
Chapter 14

Singular Value Decomposition and
Polar Form

14.1 Singular Value Decomposition for
Square Matrices

Let f : E ! E be any linear map, where E is a Euclidean
space.

In general, it may not be possible to diagonalize f .

We show that every linear map can be diagonalized if we
are willing to use two orthonormal bases.

This is the celebrated singular value decomposition
(SVD).
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A close cousin of the SVD is the polar form of a linear
map, which shows how a linear map can be decomposed
into its purely rotational component (perhaps with a flip)
and its purely stretching part.

The key observation is that f ⇤ � f is self-adjoint, since

h(f ⇤ � f )(u), vi = hf (u), f (v)i = hu, (f ⇤ � f )(v)i.

Similarly, f � f ⇤ is self-adjoint.

The fact that f ⇤ � f and f � f ⇤ are self-adjoint is very
important, because it implies that f ⇤ � f and f � f ⇤ can
be diagonalized and that they have real eigenvalues .

In fact, these eigenvalues are all nonnegative .
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Thus, the eigenvalues of f ⇤ � f are of the form �2
1, . . . , �

2
r

or 0, where �i > 0, and similarly for f � f ⇤.

The above considerations also apply to any linear map
f : E ! F betwen two Euclidean spaces (E, h�, �i1)
and (F, h�, �i2).

Recall that the adjoint f ⇤ : F ! E of f is the unique
linear map f ⇤ such that

hf (u), vi2 = hu, f ⇤(v)i1, for all u 2 E and all v 2 F .

Then, f ⇤�f and f�f ⇤ are self-adjoint, and the eigenvalues
of f ⇤�f and f �f ⇤ are nonnegative (the proof is the same
as in the previous case),



734 CHAPTER 14. SINGULAR VALUE DECOMPOSITION AND POLAR FORM

The situation is even better, since we will show shortly
that f ⇤ � f and f � f ⇤ have the same eigenvalues .

Remark: Given any two linear maps f : E ! F and
g : F ! E, where dim(E) = n and dim(F ) = m, it can
be shown that

�m det(� In � g � f ) = �n det(� Im � f � g),

and thus g � f and f � g always have the same nonzero
eigenvalues!

Definition 14.1. Given any linear map f : E ! F , the
square roots �i > 0 of the positive eigenvalues of f ⇤ � f
(and f � f ⇤) are called the singular values of f .
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Definition 14.2. A self-adjoint linear map
f : E ! E whose eigenvalues are nonnegative is called
positive semidefinite (or positive), and if f is also in-
vertible, f is said to be positive definite . In the latter
case, every eigenvalue of f is strictly positive.

If f : E ! F is any linear map, we just showed that
f ⇤ � f and f � f ⇤ are positive semidefinite self-adjoint
linear maps.

This fact has the remarkable consequence that every lin-
ear map has two important decompositions:

1. The polar form.

2. The singular value decomposition (SVD).

The wonderful thing about the singular value decomposi-
tion is that there exist two orthonormal bases (u1, . . . , un)
and (v1, . . . , vm) such that, with respect to these bases,
f is a diagonal matrix consisting of the singular values of
f , or 0.
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Thus, in some sense, f can always be diagonalized with
respect to two orthonormal bases.

The SVD is also a useful tool for solving overdetermined
linear systems in the least squares sense and for data anal-
ysis, as we show later on.

Recall that if f : E ! F is a linear map, the image Im f
of f is the subspace f (E) of F , and the rank of f is the
dimension dim(Im f ) of its image.

Also recall that

dim (Ker f ) + dim (Im f ) = dim (E),

and that for every subspace W of E,

dim (W ) + dim (W?) = dim (E).
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Proposition 14.1. Given any two Euclidean spaces
E and F , where E has dimension n and F has di-
mension m, for any linear map f : E ! F , we have

Ker f = Ker (f ⇤ � f ),

Ker f ⇤ = Ker (f � f ⇤),

Ker f = (Im f ⇤)?,

Ker f ⇤ = (Im f )?,

dim(Im f ) = dim(Im f ⇤),

and f , f ⇤, f ⇤ � f , and f � f ⇤ have the same rank.

We will now prove that every square matrix has an SVD.

Stronger results can be obtained if we first consider the
polar form and then derive the SVD from it (there are
uniqueness properties of the polar decomposition).

For our purposes, uniqueness results are not as impor-
tant so we content ourselves with existence results, whose
proofs are simpler.
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The early history of the singular value decomposition is
described in a fascinating paper by Stewart [30].

The SVD is due to Beltrami and Camille Jordan inde-
pendently (1873, 1874).

Gauss is the grandfather of all this, for his work on least
squares (1809, 1823) (but Legendre also published a paper
on least squares!).

Then come Sylvester, Schmidt, and Hermann Weyl.

Sylvester’s work was apparently “opaque.” He gave a
computational method to find an SVD.

Schmidt’s work really has to do with integral equations
and symmetric and asymmetric kernels (1907).

Weyl’s work has to do with perturbation theory (1912).
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Autonne came up with the polar decomposition (1902,
1915).

Eckart and Young extended SVD to rectangular matrices
(1936, 1939).

Theorem 14.2. For every real n ⇥ n matrix A there
are two orthogonal matrices U and V and a diagonal
matrix D such that A = V DU>, where D is of the
form

D =

0

BB@

�1 . . .
�2 . . .

... ... . . . ...
. . . �n

1

CCA ,

where �1, . . . , �r are the singular values of f , i.e.,
the (positive) square roots of the nonzero eigenval-
ues of A>A and A A>, and �r+1 = · · · = �n = 0.
The columns of U are eigenvectors of A>A, and the
columns of V are eigenvectors of A A>.
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Theorem 14.2 suggests the following defintion.

Definition 14.3. A triple (U, D, V ) such that
A = V D U>, where U and V are orthogonal and D
is a diagonal matrix whose entries are nonnegative (it is
positive semidefinite) is called a singular value decom-
position (SVD) of A.

The proof of Theorem 14.2 shows that there are two
orthonormal bases (u1, . . . , un) and (v1, . . . , vn), where
(u1, . . . , un) are eigenvectors of A>A and (v1, . . . , vn) are
eigenvectors of AA>.

Furthermore, (u1, . . . , ur) is an orthonormal basis of ImA>,
(ur+1, . . . , un) is an orthonormal basis of KerA, (v1, . . . , vr)
is an orthonormal basis of ImA, and (vr+1, . . . , vn) is an
orthonormal basis of KerA>.
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Using a remark made in Chapter 2, if we denote the
columns of U by u1, . . . , un and the columns of V by
v1, . . . , vn, then we can write

A = V D U> = �1v1u
>
1 + · · · + �rvru

>
r .

As a consequence, if r is a lot smaller than n (we write
r ⌧ n), we see that A can be reconstructed from U and
V using a much smaller number of elements.

This idea will be used to provide “low-rank” approxima-
tions of a matrix.

The idea is to keep only the k top singular values for some
suitable k ⌧ r for which �k+1, . . . �r are very small.
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Remarks:

(1) In Strang [32] the matrices U, V, D are denoted by
U = Q2, V = Q1, and D = ⌃, and an SVD is
written as

A = Q1⌃Q>
2 .

This has the advantage that Q1 comes before Q2 in
A = Q1⌃Q>

2 .

This has the disadvantage that A maps the columns of
Q2 (eigenvectors of A>A) to multiples of the columns
of Q1 (eigenvectors of A A>).

(2) Algorithms for actually computing the SVD of a ma-
trix are presented in Golub and Van Loan [17], Dem-
mel [11], and Trefethen and Bau [34], where the SVD
and its applications are also discussed quite exten-
sively.
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(3) The SVD also applies to complex matrices. In this
case, for every complex n⇥n matrix A, there are two
unitary matrices U and V and a diagonal matrix D
such that

A = V D U ⇤,

where D is a diagonal matrix consisting of real entries
�1, . . . , �n, where �1, . . . , �r are the singular values
of A, i.e., the positive square roots of the nonzero
eigenvalues of A⇤A and A A⇤, and �r+1 = . . . = �n =
0.

A notion closely related to the SVD is the polar form of
a matrix.

Definition 14.4. A pair (R, S) such that A = RS with
R orthogonal and S symmetric positive semidefinite is
called a polar decomposition of A.
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Theorem 14.2 implies that for every real n ⇥ n matrix
A, there is some orthogonal matrix R and some positive
semidefinite symmetric matrix S such that

A = RS.

Furthermore, R, S are unique if A is invertible, but this
is harder to prove.

For example, the matrix

A =
1

2

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1

CCA

is both orthogonal and symmetric, and A = RS with
R = A and S = I , which implies that some of the eigen-
values of A are negative.
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Remark: In the complex case, the polar decomposition
states that for every complex n ⇥ n matrix A, there is
some unitary matrix U and some positive semidefinite
Hermitian matrix H such that

A = UH.

It is easy to go from the polar form to the SVD, and
conversely.

Given an SVD decomposition A = V D U>, let
R = V U> and S = UD U>.

It is clear that R is orthogonal and that S is positive
semidefinite symmetric, and

RS = V U>UD U> = V D U> = A.
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Going the other way, given a polar decomposition
A = R1S, where R1 is orthogonal and S is positive
semidefinite symmetric, there is an orthogonal matrix R2

and a positive semidefinite diagonal matrix D such that
S = R2D R>

2 , and thus

A = R1R2D R>
2 = V D U>,

where V = R1R2 and U = R2 are orthogonal.

Theorem 14.2 can be easily extended to rectangular m⇥n
matrices (see Strang [32] or Golub and Van Loan [17],
Demmel [11], Trefethen and Bau [34]).
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14.2 Singular Value Decomposition for
Rectangular Matrices

Theorem 14.3. For every real m⇥n matrix A, there
are two orthogonal matrices U (n⇥n) and V (m⇥m)
and a diagonal m⇥n matrix D such that A = V D U>,
where D is of the form

D =

0

BBBBBBBB@

�1 . . .
�2 . . .

... ... . . . ...
. . . �n

0 ... . . . 0
... ... . . . ...
0 ... . . . 0

1

CCCCCCCCA

or

0

BB@

�1 . . . 0 . . . 0
�2 . . . 0 . . . 0

... ... . . . ... 0 ... 0
. . . �m 0 . . . 0

1

CCA ,

where �1, . . . , �r are the singular values of f , i.e. the
(positive) square roots of the nonzero eigenvalues of
A>A and A A>, and �r+1 = . . . = �p = 0, where
p = min(m, n). The columns of U are eigenvectors of
A>A, and the columns of V are eigenvectors of A A>.
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A triple (U, D, V ) such that A = V D U> is called a
singular value decomposition (SVD) of A.

Even though the matrix D is an m ⇥ n rectangular ma-
trix, since its only nonzero entries are on the descending
diagonal, we still say that D is a diagonal matrix.

If we view A as the representation of a linear map
f : E ! F , where dim(E) = n and dim(F ) = m, the
proof of Theorem 14.3 shows that there are two orthonor-
mal bases (u1, . . ., un) and (v1, . . . , vm) for E and F , re-
spectively, where (u1, . . . , un) are eigenvectors of f ⇤ � f
and (v1, . . . , vm) are eigenvectors of f � f ⇤.

Furthermore, (u1, . . . , ur) is an orthonormal basis of Im f ⇤,
(ur+1, . . . , un) is an orthonormal basis of Ker f , (v1, . . . , vr)
is an orthonormal basis of Im f , and (vr+1, . . . , vm) is an
orthonormal basis of Ker f ⇤.

The eigenvalues and the singular values of a matrix are
typically not related in any obvious way.
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For example, the n ⇥ n matrix

A =

0

BBBBBBBB@

1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
... ... . . . . . . . . . ... ...
0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1

1

CCCCCCCCA

has the eigenvalue 1 with multiplicity n, but its singular
values, �1 � · · · � �n, which are the positive square
roots of the eigenvalues of the matrix B = A>A with

B =

0

BBBBBBBB@

1 2 0 0 . . . 0 0
2 5 2 0 . . . 0 0
0 2 5 2 . . . 0 0
... ... . . . . . . . . . ... ...
0 0 . . . 2 5 2 0
0 0 . . . 0 2 5 2
0 0 . . . 0 0 2 5

1

CCCCCCCCA

have a wide spread, since

�1

�n
= cond2(A) � 2n�1.
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If A is a complex n⇥n matrix, the eigenvalues �1, . . . , �n

and the singular values �1 � �2 � · · · � �n of A are not
unrelated, since

|�1| · · · |�n| = �1 · · · �n.

More generally, Hermann Weyl proved the following re-
markable theorem:

Theorem 14.4. (Weyl’s inequalities, 1949 ) For any
complex n ⇥ n matrix, A, if �1, . . . , �n 2 C are the
eigenvalues of A and �1, . . . , �n 2 R+ are the singular
values of A, listed so that |�1| � · · · � |�n| and �1 �
· · · � �n � 0, then

|�1| · · · |�n| = �1 · · · �n and

|�1| · · · |�k|  �1 · · · �k, for k = 1, . . . , n � 1.
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A proof of Theorem 14.4 can be found in Horn and John-
son [20], Chapter 3, Section 3.3, where more inequalities
relating the eigenvalues and the singular values of a ma-
trix are given.

The SVD of matrices can be used to define the pseudo-
inverse of a rectangular matrix.

Computing the SVD of a matrix A is quite involved. Most
methods begin by finding orthogonal matrices U and V
and a bidiagonal matrix B such that A = V BU>.
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14.3 Ky Fan Norms and Schatten Norms

The singular values of a matrix can be used to define
various norms on matrices which have found recent ap-
plications in quantum information theory and in spectral
graph theory.

Following Horn and Johnson [20] (Section 3.4) we can
make the following definitions:

Definition 14.5. For any matrix A 2 Mm,n(C), let q =
min{m, n}, and if �1 � · · · � �q are the singular values
of A, for any k with 1  k  q, let

Nk(A) = �1 + · · · + �k,

called the Ky Fan k-norm of A.

More generally, for any p � 1 and any k with 1  k  q,
let

Nk;p(A) = (�p
1 + · · · + �p

k)
1/p,

called the Ky Fan p-k-norm of A. When k = q, Nq;p is
also called the Schatten p-norm .
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Observe that when k = 1, N1(A) = �1, and the Ky
Fan norm N1 is simply the spectral norm from Chapter
6, which is the subordinate matrix norm associated with
the Euclidean norm.

When k = q, the Ky Fan norm Nq is given by

Nq(A) = �1 + · · · + �q = tr((A⇤A)1/2)

and is called the trace norm or nuclear norm .

When p = 2 and k = q, the Ky Fan Nq;2 norm is given
by

Nk;2(A) = (�2
1 + · · · + �2

q)
1/2 =

p
tr(A⇤A) = kAkF ,

which is the Frobenius norm of A.

It can be shown that Nk and Nk;p are unitarily invariant
norms, and that when m = n, they are matrix norms;
see Horn and Johnson [20] (Section 3.4, Corollary 3.4.4
and Problem 3).
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