Chapter 10

(QR-Decomposition for Arbitrary
Matrices

10.1 Orthogonal Reflections

Orthogonal symmetries are a very important example of
isometries. First let us review the definition of a (linear)
projection.

Given a vector space E. let F' and G be subspaces of E
that form a direct sum £ = F & G.

Since every u € F/ can be written uniquely as
u =v+w, where v € F' and w € G, we can define the
two projections prp: E — F and pg: EE — G, such that

pr(u) =v and pg(u) = w.
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It is immediately verified that pg and pp are linear maps,
and that p}, = pr, pg; = pa, pr o pe = pe o pr =0, and
pr+ pa = id.

Definition 10.1. Given a vector space F, for any two
subspaces F' and G that form a direct sum £ = F' & G,
the symmetry with respect to F' and parallel to G, or
reflection about F' is the linear map s: £ — FE. defined
such that

s(u) =2pp(u) — u,
for every u € E.

Because pr 4+ po = id, note that we also have

s(u) = pr(u) — pa(u)
and
s(u) = u — 2pa(u),
s* =1id, s is the identity on F', and s = —id on G.
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We now assume that FE is a Euclidean space of finite
dimension.

Definition 10.2. Let E be a Euclidean space of finite
dimension n. For any two subspaces F' and G, if F' and
G form a direct sum F = F & G and F and G are
orthogonal, i.e. F' = G*, the orthogonal symmetry with
respect to I' and parallel to G, or orthogonal reflection
about F' is the linear map s: £/ — FE. defined such that

s(u) = 2pp(u) — u,

for every u € E.

When F'is a hyperplane, we call s an hyperplane symme-
try with respect to F' or reflection about F', and when
(G is a plane, we call s a flip about F'.

[t is easy to show that s is an isometry.
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Using Proposition 9.7, it is possible to find an orthonor-
mal basis (ey, ..., e,) of E consisting of an orthonormal
basis of F' and an orthonormal basis of G.

Assume that F' has dimension p, so that G has dimension
n—p.

With respect to the orthonormal basis (eq, ..., e,), the
symmetry s has a matrix of the form

I, 0
0 —I,_,
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Thus, det(s) = (—1)"77, and s is a rotation iff n — p is
evern.

In particular, when F'is a hyperplane H, we have
p=mn-—1, and n — p = 1, so that s is an improper
orthogonal transformation.

When F' = {0}, we have s = —id, which is called the
symmetry with respect to the origin. The symmetry
with respect to the origin is a rotation iff n is even, and
an improper orthogonal transformation iff n is odd.

When n is odd, we observe that every improper orthogo-
nal transformation is the composition of a rotation with
the symmetry with respect to the origin.
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When G is a plane, p = n — 2, and det(s) = (=1)* = 1,
so that a flip about F is a rotation.

In particular, when n = 3, F' is a line, and a flip about
the line F' is indeed a rotation of measure 7.

When F' = H is a hyperplane, we can give an explicit for-

mula for s(u) in terms of any nonnull vector w orthogonal
to H.

We get
(u - w)

s(u) =u—2 5
]

Such reflections are represented by matrices called House-
holder matrices, and they play an important role in nu-
merical matrix analysis. Householder matrices are sym-
metric and orthogonal.
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Over an orthonormal basis (eq, ..., e,), a hyperplane re-
flection about a hyperplane H orthogonal to a nonnull
vector w is represented by the matrix

ww' ww'

H=1,-2—"=1,—2 ,
W wiw

where VW is the column vector of the coordinates of w.

Since

pa(u) = mﬁ? w,

the matrix representing pq is

ww'
wWiw’

and since py 4+ pg = id, the matrix representing py is

ww'

I, — .
WTw
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The following fact is the key to the proof that every isom-
etry can be decomposed as a product of reflections.

Proposition 10.1. Let E be any nontrivial Euclidean
space. For any two vectors u,v € E, if ||u|| = ||v],
then there is an hyperplane H such that the reflec-
tion s about H maps u to v, and if u # v, then this
reflection 1s unique.

We now show that Hyperplane reflections can be used to
obtain another proof of the () R-decomposition.
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10.2 (@ R-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated
in terms of Householder matrices, we obtain the fact ad-
vertised earlier that every matrix (not necessarily invert-
ible) has a () R-decomposition.

Proposition 10.2. Let E be a nontrivial Fuclidean
space of dimension n. Given any orthonormal basis

(e1,...,en), for any n-tuple of vectors (vy, ..., v,), there
1s a sequence of n isometries hq, ..., h,, such that
h; is a hyperplane reflection or the identity, and if
(11,...,7n) are the vectors given by

rj = hn o 0hyoh(v)),

then every r; 1s a linear combination of the vectors
(e1,...,€j), (1 <7 < n). Equwalently, the matriz
R whose columns are the components of the r; over
the basis (e1,...,e,) is an upper triangular matriz.
Furthermore, the h; can be chosen so that the diagonal
entries of R are nonnegative.
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Remarks. (1) Since every h; is a hyperplane reflection or
the identity,
p:hno"'thOhl

1S an 1sometry.

(2) If we allow negative diagonal entries in R, the last
isometry h, may be omitted.
(3) Instead of picking rix = ||uz||, which means that

Wi = Th €k — U,

where 1 < k < n, it might be preferable to pick
i = — ||ul/|| if this makes ||wy||” larger, in which case

"
W = Tk k €k + Uy

Indeed, since the definition of h; involves division by
Jw||?, it is desirable to avoid division by very small num-
bers.

Proposition 10.2 immediately yields the () R-decomposition
in terms of Householder transtormations.
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Theorem 10.3. For every real n X n-matriz A, there
1s a sequence Hy, ..., H, of matrices, where each H,
18 either a Householder matrix or the identity, and an
upper triangular matrix R, such that

R=H, --HyHA.

As a corollary, there is a pair of matrices Q, R, where
Q) s orthogonal and R 1s upper triangular, such that
A = QR (a QR-decomposition of A). Furthermore,
R can be chosen so that its diagonal entries are non-
negative.

Remarks. (1) Letting
Apy1 = Hy--- HyH A,

with Ay = A, 1 < k < n, the proof of Proposition 10.2
can be interpreted in terms of the computation of the
sequence of matrices Ay,...,A,o1 = R.
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The matrix A;; has the shape

(><><><ulf+1><><><><\
OXE : :
OO><u£+1><><><><

41
OOOuklxxxx

Apq1 = i
OOOuk+2><><><><
0 0 0wl x x x x

\OOOuk“xxxx)

where the (k + 1)th column of the matrix is the vector

Upsr1 = hgpo---0hgyohy(vpy),

and thus
i = (),
and
ug+1 — <u£i%7 ’LLZi%, e 7u1]2+1>'

If the last n — k — 1 entries in column k + 1 are all zero,
there is nothing to do and we let Hp 1 = 1.
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Otherwise, we Kkill these n — k — 1 entries by multiplying
A1 on the left by the Householder matrix Hj; sending

0, ... ,O,ulgﬂ, L u ™ t0 (0,..0,0, 7001, 0,4, 0),
where
TE+1,k+1 = H(UZE, e ,quH)H :

(2) If we allow negative diagonal entries in R, the matrix
H,, may be omitted (H,, = I).

(3) If A is invertible and the diagonal entries of R are
positive, it can be shown that () and R are unique.
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(4) The method allows the computation of the determi-
nant of A. We have

det(A) = (=1)"r11- - Tpn,
where m is the number of Householder matrices (not the

identity) among the H;.

(5) The condition number of the matrix A is preserved.
This is very good for numerical stability.



