \neq 0$ (i.e., z is not real) then $\langle u, v\rangle=0$ and $\langle u, u\rangle=\langle v, v\rangle$, which implies that u and v are linearly independent, and if W is the subspace spanned by u and v, then $f(W)=W$ and $f^{*}(W)=W$. Furthermore, with respect to the (orthogonal) basis (u, v), the restriction of f to W has the matrix

$$
\left(\begin{array}{cc}
\lambda & \mu \\
-\mu & \lambda
\end{array}\right) .
$$

If $\mu=0$, then λ is a real eigenvalue of f and either u or v is an eigenvector of f for λ. If W is the subspace spanned by u if $u \neq 0$, or spanned by $v \neq 0$ if $u=0$, then $f(W) \subseteq W$ and $f^{*}(W) \subseteq W$.

Theorem 13.10. (Main Spectral Theorem) Given a Euclidean space E of dimension n, for every normal linear map $f: E \rightarrow E$, there is an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ such that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\left(\begin{array}{cccc}
A_{1} & & \ldots & \\
& A_{2} & \ldots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \ldots & A_{p}
\end{array}\right)
$$

such that each block A_{j} is either a one-dimensional matrix (ie., a real scalar) or a two-dimensional matrix of the form

$$
A_{j}=\left(\begin{array}{cc}
\lambda_{j} & -\mu_{j} \\
\mu_{j} & \lambda_{j}
\end{array}\right)
$$

where $\lambda_{j}, \mu_{j} \in \mathbb{R}$, with $\mu_{j}>0$.

After this relatively hard work, we can easily obtain some nice normal forms for the matrices of self-adjoint, skew-self-adjoint, and orthogonal, linear maps.

However, for the sake of completeness, we state the following theorem.

Theorem 13.11. Given a Hermitian space E of dimension n, for every normal linear map $f: E \rightarrow E$, there is an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal matrix

$$
\left(\begin{array}{cccc}
\lambda_{1} & & \ldots & \\
& \lambda_{2} & \ldots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \ldots & \lambda_{n}
\end{array}\right)
$$

where $\lambda_{j} \in \mathbb{C}$.

Remark: There is a converse to Theorem 13.11, namely, if there is an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of eigenvectors of f, then f is normal.

13.2 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal Linear Maps

Theorem 13.12. Given a Euclidean space E of dimension n, for every self-adjoint linear map $f: E \rightarrow E$, there is an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal matrix

$$
\left(\begin{array}{cccc}
\lambda_{1} & & \ldots & \\
& \lambda_{2} & \ldots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \ldots & \lambda_{n}
\end{array}\right)
$$

where $\lambda_{i} \in \mathbb{R}$.

Theorem 13.12 implies that if $\lambda_{1}, \ldots, \lambda_{p}$ are the distinct real eigenvalues of f and E_{i} is the eigenspace associated with λ_{i}, then

$$
E=E_{1} \oplus \cdots \oplus E_{p}
$$

where E_{i} and E_{j} are othogonal for all $i \neq j$.

Theorem 13.13. Given a Euclidean space E of dimension n, for every skew-self-adjoint linear map $f: E \rightarrow E$, there is an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ such that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\left(\begin{array}{cccc}
A_{1} & & \ldots & \\
& A_{2} & \ldots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \ldots & A_{p}
\end{array}\right)
$$

such that each block A_{j} is either 0 or a two-dimensional matrix of the form

$$
A_{j}=\left(\begin{array}{cc}
0 & -\mu_{j} \\
\mu_{j} & 0
\end{array}\right)
$$

where $\mu_{j} \in \mathbb{R}$, with $\mu_{j}>0$. In particular, the eigenvalues of $f_{\mathbb{C}}$ are pure imaginary of the form $\pm i \mu_{j}$, or 0 .

Theorem 13.14. Given a Euclidean space E of dimension n, for every orthogonal linear map $f: E \rightarrow E$, there is an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ such that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\left(\begin{array}{cccc}
A_{1} & & \ldots & \\
& A_{2} & \ldots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \ldots & A_{p}
\end{array}\right)
$$

such that each block A_{j} is either 1, -1 , or a twodimensional matrix of the form

$$
A_{j}=\left(\begin{array}{cc}
\cos \theta_{j} & -\sin \theta_{j} \\
\sin \theta_{j} & \cos \theta_{j}
\end{array}\right)
$$

where $0<\theta_{j}<\pi$.
In particular, the eigenvalues of $f_{\mathbb{C}}$ are of the form $\cos \theta_{j} \pm i \sin \theta_{j}$, or 1 , or -1 .

It is obvious that we can reorder the orthonormal basis of eigenvectors given by Theorem 13.14, so that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\left(\begin{array}{ccccc}
A_{1} & \cdots & & & \\
\vdots & \ddots & \vdots & & \vdots \\
& \ldots & A_{r} & & \\
& & & -I_{q} & \\
& & & & I_{p}
\end{array}\right)
$$

where each block A_{j} is a two-dimensional rotation matrix $A_{j} \neq \pm I_{2}$ of the form

$$
A_{j}=\left(\begin{array}{cc}
\cos \theta_{j} & -\sin \theta_{j} \\
\sin \theta_{j} & \cos \theta_{j}
\end{array}\right)
$$

with $0<\theta_{j}<\pi$.
The linear map f has an eigenspace $E(1, f)=\operatorname{Ker}(f-\mathrm{id})$ of dimension p for the eigenvalue 1 , and an eigenspace $E(-1, f)=\operatorname{Ker}(f+\mathrm{id})$ of dimension q for the eigenvalue -1 .

If $\operatorname{det}(f)=+1(f$ is a rotation $)$, the $\operatorname{dimension~} q$ of $E(-1, f)$ must be even, and the entries in $-I_{q}$ can be paired to form two-dimensional blocks, if we wish.

Remark: Theorem 13.14 can be used to prove a sharper version of the Cartan-Dieudonné Theorem.

Theorem 13.15. Let E be a Euclidean space of dimension $n \geq 2$. For every isometry $f \in \mathbf{O}(E)$, if $p=\operatorname{dim}(E(1, f))=\operatorname{dim}(\operatorname{Ker}(f-\mathrm{id}))$, then f is the composition of $n-p$ reflections and $n-p$ is minimal.

The theorems of this section and of the previous section can be immediately applied to matrices.
13.3 Normal, Symmetric, Skew-Symmetric, Orthogonal, Hermitian, Skew-Hermitian, and Unitary Matrices

First, we consider real matrices.
Definition 13.3. Given a real $m \times n$ matrix A, the transpose A^{\top} of A is the $n \times m$ matrix $A^{\top}=\left(a_{i j}^{\top}\right)$ defined such that

$$
a_{i j}^{\top}=a_{j i}
$$

for all $i, j, 1 \leq i \leq m, 1 \leq j \leq n$. A real $n \times n$ matrix A is

1. normal iff

$$
A A^{\top}=A^{\top} A
$$

2. symmetric iff

$$
A^{\top}=A
$$

3. skew-symmetric iff

$$
A^{\top}=-A
$$

4. orthogonal iff

$$
A A^{\top}=A^{\top} A=I_{n}
$$

Theorem 13.16. For every normal matrix A, there is an orthogonal matrix P and a block diagonal matrix D such that $A=P D P^{\top}$, where D is of the form

$$
D=\left(\begin{array}{cccc}
D_{1} & & \ldots & \\
& D_{2} & \ldots & \\
\vdots & \vdots & \ddots & : \\
& & \ldots & D_{p}
\end{array}\right)
$$

such that each block D_{j} is either a one-dimensional matrix (i.e., a real scalar) or a two-dimensional matrix of the form

$$
D_{j}=\left(\begin{array}{cc}
\lambda_{j} & -\mu_{j} \\
\mu_{j} & \lambda_{j}
\end{array}\right)
$$

where $\lambda_{j}, \mu_{j} \in \mathbb{R}$, with $\mu_{j}>0$.

Theorem 13.17. For every symmetric matrix A, there is an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{\top}$, where D is of the form

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & & \ldots & \\
& \lambda_{2} & \ldots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \ldots & \lambda_{n}
\end{array}\right)
$$

where $\lambda_{i} \in \mathbb{R}$.

Theorem 13.18. For every skew-symmetric matrix A, there is an orthogonal matrix P and a block diagonal matrix D such that $A=P D P^{\top}$, where D is of the form

$$
D=\left(\begin{array}{cccc}
D_{1} & & \ldots & \\
& D_{2} & \ldots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \ldots & D_{p}
\end{array}\right)
$$

such that each block D_{j} is either 0 or a two-dimensional matrix of the form

$$
D_{j}=\left(\begin{array}{cc}
0 & -\mu_{j} \\
\mu_{j} & 0
\end{array}\right)
$$

where $\mu_{j} \in \mathbb{R}$, with $\mu_{j}>0$. In particular, the eigenvalues of A are pure imaginary of the form $\pm i \mu_{j}$, or 0 .

Theorem 13.19. For every orthogonal matrix A, there is an orthogonal matrix P and a block diagonal matrix D such that $A=P D P^{\top}$, where D is of the form

$$
D=\left(\begin{array}{cccc}
D_{1} & & \ldots & \\
& D_{2} & \ldots & \\
\vdots & \vdots & \ddots & \vdots \\
& & \ldots & D_{p}
\end{array}\right)
$$

such that each block D_{j} is either 1, -1 , or a twodimensional matrix of the form

$$
D_{j}=\left(\begin{array}{cc}
\cos \theta_{j} & -\sin \theta_{j} \\
\sin \theta_{j} & \cos \theta_{j}
\end{array}\right)
$$

where $0<\theta_{j}<\pi$.
In particular, the eigenvalues of A are of the form $\cos \theta_{j} \pm i \sin \theta_{j}$, or 1 , or -1 .

We now consider complex matrices.

Definition 13.4. Given a complex $m \times n$ matrix A, the transpose A^{\top} of A is the $n \times m$ matrix $A^{\top}=\left(a_{i j}^{\top}\right)$ defined such that

$$
a_{i j}^{\top}=a_{j i}
$$

for all $i, j, 1 \leq i \leq m, 1 \leq j \leq n$. The conjugate \bar{A} of A is the $m \times n$ matrix $\bar{A}=\left(b_{i j}\right)$ defined such that

$$
b_{i j}=\bar{a}_{i j}
$$

for all $i, j, 1 \leq i \leq m, 1 \leq j \leq n$. Given an $n \times n$ complex matrix A, the adjoint A^{*} of A is the matrix defined such that

$$
A^{*}=\overline{\left(A^{\top}\right)}=(\bar{A})^{\top}
$$

A complex $n \times n$ matrix A is

1. normal iff

$$
A A^{*}=A^{*} A
$$

2. Hermitian iff

$$
A^{*}=A
$$

3. skew-Hermitian iff

$$
A^{*}=-A
$$

4. unitary iff

$$
A A^{*}=A^{*} A=I_{n}
$$

Theorem 13.11 can be restated in terms of matrices as follows. We can also say a little more about eigenvalues (easy exercise left to the reader).

Theorem 13.20. For every complex normal matrix A, there is a unitary matrix U and a diagonal matrix D such that $A=U D U^{*}$. Furthermore, if A is Hermitian, D is a real matrix, if A is skew-Hermitian, then the entries in D are pure imaginary or null, and if A is unitary, then the entries in D have absolute value 1.

13.4 Conditioning of Eigenvalue Problems

The following $n \times n$ matrix

$$
A=\left(\begin{array}{cccccc}
0 & & & & & \\
1 & 0 & & & & \\
& 1 & 0 & & & \\
& & & \ddots & \ddots & \\
& & & & 1 & 0 \\
& & & & & 1
\end{array}\right)
$$

has the eigenvalue 0 with multiplicity n.
However, if we perturb the top rightmost entry of A by ϵ, it is easy to see that the characteristic polynomial of the matrix

$$
A(\epsilon)=\left(\begin{array}{cccccc}
0 & & & & & \epsilon \\
1 & 0 & & & & \\
& 1 & 0 & & & \\
& & \ddots & \ddots & & \\
& & & & 1 & 0 \\
& & & & & 1
\end{array}\right)
$$

is $X^{n}-\epsilon$.

It follows that if $n=40$ and $\epsilon=10^{-40}, A\left(10^{-40}\right)$ has the eigenvalues $e^{k 2 \pi i / 40} 10^{-1}$ with $k=1, \ldots, 40$.

Thus, we see that a very small change $\left(\epsilon=10^{-40}\right)$ to the matrix A causes a significant change to the eigenvalues of A (from 0 to $e^{k 2 \pi i / 40} 10^{-1}$).

Indeed, the relative error is 10^{-39}.
Worse, due to machine precision, since very small numbers are treated as 0 , the error on the computation of eigenvalues (for example, of the matrix $A\left(10^{-40}\right)$) can be very large.

This phenomenon is similar to the phenomenon discussed in Section 6.3 where we studied the effect of a small pertubation of the coefficients of a linear system $A x=b$ on its solution.

In Section 6.3, we saw that the behavior of a linear system under small perturbations is governed by the condition number $\operatorname{cond}(A)$ of the matrix A.

In the case of the eigenvalue problem (finding the eigenvalues of a matrix), we will see that the conditioning of the problem depends on the condition number of the change of basis matrix P used in reducing the matrix A to its diagonal form $D=P^{-1} A P$, rather than on the condition number of A itself.

The following proposition in which we assume that A is diagonalizable and that the matrix norm $\|\|$ satisfies a special condition (satisfied by the operator norms $\left\|\|_{p}\right.$ for $p=1,2, \infty)$, is due to Bauer and Fike (1960).

Proposition 13.21. Let $A \in \mathrm{M}_{n}(\mathbb{C})$ be a diagonalizable matrix, P be an invertible matrix and, D be a diagonal matrix $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that

$$
A=P D P^{-1}
$$

and let || || be a matrix norm such that

$$
\left\|\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\|=\max _{1 \leq i \leq n}\left|\alpha_{i}\right|,
$$

for every diagonal matrix. Then, for every perturbation matrix δA, if we write

$$
B_{i}=\left\{z \in \mathbb{C}| | z-\lambda_{i} \mid \leq \operatorname{cond}(P)\|\delta A\|\right\},
$$

for every eigenvalue λ of $A+\delta A$, we have

$$
\lambda \in \bigcup_{k=1}^{n} B_{k} .
$$

Proposition 13.21 implies that for any diagonalizable matrix A, if we define $\Gamma(A)$ by

$$
\Gamma(A)=\inf \left\{\operatorname{cond}(P) \mid P^{-1} A P=D\right\}
$$

then for every eigenvalue λ of $A+\delta A$, we have

$$
\lambda \in \bigcup_{k=1}^{n}\left\{z \in \mathbb{C}^{n}| | z-\lambda_{k} \mid \leq \Gamma(A)\|\delta A\|\right\}
$$

The number $\Gamma(A)$ is called the conditioning of A relative to the eigenvalue problem.

If A is a normal matrix, since by Theorem $13.20, A$ can be diagonalized with respect to a unitary matrix U, and since for the spectral norm $\|U\|_{2}=1$, we see that $\Gamma(A)=1$.

Therefore, normal matrices are very well conditionned w.r.t. the eigenvalue problem. In fact, for every eigenvalue λ of $A+\delta A$ (with A normal), we have

$$
\lambda \in \bigcup_{k=1}^{n}\left\{z \in \mathbb{C}^{n}| | z-\lambda_{k} \mid \leq\|\delta A\|_{2}\right\}
$$

If A and $A+\delta A$ are both symmetric (or Hermitian), there are sharper results; see Proposition 13.27.

Note that the matrix $A(\epsilon)$ from the beginning of the section is not normal.

13.5 Rayleigh Ratios and the Courant-Fischer Theorem

A fact that is used frequently in optimization problems is that the eigenvalues of a symmetric matrix are characterized in terms of what is known as the Rayleigh ratio, defined by

$$
R(A)(x)=\frac{x^{\top} A x}{x^{\top} x}, \quad x \in \mathbb{R}^{n}, x \neq 0
$$

The following proposition is often used to prove the correctness of various optimization or approximation problems (for example PCA).

Proposition 13.22. (Rayleigh-Ritz) If A is a symmetric $n \times n$ matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq$ $\cdots \leq \lambda_{n}$ and if $\left(u_{1}, \ldots, u_{n}\right)$ is any orthonormal basis of eigenvectors of A, where u_{i} is a unit eigenvector associated with λ_{i}, then

$$
\max _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x}=\lambda_{n}
$$

(with the maximum attained for $x=u_{n}$), and

$$
\max _{x \neq 0, x \in\left\{u_{n-k+1}, \ldots, u_{n}\right\}^{\perp}} \frac{x^{\top} A x}{x^{\top} x}=\lambda_{n-k}
$$

(with the maximum attained for $x=u_{n-k}$), where $1 \leq k \leq n-1$. Equivalently, if V_{k} is the subspace spanned by $\left(u_{1}, \ldots, u_{k}\right)$, then

$$
\lambda_{k}=\max _{x \neq 0, x \in V_{k}} \frac{x^{\top} A x}{x^{\top} x}, \quad k=1, \ldots, n .
$$

For our purposes, we need the version of Proposition 13.22 applying to min instead of max, whose proof is obtained by a trivial modification of the proof of Proposition 13.22.

Proposition 13.23. (Rayleigh-Ritz) If A is a symmetric $n \times n$ matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq$ $\cdots \leq \lambda_{n}$ and if $\left(u_{1}, \ldots, u_{n}\right)$ is any orthonormal basis of eigenvectors of A, where u_{i} is a unit eigenvector associated with λ_{i}, then

$$
\min _{x \neq 0} \frac{x^{\top} A x}{x^{\top} x}=\lambda_{1}
$$

(with the minimum attained for $x=u_{1}$), and

$$
\min _{x \neq 0, x \in\left\{u_{1}, \ldots, u_{i-1}\right\}^{\perp}} \frac{x^{\top} A x}{x^{\top} x}=\lambda_{i}
$$

(with the minimum attained for $x=u_{i}$), where $2 \leq$ $i \leq n$. Equivalently, if $W_{k}=V_{k-1}^{\perp}$ denotes the subspace spanned by $\left(u_{k}, \ldots, u_{n}\right)$ (with $V_{0}=(0)$), then

$$
\lambda_{k}=\min _{x \neq 0, x \in W_{k}} \frac{x^{\top} A x}{x^{\top} x}=\min _{x \neq 0, x \in V_{k-1}^{\perp}} \frac{x^{\top} A x}{x^{\top} x}, \quad k=1, \ldots, n .
$$

Propositions 13.22 and 13.23 together are known the Rayleigh-Ritz theorem.

As an application of Propositions 13.22 and 13.23 , we prove a proposition which allows us to compare the eigenvalues of two symmetric matrices A and $B=R^{\top} A R$, where R is a rectangular matrix satisfying the equation $R^{\top} R=I$.

First, we need a definition. Given an $n \times n$ symmetric matrix A and an $m \times m$ symmetric B, with $m \leq n$, if $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of A and $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{m}$ are the eigenvalues of B, then we say that the eigenvalues of B interlace the eigenvalues of A if

$$
\lambda_{i} \leq \mu_{i} \leq \lambda_{n-m+i}, \quad i=1, \ldots, m
$$

Proposition 13.24. Let A be an $n \times n$ symmetric matrix, R be an $n \times m$ matrix such that $R^{\top} R=I$ (with $m \leq n$), and let $B=R^{\top} A R$ (an $m \times m$ matrix). The following properties hold:
(a) The eigenvalues of B interlace the eigenvalues of A.
(b) If $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of A and $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{m}$ are the eigenvalues of B, and if $\lambda_{i}=\mu_{i}$, then there is an eigenvector v of B with eigenvalue μ_{i} such that $R v$ is an eigenvector of A with eigenvalue λ_{i}.

Proposition 13.24 immediately implies the Poincaré separation theorem. It can be used in situations, such as in quantum mechanics, where one has information about the inner products $u_{i}^{\top} A u_{j}$.

Proposition 13.25. (Poincaré separation theorem) Let A be a $n \times n$ symmetric (or Hermitian) matrix, let r be some integer with $1 \leq r \leq n$, and let $\left(u_{1}, \ldots, u_{r}\right)$ be r orthonormal vectors. Let $B=\left(u_{i}^{\top} A u_{j}\right)$ (an $r \times r$ matrix), let $\lambda_{1}(A) \leq \ldots \leq \lambda_{n}(A)$ be the eigenvalues of A and $\lambda_{1}(B) \leq \ldots \leq \lambda_{r}(B)$ be the eigenvalues of B; then we have

$$
\lambda_{k}(A) \leq \lambda_{k}(B) \leq \lambda_{k+n-r}(A), \quad k=1, \ldots, r
$$

Observe that Proposition 13.24 implies that

$$
\lambda_{1}+\cdots+\lambda_{m} \leq \operatorname{tr}\left(R^{\top} A R\right) \leq \lambda_{n-m+1}+\cdots+\lambda_{n}
$$

If P_{1} is the the $n \times(n-1)$ matrix obtained from the identity matrix by dropping its last column, we have $P_{1}^{\top} P_{1}=I$, and the matrix $B=P_{1}^{\top} A P_{1}$ is the matrix obtained from A by deleting its last row and its last column. In this case, the interlacing result is
$\lambda_{1} \leq \mu_{1} \leq \lambda_{2} \leq \mu_{2} \leq \cdots \leq \mu_{n-2} \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_{n}$,
a genuine interlacing.

We obtain similar results with the matrix P_{n-r} obtained by dropping the last $n-r$ columns of the identity matrix and setting $B=P_{n-r}^{\top} A P_{n-r}$ (B is the $r \times r$ matrix obtained from A by deleting its last $n-r$ rows and columns).

In this case, we have the following interlacing inequalities known as Cauchy interlacing theorem:

$$
\begin{equation*}
\lambda_{k} \leq \mu_{k} \leq \lambda_{k+n-r}, \quad k=1, \ldots, r \tag{*}
\end{equation*}
$$

Another useful tool to prove eigenvalue equalities is the Courant-Fischer characterization of the eigenvalues of a symmetric matrix, also known as the Min-max (and Maxmin) theorem.

Theorem 13.26. (Courant-Fischer) Let A be a symmetric $n \times n$ matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq$ λ_{n}. If \mathcal{V}_{k} denotes the set of subspaces of \mathbb{R}^{n} of dimension k, then

$$
\begin{aligned}
\lambda_{k} & =\max _{W \in \mathcal{V}_{n-k+1}} \min _{x \in W, x \neq 0} \frac{x^{\top} A x}{x^{\top} x} \\
\lambda_{k} & =\min _{W \in \mathcal{V}_{k}} \max _{x \in W, x \neq 0} \frac{x^{\top} A x}{x^{\top} x} .
\end{aligned}
$$

The Courant-Fischer theorem yields the following useful result about perturbing the eigenvalues of a symmetric matrix due to Hermann Weyl.

Proposition 13.27. Given two $n \times n$ symmetric matrices A and $B=A+\delta A$, if $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}$ are the eigenvalues of A and $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{n}$ are the eigenvalues of B, then

$$
\left|\alpha_{k}-\beta_{k}\right| \leq \rho(\delta A) \leq\|\delta A\|_{2}, \quad k=1, \ldots, n
$$

Proposition 13.27 also holds for Hermitian matrices.

A pretty result of Wielandt and Hoffman asserts that

$$
\sum_{k=1}^{n}\left(\alpha_{k}-\beta_{k}\right)^{2} \leq\|\delta A\|_{F}^{2}
$$

where $\left\|\|_{F}\right.$ is the Frobenius norm. However, the proof is significantly harder than the above proof; see Lax [25].

The Courant-Fischer theorem can also be used to prove some famous inequalities due to Hermann Weyl.

Given two symmetric (or Hermitian) matrices A and B, let $\lambda_{i}(A), \lambda_{i}(B)$, and $\lambda_{i}(A+B)$ denote the i th eigenvalue of A, B, and $A+B$, respectively, arranged in nondecreasing order.

Proposition 13.28. (Weyl) Given two symmetric (or Hermitian) $n \times n$ matrices A and B, the following inequalities hold: For all i, j, k with $1 \leq i, j, k \leq n$:

1. If $i+j=k+1$, then

$$
\lambda_{i}(A)+\lambda_{j}(B) \leq \lambda_{k}(A+B) .
$$

2. If $i+j=k+n$, then

$$
\lambda_{k}(A+B) \leq \lambda_{i}(A)+\lambda_{j}(B) .
$$

In the special case $i=j=k$, we obtain $\lambda_{1}(A)+\lambda_{1}(B) \leq \lambda_{1}(A+B), \quad \lambda_{n}(A+B) \leq \lambda_{n}(A)+\lambda_{n}(B)$.

It follows that λ_{1} is concave, while λ_{n} is convex.

If $i=1$ and $j=k$, we obtain

$$
\lambda_{1}(A)+\lambda_{k}(B) \leq \lambda_{k}(A+B)
$$

and if $i=k$ and $j=n$, we obtain

$$
\lambda_{k}(A+B) \leq \lambda_{k}(A)+\lambda_{n}(B)
$$

and combining them, we get

$$
\lambda_{1}(A)+\lambda_{k}(B) \leq \lambda_{k}(A+B) \leq \lambda_{k}(A)+\lambda_{n}(B)
$$

In particular, if B is positive semidefinite, since its eigenvalues are nonnegative, we obtain the following inequality known as the monotonicity theorem for symmetric (or Hermitian) matrices:
if A and B are symmetric (or Hermitian) and B is positive semidefinite, then

$$
\lambda_{k}(A) \leq \lambda_{k}(A+B) \quad k=1, \ldots, n
$$

