
Chapter 8

Iterative Methods for Solving Linear
Systems

8.1 Convergence of Sequences of Vectors and Matrices

In Chapter 4 we have discussed some of the main methods
for solving systems of linear equations. These methods
are direct methods , in the sense that they yield exact
solutions (assuming infinite precision!).

Another class of methods for solving linear systems con-
sists in approximating solutions using iterative methods .
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The basic idea is this: Given a linear system Ax = b
(with A a square invertible matrix), find another matrix
B and a vector c, such that

1. The matrix I � B is invertible

2. The unique solution ex of the system Ax = b is iden-
tical to the unique solution eu of the system

u = Bu + c,

and then, starting from any vector u0, compute the se-
quence (uk) given by

uk+1 = Buk + c, k 2 N.

Under certain conditions (to be clarified soon), the se-
quence (uk) converges to a limit eu which is the unique
solution of u = Bu + c, and thus of Ax = b.
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Let (E, k k) be a normed vector space. Recall that a
sequence (uk) of vectors uk 2 E converges to a limit
u 2 E, if for every ✏ > 0, there some natural number N
such that

kuk � uk  ✏, for all k � N.

We write
u = lim

k 7!1
uk.

If E is a finite-dimensional vector space and dim(E) =
n, we know from Theorem 6.3 that any two norms are
equivalent, and if we choose the norm k k1, we see that
the convergence of the sequence of vectors uk is equivalent
to the convergence of the n sequences of scalars formed
by the components of these vectors (over any basis).
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The same property applies to the finite-dimensional vec-
tor space Mm,n(K) of m ⇥ n matrices (with K = R or
K = C), which means that the convergence of a sequence

of matrices Ak = (a(k)
ij ) is equivalent to the convergence

of the m ⇥ n sequences of scalars (a(k)
ij ), with i, j fixed

(1  i  m, 1  j  n).

The first theorem below gives a necessary and su�cient
condition for the sequence (Bk) of powers of a matrix B
to converge to the zero matrix.

Recall that the spectral radius ⇢(B) of a matrix B is the
maximum of the moduli |�i| of the eigenvalues of B.



8.1. CONVERGENCE OF SEQUENCES OF VECTORS AND MATRICES 417

Theorem 8.1. For any square matrix B, the follow-
ing conditions are equivalent:

(1) limk 7!1 Bk = 0,

(2) limk 7!1 Bkv = 0, for all vectors v,

(3) ⇢(B) < 1,

(4) kBk < 1, for some subordinate matrix norm k k.

The following proposition is needed to study the rate of
convergence of iterative methods.

Proposition 8.2. For every square matrix B and ev-
ery matrix norm k k, we have

lim
k 7!1

kBkk1/k = ⇢(B).

We now apply the above results to the convergence of
iterative methods.
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8.2 Convergence of Iterative Methods

Recall that iterative methods for solving a linear system
Ax = b (with A invertible) consists in finding some ma-
trix B and some vector c, such that I � B is invertible,
and the unique solution ex of Ax = b is equal to the unique
solution eu of u = Bu + c.

Then, starting from any vector u0, compute the sequence
(uk) given by

uk+1 = Buk + c, k 2 N,

and say that the iterative method is convergent i↵

lim
k 7!1

uk = eu,

for every initial vector u0.
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Here is a fundamental criterion for the convergence of any
iterative methods based on a matrix B, called the matrix
of the iterative method .

Theorem 8.3. Given a system u = Bu + c as above,
where I �B is invertible, the following statements are
equivalent:

(1) The iterative method is convergent.

(2) ⇢(B) < 1.

(3) kBk < 1, for some subordinate matrix norm k k.

The next proposition is needed to compare the rate of
convergence of iterative methods.

It shows that asymptotically, the error vector
ek = Bke0 behaves at worst like (⇢(B))k.
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Proposition 8.4. Let k k be any vector norm, let B
be a matrix such that I � B is invertible, and let eu be
the unique solution of u = Bu + c.

(1) If (uk) is any sequence defined iteratively by

uk+1 = Buk + c, k 2 N,

then

lim
k 7!1


sup

ku0�euk=1
kuk � euk1/k

�
= ⇢(B).
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(2) Let B1 and B2 be two matrices such that I � B1

and I�B2 are invertibe, assume that both u = B1u+c1

and u = B2u + c2 have the same unique solution eu,
and consider any two sequences (uk) and (vk) defined
inductively by

uk+1 = B1uk + c1

vk+1 = B2vk + c2,

with u0 = v0. If ⇢(B1) < ⇢(B2), then for any ✏ > 0,
there is some integer N(✏), such that for all k � N(✏),
we have

sup
ku0�euk=1


kvk � euk
kuk � euk

�1/k

� ⇢(B2)

⇢(B1) + ✏
.

In light of the above, we see that when we investigate new
iterative methods, we have to deal with the following two
problems:

1. Given an iterative method with matrix B, determine
whether the method is convergent. This involves de-
termining whether ⇢(B) < 1, or equivalently whether
there is a subordinate matrix norm such that
kBk < 1.
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By Proposition 6.8, this implies that I�B is invertible
(since k � Bk = kBk, Proposition 6.8 applies).

2. Given two convergent iterative methods, compare them.
The iterative method which is faster is that whose ma-
trix has the smaller spectral radius.

We now discuss three iterative methods for solving linear
systems:

1. Jacobi’s method

2. Gauss-Seidel’s method

3. The relaxation method.
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8.3 Description of the Methods of Jacobi,
Gauss-Seidel, and Relaxation

The methods described in this section are instances of the
following scheme: Given a linear system Ax = b, with A
invertible, suppose we can write A in the form

A = M � N,

with M invertible, and “easy to invert,” which means
that M is close to being a diagonal or a triangular matrix
(perhaps by blocks).

Then, Au = b is equivalent to

Mu = Nu + b,

that is,
u = M�1Nu + M�1b.

Therefore, we are in the situation described in the previ-
ous sections with B = M�1N and c = M�1b.
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In fact, since A = M � N , we have

B = M�1N = M�1(M � A) = I � M�1A,

which shows that I � B = M�1A is invertible.

The iterative method associated with the matrix
B = M�1N is given by

uk+1 = M�1Nuk + M�1b, k � 0,

starting from any arbitrary vector u0.

From a practical point of view, we do not invert M , and
instead we solve iteratively the systems

Muk+1 = Nuk + b, k � 0.
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Various methods correspond to various ways of choosing
M and N from A. The first two methods choose M
and N as disjoint submatrices of A, but the relaxation
method allows some overlapping of M and N .

To describe the various choices of M and N , it is conve-
nient to write A in terms of three submatrices D, E, F ,
as

A = D � E � F,

where the only nonzero entries in D are the diagonal en-
tries in A, the only nonzero entries in E are entries in A
below the the diagonal, and the only nonzero entries in
F are entries in A above the diagonal.
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More explicitly, if

A =

0

BBBBBBBBB@

a11 a12 a13 · · · a1n�1 a1n

a21 a22 a23 · · · a2n�1 a2n

a31 a32 a33 · · · a3n�1 a3n

... ... ... . . . ... ...

an�1 1 an�1 2 an�1 3 · · · an�1 n�1 an�1 n

an 1 an 2 an 3 · · · an n�1 an n

1

CCCCCCCCCA

,

then

D =

0

BBBBBBBBB@

a11 0 0 · · · 0 0

0 a22 0 · · · 0 0

0 0 a33 · · · 0 0
... ... ... . . . ... ...

0 0 0 · · · an�1 n�1 0

0 0 0 · · · 0 an n

1

CCCCCCCCCA

,
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�E =

0

BBBBBBBBB@

0 0 0 · · · 0 0

a21 0 0 · · · 0 0

a31 a32 0 · · · 0 0
... ... . . . . . . ... ...

an�1 1 an�1 2 an�1 3
. . . 0 0

an 1 an 2 an 3 · · · an n�1 0

1

CCCCCCCCCA

,

�F =

0

BBBBBBBBB@

0 a12 a13 · · · a1n�1 a1n

0 0 a23 · · · a2n�1 a2n

0 0 0 . . . a3n�1 a3n

... ... ... . . . . . . ...

0 0 0 · · · 0 an�1 n

0 0 0 · · · 0 0

1

CCCCCCCCCA

.
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In Jacobi’s method , we assume that all diagonal entries
in A are nonzero, and we pick

M = D

N = E + F,

so that

B = M�1N = D�1(E + F ) = I � D�1A.

As a matter of notation, we let

J = I � D�1A = D�1(E + F ),

which is called Jacobi’s matrix .
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The corresponding method, Jacobi’s iterative method ,
computes the sequence (uk) using the recurrence

uk+1 = D�1(E + F )uk + D�1b, k � 0.

In practice, we iteratively solve the systems

Duk+1 = (E + F )uk + b, k � 0.

If we write uk = (uk
1, . . . , u

k
n), we solve iteratively the

following system:

a11u
k+1
1 = �a12uk

2 �a13uk
3 · · · �a1nuk

n + b1

a22u
k+1
2 = �a21uk

1 �a23uk
3 · · · �a2nuk

n + b2
...

...
...

an�1 n�1u
k+1
n�1 = �an�1 1uk

1 · · · �an�1 n�2uk
n�2 �an�1 nuk

n + bn�1

an nuk+1
n = �an 1uk

1 �an 2uk
2 · · · �an n�1uk

n�1 + bn

.

Observe that we can try to “speed up” the method by
using the new value uk+1

1 instead of uk
1 in solving for

uk+2
2 using the second equations, and more generally, use

uk+1
1 , . . . , uk+1

i�1 instead of uk
1, . . . , u

k
i�1 in solving for uk+1

i

in the ith equation.
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This observation leads to the system

a11u
k+1
1 = �a12uk

2 �a13uk
3 · · · �a1nuk

n + b1

a22u
k+1
2 = �a21u

k+1
1 �a23uk

3 · · · �a2nuk
n + b2

...
...

...
an�1 n�1u

k+1
n�1 = �an�1 1u

k+1
1 · · · �an�1 n�2u

k+1
n�2 �an�1 nuk

n + bn�1

an nuk+1
n = �an 1u

k+1
1 �an 2u

k+1
2 · · · �an n�1u

k+1
n�1 + bn,

which, in matrix form, is written

Duk+1 = Euk+1 + Fuk + b.

Because D is invertible and E is lower triangular, the ma-
trix D � E is invertible, so the above equation is equiva-
lent to

uk+1 = (D � E)�1Fuk + (D � E)�1b, k � 0.

The above corresponds to choosing M and N to be

M = D � E

N = F,

and the matrix B is given by

B = M�1N = (D � E)�1F.



8.3. METHODS OF JACOBI, GAUSS-SEIDEL, AND RELAXATION 431

Since M = D � E is invertible, we know that I � B =
M�1A is also invertible.

The method that we just described is the iterative method
of Gauss-Seidel , and the matrix B is called the matrix
of Gauss-Seidel and denoted by L1, with

L1 = (D � E)�1F.

One of the advantages of the method of Gauss-Seidel is
that is requires only half of the memory used by Jacobi’s
method, since we only need

uk+1
1 , . . . , uk+1

i�1 , uk
i+1, . . . , u

k
n

to compute uk+1
i .

We also show that in certain important cases (for exam-
ple, if A is a tridiagonal matrix), the method of Gauss-
Seidel converges faster than Jacobi’s method (in this case,
they both converge or diverge simultaneously).
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The new ingredient in the relaxation method is to incor-
porate part of the matrix D into N : we define M and N
by

M =
D

!
� E

N =
1 � !

!
D + F,

where ! 6= 0 is a real parameter to be suitably chosen.

Actually, we show in Section 8.4 that for the relaxation
method to converge, we must have ! 2 (0, 2).

Note that the case ! = 1 corresponds to the method of
Gauss-Seidel.

If we assume that all diagonal entries of D are nonzero,
the matrix M is invertible.
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The matrix B is denoted by L! and called the matrix of
relaxation , with

L! =

✓
D

!
� E

◆�1✓1 � !

!
D + F

◆

= (D � !E)�1((1 � !)D + !F ).

The number ! is called the parameter of relaxation .
When ! > 1, the relaxation method is known as succes-
sive overrelaxation , abbreviated as SOR.

At first glance, the relaxation matrixL! seems at lot more
complicated than the Gauss-Seidel matrix L1, but the
iterative system associated with the relaxation method is
very similar to the method of Gauss-Seidel, and is quite
simple.
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Indeed, the system associated with the relaxation method
is given by

✓
D

!
� E

◆
uk+1 =

✓
1 � !

!
D + F

◆
uk + b,

which is equivalent to

(D � !E)uk+1 = ((1 � !)D + !F )uk + !b,

and can be written

Duk+1 = Duk � !(Duk � Euk+1 � Fuk � b).

Explicitly, this is the system

a11u
k+1
1 = a11u

k
1 � !(a11u

k
1 + a12u

k
2 + a13u

k
3 + · · · + a1n�2u

k
n�2 + a1n�1u

k
n�1 + a1nu

k
n � b1)

a22u
k+1
2 = a22u

k
2 � !(a21u

k+1
1 + a22u

k
2 + a23u

k
3 + · · · + a2n�2u

k
n�2 + a2n�1u

k
n�1 + a2nu

k
n � b2)

...

an nu
k+1
n = an nu

k
n � !(an 1u

k+1
1 + an 2u

k+1
2 + · · · + an n�2u

k+1
n�2 + an n�1u

k+1
n�1 + an nu

k
n � bn).
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What remains to be done is to find conditions that ensure
the convergence of the relaxation method (and the Gauss-
Seidel method), that is:

1. Find conditions on !, namely some interval I ✓ R
so that ! 2 I implies ⇢(L!) < 1; we will prove that
! 2 (0, 2) is a necessary condition.

2. Find if there exist some optimal value !0 of ! 2 I ,
so that

⇢(L!0) = inf
!2I

⇢(L!).

We will give partial answers to the above questions in the
next section.

It is also possible to extend the methods of this section by
using block decompositions of the form A = D�E �F ,
where D, E, and F consist of blocks, and with D an
invertible block-diagonal matrix.
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8.4 Convergence of the Methods of Jacobi,
Gauss-Seidel, and Relaxation

We begin with a general criterion for the convergence of
an iterative method associated with a (complex) Hermi-
tian, positive, definite matrix, A = M � N . Next, we
apply this result to the relaxation method.

Proposition 8.5. Let A be any Hermitian, positive,
definite matrix, written as

A = M � N,

with M invertible. Then, M ⇤ + N is Hermitian, and
if it is positive, definite, then

⇢(M�1N) < 1,

so that the iterative method converges.
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Now, as in the previous sections, we assume that A is
written as A = D � E � F , with D invertible, possibly
in block form.

The next theorem provides a su�cient condition (which
turns out to be also necessary) for the relaxation method
to converge (and thus, for the method of Gauss-Seidel to
converge).

This theorem is known as the Ostrowski-Reich theorem .

Theorem 8.6. If A = D � E � F is Hermitian, pos-
itive, definite, and if 0 < ! < 2, then the relaxation
method converges. This also holds for a block decom-
position of A.
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Remark: What if we allow the parameter ! to be a
nonzero complex number ! 2 C? In this case, the relax-
ation method also converges for ! 2 C, provided that

|! � 1| < 1.

This condition reduces to 0 < ! < 2 if ! is real.

Unfortunately, Theorem 8.6 does not apply to Jacobi’s
method, but in special cases, Proposition 8.5 can be used
to prove its convergence.

On the positive side, if a matrix is strictly column (or
row) diagonally dominant, then it can be shown that the
method of Jacobi and the method of Gauss-Seidel both
converge.
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The relaxation method also converges if ! 2 (0, 1], but
this is not a very useful result because the speed-up of
convergence usually occurs for ! > 1.

We now prove that, without any assumption on
A = D � E � F , other than the fact that A and D are
invertible, in order for the relaxation method to converge,
we must have ! 2 (0, 2).

Proposition 8.7.Given any matrix A = D �E �F ,
with A and D invertible, for any ! 6= 0, we have

⇢(L!) � |! � 1|.

Therefore, the relaxation method (possibly by blocks)
does not converge unless ! 2 (0, 2). If we allow ! to
be complex, then we must have

|! � 1| < 1

for the relaxation method to converge.
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We now consider the case where A is a tridiagonal ma-
trix , possibly by blocks.

We begin with the case ! = 1, which is technically easier
to deal with.

The following proposition gives us the precise relationship
between the spectral radii ⇢(J) and ⇢(L1) of the Jacobi
matrix and the Gauss-Seidel matrix.

Proposition 8.8. Let A be a tridiagonal matrix (pos-
sibly by blocks). If ⇢(J) is the spectral radius of the
Jacobi matrix and ⇢(L1) is the spectral radius of the
Gauss-Seidel matrix, then we have

⇢(L1) = (⇢(J))2.

Consequently, the method of Jacobi and the method of
Gauss-Seidel both converge or both diverge simultane-
ously (even when A is tridiagonal by blocks);

when they converge, the method of Gauss-Seidel con-
verges faster than Jacobi’s method.
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We now consider the more general situation where ! is
any real in (0, 2).

Proposition 8.9. Let A be a tridiagonal matrix (pos-
sibly by blocks), and assume that the eigenvalues of
the Jacobi matrix are all real. If ! 2 (0, 2), then the
method of Jacobi and the method of relaxation both
converge or both diverge simultaneously (even when
A is tridiagonal by blocks).

When they converge, the function ! 7! ⇢(L!) (for
! 2 (0, 2)) has a unique minimum equal to !0 � 1 for

!0 =
2

1 +
p
1 � (⇢(J))2

,

where 1 < !0 < 2 if ⇢(J) > 0. We also have
⇢(L1) = (⇢(J))2, as before.
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Combining the results of Theorem 8.6 and Proposition
8.9, we obtain the following result which gives precise
information about the spectral radii of the matrices J ,
L1, and L!.

Proposition 8.10. Let A be a tridiagonal matrix (pos-
sibly by blocks) which is Hermitian, positive, definite.
Then, the methods of Jacobi, Gauss-Seidel, and relax-
ation, all converge for ! 2 (0, 2). There is a unique
optimal relaxation parameter

!0 =
2

1 +
p
1 � (⇢(J))2

,

such that

⇢(L!0) = inf
0<!<2

⇢(L!) = !0 � 1.
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Furthermore, if ⇢(J) > 0, then

⇢(L!0) < ⇢(L1) = (⇢(J))2 < ⇢(J),

and if ⇢(J) = 0, then !0 = 1 and ⇢(L1) = ⇢(J) = 0.

Remark: It is preferable to overestimate rather than
underestimate the relaxation parameter when the opti-
mum relaxation parameter is not known exactly.
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