
Chapter 11

Basics of Hermitian Geometry

11.1 Sesquilinear Forms, Hermitian Forms, Hermitian
Spaces, Pre-Hilbert Spaces

In this chapter, we generalize the basic results of Eu-
clidean geometry presented in Chapter 9 to vector spaces
over the complex numbers .

Some complications arise, due to complex conjugation .

Recall that for any complex number z 2 C, if z = x+ iy
where x, y 2 R, we let <z = x, the real part of z, and
=z = y, the imaginary part of z.

We also denote the conjugate of z = x+iy as z = x�iy,
and the absolute value (or length, or modulus) of z as |z|.
Recall that |z|2 = zz = x2 + y2.
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There are many natural situations where a map
' : E ⇥ E ! C is linear in its first argument and only
semilinear in its second argument.

For example, the natural inner product to deal with func-
tions f : R ! C, especially Fourier series, is

hf, gi =
Z ⇡

�⇡
f (x)g(x)dx,

which is semilinear (but not linear) in g.

Definition 11.1.Given two vector spaces E and F over
the complex field C, a function f : E ! F is semilinear
if

f (u + v) = f (u) + f (v),

f (�u) = �f (u),

for all u, v 2 E and all � 2 C.
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Remark : Instead of defining semilinear maps, we could
have defined the vector space E as the vector space with
the same carrier set E, whose addition is the same as that
of E, but whose multiplication by a complex number is
given by

(�, u) 7! �u.

Then, it is easy to check that a function f : E ! C is
semilinear i↵ f : E ! C is linear.

We can now define sesquilinear forms and Hermitian forms.
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Definition 11.2. Given a complex vector space E, a
function ' : E ⇥ E ! C is a sesquilinear form i↵ it is
linear in its first argument and semilinear in its second
argument, which means that

'(u1 + u2, v) = '(u1, v) + '(u2, v),

'(u, v1 + v2) = '(u, v1) + '(u, v2),

'(�u, v) = �'(u, v),

'(u, µv) = µ'(u, v),

for all u, v, u1, u2, v1, v2 2 E, and all �, µ 2 C. A
function ' : E ⇥ E ! C is a Hermitian form i↵ it is
sesquilinear and if

'(v, u) = '(u, v)

for all all u, v 2 E.

Obviously, '(0, v) = '(u, 0) = 0.
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Also note that if ' : E ⇥ E ! C is sesquilinear, we have

'(�u + µv, �u + µv) = |�|2'(u, u) + �µ'(u, v)

+ �µ'(v, u) + |µ|2'(v, v),

and if ' : E ⇥ E ! C is Hermitian, we have

'(�u + µv, �u + µv)

= |�|2'(u, u) + 2<(�µ'(u, v)) + |µ|2'(v, v).

Note that restricted to real coe�cients, a sesquilinear
form is bilinear (we sometimes say R-bilinear).

The function� : E ! C defined such that�(u) = '(u, u)
for all u 2 E is called the quadratic form associated with
'.
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The standard example of a Hermitian form on Cn is the
map ' defined such that

'((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

This map is also positive definite, but before dealing with
these issues, we show the following useful proposition.

Proposition 11.1. Given a complex vector space E,
the following properties hold:

(1) A sesquilinear form ' : E ⇥E ! C is a Hermitian
form i↵ '(u, u) 2 R for all u 2 E.

(2) If ' : E ⇥ E ! C is a sesquilinear form, then

4'(u, v) = '(u + v, u + v) � '(u � v, u � v)

+ i'(u + iv, u + iv) � i'(u � iv, u � iv),

and

2'(u, v) = (1 + i)('(u, u) + '(v, v))

� '(u � v, u � v) � i'(u � iv, u � iv).

These are called polarization identities.
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Proposition 11.1 shows that a sesquilinear form is com-
pletely determined by the quadratic form �(u) = '(u, u),
even if ' is not Hermitian.

This is false for a real bilinear form, unless it is symmetric.

For example, the bilinear form ' : R2 ⇥ R2 ! R defined
such that

'((x1, y1), (x2, y2)) = x1y2 � x2y1

is not identically zero, and yet, it is null on the diagonal.

However, a real symmetric bilinear form is indeed deter-
mined by its values on the diagonal, as we saw in Chapter
9.

As in the Euclidean case, Hermitian forms for which
'(u, u) � 0 play an important role.
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Definition 11.3. Given a complex vector space E, a
Hermitian form ' : E⇥E ! C is positive i↵ '(u, u) � 0
for all u 2 E, and positive definite i↵ '(u, u) > 0 for all
u 6= 0. A pair hE, 'i where E is a complex vector space
and ' is a Hermitian form on E is called a pre-Hilbert
space if ' is positive, and a Hermitian (or unitary)
space if ' is positive definite.

We warn our readers that some authors, such as Lang
[22], define a pre-Hilbert space as what we define to be a
Hermitian space.

We prefer following the terminology used in Schwartz [26]
and Bourbaki [7].

The quantity '(u, v) is usually called theHermitian prod-
uct of u and v. We will occasionally call it the inner
product of u and v.
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Given a pre-Hilbert space hE, 'i, as in the case of a Eu-
clidean space, we also denote '(u, v) as

u · v, or hu, vi, or (u|v),

and
p

�(u) as kuk.

Example 1. The complex vector space Cn under the
Hermitian form

'((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · · + xnyn

is a Hermitian space.

Example 2. Let l2 denote the set of all countably in-
finite sequences x = (xi)i2N of complex numbers such
that

P1
i=0 |xi|2 is defined (i.e. the sequence

Pn
i=0 |xi|2

converges as n ! 1).

It can be shown that the map ' : l2 ⇥ l2 ! C defined
such that

' ((xi)i2N, (yi)i2N) =
1X

i=0

xiyi

is well defined, and l2 is a Hermitian space under '. Ac-
tually, l2 is even a Hilbert space.
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Example 3. Consider the set Cpiece[a, b] of piecewise bounded
continuous functions f : [a, b] ! C under the Hermitian
form

hf, gi =
Z b

a
f (x)g(x)dx.

It is easy to check that this Hermitian form is positive,
but it is not definite. Thus, under this Hermitian form,
Cpiece[a, b] is only a pre-Hilbert space.

Example 4. Let C[a, b] be the set of complex-valued
continuous functions f : [a, b] ! C under the Hermitian
form

hf, gi =
Z b

a
f (x)g(x)dx.

It is easy to check that this Hermitian form is positive
definite. Thus, C[a, b] is a Hermitian space.

The Cauchy-Schwarz inequality and the Minkowski in-
equalities extend to pre-Hilbert spaces and to Hermitian
spaces.
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Proposition 11.2. Let hE, 'i be a pre-Hilbert space
with associated quadratic form �. For all u, v 2 E,
we have the Cauchy-Schwarz inequality:

|'(u, v)| 
p

�(u)
p
�(v).

Furthermore, if hE, 'i is a Hermitian space, the equal-
ity holds i↵ u and v are linearly dependent.

We also have the Minkovski inequality:
p
�(u + v) 

p
�(u) +

p
�(v).

Furthermore, if hE, 'i is a Hermitian space, the equal-
ity holds i↵ u and v are linearly dependent, where in
addition, if u 6= 0 and v 6= 0, then u = �v for some
real � such that � > 0.

As in the Euclidean case, if hE, 'i is a Hermitian space,
the Minkovski inequality

p
�(u + v) 

p
�(u) +

p
�(v)

shows that the map u 7!
p
�(u) is a norm on E.
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The norm induced by ' is called the Hermitian norm
induced by '.

We usually denote
p
�(u) as kuk, and the Cauchy-Schwarz

inequality is written as

|u · v|  kuk kvk .

Since a Hermitian space is a normed vector space, it is
a topological space under the topology induced by the
norm (a basis for this topology is given by the open balls
B0(u, ⇢) of center u and radius ⇢ > 0, where

B0(u, ⇢) = {v 2 E | kv � uk < ⇢}.

If E has finite dimension, every linear map is continuous.
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The Cauchy-Schwarz inequality

|u · v|  kuk kvk

shows that ' : E ⇥ E ! C is continuous, and thus, that
k k is continuous.

If hE, 'i is only pre-Hilbertian, kuk is called a semi-
norm .

In this case, the condition

kuk = 0 implies u = 0

is not necessarily true.

However, the Cauchy-Schwarz inequality shows that if
kuk = 0, then u · v = 0 for all v 2 E.

We will now basically mirror the presentation of Euclidean
geometry given in Chapter 9 rather quickly, leaving out
most proofs, except when they need to be seriously amended.
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11.2 Orthogonality, Duality, Adjoint of A Linear Map

In this section, we assume that we are dealing with Her-
mitian spaces. We denote the Hermitian inner product
as u · v or hu, vi.

The concepts of orthogonality, orthogonal family of vec-
tors, orthonormal family of vectors, and orthogonal com-
plement of a set of vectors, are unchanged from the Eu-
clidean case (Definition 9.2).

For example, the set C[�⇡, ⇡] of continuous functions
f : [�⇡, ⇡] ! C is a Hermitian space under the product

hf, gi =
Z ⇡

�⇡
f (x)g(x)dx,

and the family (eikx)k2Z is orthogonal.
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Proposition 9.2 and 9.3 hold without any changes.

It is easy to show that
�����

nX

i=1

ui

�����

2

=
nX

i=1

kuik2 +
X

1i<jn

2<(ui · uj).

Analogously to the case of Euclidean spaces of finite di-
mension, the Hermitian product induces a canonical bi-
jection (i.e., independent of the choice of bases) between
the vector space E and the space E⇤.

This is one of the places where conjugation shows up, but
in this case, troubles are minor.
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Given a Hermitian space E, for any vector u 2 E, let
'l

u : E ! C be the map defined such that

'l
u(v) = u · v, for all v 2 E.

Similarly, for any vector v 2 E, let 'r
v : E ! C be the

map defined such that

'r
v(u) = u · v, for all u 2 E.

Since the Hermitian product is linear in its first argument
u, the map 'r

v is a linear form in E⇤, and since it is
semilinear in its second argument v, the map 'l

u is also a
linear form in E⇤.



11.2. ORTHOGONALITY, DUALITY, ADJOINT OF A LINEAR MAP 521

Thus, we have two maps [l : E ! E⇤ and [r : E ! E⇤,
defined such that

[l(u) = 'l
u, and [r(v) = 'r

v.

Actually, it is easy to show that 'l
u = 'r

u and [l = [r.

Therefore, we use the notation 'u for both 'l
u and 'r

u,
and [ for both [l and [r.

Theorem 11.3. let E be a Hermitian space E. The
map [ : E ! E⇤ defined such that

[(u) = 'l
u = 'r

u for all u 2 E

is semilinear and injective. When E is also of finite
dimension, the map [ : E ! E⇤ is a canonical iso-
morphism.
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The inverse of the isomorphism [ : E ! E⇤ is denoted
by ] : E⇤ ! E.

As a corollary of the isomorphism [ : E ! E⇤, if E is
a Hermitian space of finite dimension, then every linear
form f 2 E⇤ corresponds to a unique v 2 E, such that

f (u) = u · v, for every u 2 E.

In particular, if f is not the null form, the kernel of f ,
which is a hyperplane H , is precisely the set of vectors
that are orthogonal to v.

Remark . The “musical map” [ : E ! E⇤ is not surjec-
tive when E has infinite dimension.

This result will be salvaged by restricting our attention to
continuous linear maps, and by assuming that the vector
space E is a Hilbert space .



11.2. ORTHOGONALITY, DUALITY, ADJOINT OF A LINEAR MAP 523

The existence of the isomorphism [ : E ! E⇤ is crucial
to the existence of adjoint maps.

Indeed, Theorem 11.3 allows us to define the adjoint of a
linear map on a Hermitian space.

Let E be a Hermitian space of finite dimension n, and let
f : E ! E be a linear map.

For every u 2 E, the map

v 7! u · f (v)

is clearly a linear form in E⇤, and by Theorem 11.3, there
is a unique vector in E denoted by f ⇤(u), such that

f ⇤(u) · v = u · f (v),

that is,

f ⇤(u) · v = u · f (v), for every v 2 E.
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Proposition 11.4. Given a Hermitian space E of fi-
nite dimension, for every linear map f : E ! E, there
is a unique linear map f ⇤ : E ! E, such that

f ⇤(u) · v = u · f (v),

for all u, v 2 E. The map f ⇤ is called the adjoint of
f (w.r.t. to the Hermitian product).

The fact that
v · u = u · v

implies that the adjoint f ⇤ of f is also characterized by

f (u) · v = u · f ⇤(v),

for all u, v 2 E. It is also obvious that f ⇤⇤ = f .
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Given two Hermitian spaces E and F , where the Hermi-
tian product on E is denoted as h�, �i1 and the Hermi-
tian product on F is denoted as h�, �i2, given any linear
map f : E ! F , it is immediately verified that the proof
of Proposition 11.4 can be adapted to show that there is
a unique linear map f ⇤ : F ! E such that

hf (u), vi2 = hu, f ⇤(v)i1

for all u 2 E and all v 2 F . The linear map f ⇤ is also
called the adjoint of f .

As in the Euclidean case, Theorem 11.3 can be used to
show that any Hermitian space of finite dimension has an
orthonormal basis. The proof is unchanged.
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Proposition 11.5. Given any nontrivial Hermitian
space E of finite dimension n � 1, there is an or-
thonormal basis (u1, . . . , un) for E.

The Gram–Schmidt orthonormalization procedure also
applies to Hermitian spaces of finite dimension, without
any changes from the Euclidean case!

Proposition 11.6. Given any nontrivial Hermitian
space E of finite dimension n � 1, from any basis
(e1, . . . , en) for E, we can construct an orthonormal
basis
(u1, . . . , un) for E, with the property that for every k,
1  k  n, the families (e1, . . . , ek) and (u1, . . . , uk)
generate the same subspace.

Remarks : The remarks made after Proposition 9.7 also
apply here, except that in the QR-decomposition, Q is a
unitary matrix.
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As a consequence of Proposition 9.6 (or Proposition 11.6),
given any Hermitian space of finite dimension n, if (e1, . . . ,
en) is an orthonormal basis for E, then for any two vec-
tors u = u1e1+ · · ·+unen and v = v1e1+ · · ·+ vnen, the
Hermitian product u · v is expressed as

u ·v = (u1e1+ · · ·+unen) · (v1e1+ · · ·+vnen) =
nX

i=1

uivi,

and the norm kuk as

kuk = ku1e1 + · · · + unenk =

vuut
nX

i=1

|ui|2.

Proposition 9.8 also holds unchanged.

Proposition 11.7. Given any nontrivial Hermitian
space E of finite dimension n � 1, for any subspace F
of dimension k, the orthogonal complement F? of F
has dimension n�k, and E = F �F?. Furthermore,
we have F?? = F .
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11.3 Linear Isometries (also called Unitary Transfor-
mations)

In this section, we consider linear maps between Hermi-
tian spaces that preserve the Hermitian norm.

All definitions given for Euclidean spaces in Section 9.3
extend to Hermitian spaces, except that orthogonal trans-
formations are called unitary transformation , but Propo-
sition 9.9 only extends with a modified condition (2).

Indeed, the old proof that (2) implies (3) does not work,
and the implication is in fact false! It can be repaired by
strengthening condition (2). For the sake of completeness,
we state the Hermitian version of Definition 9.3.

Definition 11.4. Given any two nontrivial Hermitian
spaces E and F of the same finite dimension n, a function
f : E ! F is a unitary transformation, or a linear
isometry i↵ it is linear and

kf (u)k = kuk ,

for all u 2 E.
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Proposition 9.9 can be salvaged by strengthening condi-
tion (2).

Proposition 11.8. Given any two nontrivial Hermi-
tian space E and F of the same finite dimension n,
for every function f : E ! F , the following properties
are equivalent:

(1) f is a linear map and kf (u)k = kuk, for all u 2 E;

(2) kf (v) � f (u)k = kv � uk and f (iu) = if (u), for
all u, v 2 E;

(3) f (u) · f (v) = u · v, for all u, v 2 E.

Furthermore, such a map is bijective.

Observe that from f (iu) = if (u), for u = 0, we get
f (0) = if (0), which implies that f (0) = 0.
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Remarks : (i) In the Euclidean case, we proved that the
assumption

(2’) kf (v) � f (u)k = kv � uk, for all u, v 2 E, and
f (0) = 0;

implies (3). For this, we used the polarization identity

2u · v = kuk2 + kvk2 � ku � vk2 .

In the Hermitian case, the polarization identity involves
the complex number i.

In fact, the implication (2’) implies (3) is false in the
Hermitian case! Conjugation z 7! z satifies (2’) since

|z2 � z1| = |z2 � z1| = |z2 � z1|,

and yet, it is not linear!
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(ii) If we modify (2) by changing the second condition by
now requiring that there is some ⌧ 2 E such that

f (⌧ + iu) = f (⌧ ) + i(f (⌧ + u) � f (⌧ ))

for all u 2 E, then the function g : E ! E defined such
that

g(u) = f (⌧ + u) � f (⌧ )

satisfies the old conditions of (2), and the implications
(2) ! (3) and (3) ! (1) prove that g is linear, and thus
that f is a�ne.

In view of the first remark, some condition involving i is
needed on f , in addition to the fact that f is distance-
preserving.

We are now going to take a closer look at the isometries
f : E ! E of a Hermitian space of finite dimension.
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11.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of
the isometries of a Euclidean space, we explore some of
the fundamental properties of the unitary group and of
unitary matrices.

Definition 11.5. Given a complex m ⇥ n matrix A,
the transpose A> of A is the n ⇥ m matrix A> = (a>

i j)
defined such that

a>
i j = aj i

and the conjugate A of A is the m⇥n matrix A = (bi j)
defined such that

bi j = ai j

for all i, j, 1  i  m, 1  j  n. The adjoint A⇤ of A
is the matrix defined such that

A⇤ = (A>) = (A)>.
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Proposition 11.9. Let E be any Hermitian space of
finite dimension n, and let f : E ! E be any linear
map. The following properties hold:

(1) The linear map f : E ! E is an isometry i↵

f � f ⇤ = f ⇤ � f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if
the matrix of f is A, then the matrix of f ⇤ is the
adjoint A⇤ of A, and f is an isometry i↵ A satisfies
the idendities

A A⇤ = A⇤A = In,

where In denotes the identity matrix of order n, i↵
the columns of A form an orthonormal basis of E,
i↵ the rows of A form an orthonormal basis of E.

Proposition 9.11 also motivates the following definition.
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Definition 11.6. A complex n ⇥ n matrix is a unitary
matrix i↵

A A⇤ = A⇤A = In.

Remarks : The conditions A A⇤ = In, A⇤A = In, and
A�1 = A⇤, are equivalent.

Given any two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), if P is the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn), it is easy to show that the
matrix P is unitary.

The proof of Proposition 11.8 (3) also shows that if f is
an isometry, then the image of an orthonormal basis
(u1, . . . , un) is an orthonormal basis.

If f is unitary and A is its matrix with respect to any
orthonormal basis, we have | det(A)| = 1.
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Definition 11.7. Given a Hermitian space E of dimen-
sion n, the set of isometries f : E ! E forms a subgroup
of GL(E,C) denoted as U(E), or U(n) when E = Cn,
called the unitary group (of E). For every isometry,
f , we have | det(f )| = 1, where det(f ) denotes the de-
terminant of f . The isometries such that det(f ) = 1
are called rotations, or proper isometries, or proper
unitary transformations , and they form a subgroup of
the special linear group SL(E,C) (and of U(E)), de-
noted as SU(E), or SU(n) when E = Cn, called the
special unitary group (of E). The isometries such that
det(f ) 6= 1 are called improper isometries, or improper
unitary transformations, or flip transformations .

The Gram–Schmidt orthonormalization procedure imme-
diately yields the QR-decomposition for matrices.

Proposition 11.10.Given any n⇥n complex matrix
A, if A is invertible then there is a unitary matrix Q
and an upper triangular matrix R with positive diag-
onal entries such that A = QR.

The proof is absolutely the same as in the real case!
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