
Chapter 6

Vector Norms and Matrix Norms

6.1 Normed Vector Spaces

In order to define how close two vectors or two matrices
are, and in order to define the convergence of sequences
of vectors or matrices, we can use the notion of a norm .

Recall that R+ = {x 2 R | x � 0}.

Also recall that if z = a + ib 2 C is a complex number,
with a, b 2 R, then z = a � ib and |z| =

p
a2 + b2

(|z| is the modulus of z).
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Definition 6.1. Let E be a vector space over a field K,
whereK is either the fieldR of reals, or the fieldC of com-
plex numbers. A norm on E is a function k k : E ! R+,
assigning a nonnegative real number kuk to any vector
u 2 E, and satisfying the following conditions for all
x, y, z 2 E:

(N1) kxk � 0, and kxk = 0 i↵ x = 0. (positivity)

(N2) k�xk = |�| kxk. (homogeneity (or scaling))

(N3) kx + yk  kxk + kyk. (triangle inequality)

A vector space E together with a norm k k is called a
normed vector space .

From (N2) we get

k�xk = kxk ,

and from (N3), we get

|kxk � kyk|  kx � yk.
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Example 6.1.

1. Let E = R, and kxk = |x|, the absolute value of x.

2. Let E = C, and kzk = |z|, the modulus of z.

3. Let E = Rn (or E = Cn). There are three standard
norms.

For every (x1, . . . , xn) 2 E, we have the 1-norm
kxk1, defined such that,

kxk1 = |x1| + · · · + |xn|,

we have the Euclidean norm kxk2, defined such that,

kxk2 =
�
|x1|2 + · · · + |xn|2

�1
2 ,

and the sup-norm kxk1, defined such that,

kxk1 = max{|xi| | 1  i  n}.

More generally, we define the `p-norm (for p � 1) by

kxkp = (|x1|p + · · · + |xn|p)1/p.

There are other norms besides the `p-norms; we urge the
reader to find such norms.
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Some work is required to show the triangle inequality for
the `p-norm.

Proposition 6.1. If E is a finite-dimensional vector
space over R or C, for every real number p � 1, the
`p-norm is indeed a norm.

The proof uses the following facts:

If q � 1 is given by

1

p
+

1

q
= 1,

then

(1) For all ↵, � 2 R, if ↵, � � 0, then

↵�  ↵p

p
+

�q

q
. (⇤)

(2) For any two vectors u, v 2 E, we have
nX

i=1

|uivi|  kukp kvkq . (⇤⇤)
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For p > 1 and 1/p + 1/q = 1, the inequality

nX

i=1

|uivi| 
✓ nX

i=1

|ui|p
◆1/p✓ nX

i=1

|vi|q
◆1/q

is known as Hölder’s inequality .

For p = 2, it is the Cauchy–Schwarz inequality .

Actually, if we define theHermitian inner product h�, �i
on Cn by

hu, vi =
nX

i=1

uivi,

where u = (u1, . . . , un) and v = (v1, . . . , vn), then

|hu, vi| 
nX

i=1

|uivi| =
nX

i=1

|uivi|,

so Hölder’s inequality implies the inequality

|hu, vi|  kukp kvkq

also called Hölder’s inequality , which, for p = 2 is the
standard Cauchy–Schwarz inequality.
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The triangle inequality for the `p-norm,
✓ nX

i=1

(|ui+vi|)p
◆1/p


✓ nX

i=1

|ui|p
◆1/p

+

✓ nX

i=1

|vi|q
◆1/q

,

is known as Minkowski’s inequality .

When we restrict the Hermitian inner product to real
vectors, u, v 2 Rn, we get the Euclidean inner product

hu, vi =
nX

i=1

uivi.

It is very useful to observe that if we represent (as usual)
u = (u1, . . . , un) and v = (v1, . . . , vn) (in Rn) by column
vectors, then their Euclidean inner product is given by

hu, vi = u>v = v>u,

and when u, v 2 Cn, their Hermitian inner product is
given by

hu, vi = v⇤u = u⇤v.
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In particular, when u = v, in the complex case we get

kuk2
2 = u⇤u,

and in the real case, this becomes

kuk2
2 = u>u.

As convenient as these notations are, we still recommend
that you do not abuse them; the notation hu, vi is more
intrinsic and still “works” when our vector space is infinite
dimensional.

Proposition 6.2. The following inequalities hold for
all x 2 Rn (or x 2 Cn):

kxk1  kxk1  nkxk1,

kxk1  kxk2 
p

nkxk1,

kxk2  kxk1 
p

nkxk2.
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Proposition 6.2 is actually a special case of a very impor-
tant result: in a finite-dimensional vector space, any two
norms are equivalent.

Definition 6.2.Given any (real or complex) vector space
E, two norms k ka and k kb are equivalent i↵ there exists
some positive reals C1, C2 > 0, such that

kuka  C1 kukb and kukb  C2 kuka , for all u 2 E.

Given any norm k k on a vector space of dimension n, for
any basis (e1, . . . , en) of E, observe that for any vector
x = x1e1 + · · · + xnen, we have

kxk = kx1e1 + · · · + xnenk  C kxk1 ,

with C = max1in keik and

kxk1 = kx1e1 + · · · + xnenk = |x1| + · · · + |xn|.

The above implies that

| kuk � kvk |  ku � vk  C ku � vk1 ,

which means that the map u 7! kuk is continuous with
respect to the norm k k1.
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Let Sn�1
1 be the unit sphere with respect to the norm

k k1, namely

Sn�1
1 = {x 2 E | kxk1 = 1}.

Now, Sn�1
1 is a closed and bounded subset of a finite-

dimensional vector space, so by Heine–Borel (or equiva-
lently, by Bolzano–Weiertrass), Sn�1

1 is compact.

On the other hand, it is a well known result of analysis
that any continuous real-valued function on a nonempty
compact set has a minimum and a maximum, and that
they are achieved.

Using these facts, we can prove the following important
theorem:

Theorem 6.3. If E is any real or complex vector
space of finite dimension, then any two norms on E
are equivalent.

Next, we will consider norms on matrices.
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6.2 Matrix Norms

For simplicity of exposition, we will consider the vector
spaces Mn(R) and Mn(C) of square n ⇥ n matrices.

Most results also hold for the spaces Mm,n(R) andMm,n(C)
of rectangular m ⇥ n matrices.

Since n ⇥ n matrices can be multiplied, the idea behind
matrix norms is that they should behave “well” with re-
spect to matrix multiplication.

Definition 6.3. A matrix norm k k on the space of
square n⇥n matrices in Mn(K), with K = R or K = C,
is a norm on the vector space Mn(K), with the additional
property called submultiplicativity that

kABk  kAk kBk ,

for all A, B 2 Mn(K). A norm on matrices satisfying the
above property is often called a submultiplicative matrix
norm.

Since I2 = I , from kIk =
��I2

��  kIk2, we get kIk � 1,
for every matrix norm.
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Before giving examples of matrix norms, we need to re-
view some basic definitions about matrices.

Given any matrix A = (aij) 2 Mm,n(C), the conjugate
A of A is the matrix such that

Aij = aij, 1  i  m, 1  j  n.

The transpose of A is the n ⇥ m matrix A> such that

A>
ij = aji, 1  i  m, 1  j  n.

The adjoint of A is the n ⇥ m matrix A⇤ such that

A⇤ = (A>) = (A)>.

When A is a real matrix, A⇤ = A>.

A matrix A 2 Mn(C) is Hermitian if

A⇤ = A.

If A is a real matrix (A 2 Mn(R)), we say that A is
symmetric if

A> = A.
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A matrix A 2 Mn(C) is normal if

AA⇤ = A⇤A,

and if A is a real matrix, it is normal if

AA> = A>A.

A matrix U 2 Mn(C) is unitary if

UU ⇤ = U ⇤U = I.

A real matrix Q 2 Mn(R) is orthogonal if

QQ> = Q>Q = I.

Given any matrix A = (aij) 2 Mn(C), the trace tr(A) of
A is the sum of its diagonal elements

tr(A) = a11 + · · · + ann.

It is easy to show that the trace is a linear map, so that

tr(�A) = �tr(A)

and
tr(A + B) = tr(A) + tr(B).
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Moreover, if A is an m ⇥ n matrix and B is an n ⇥ m
matrix, it is not hard to show that

tr(AB) = tr(BA).

We also review eigenvalues and eigenvectors. We con-
tent ourselves with definition involving matrices. A more
general treatment will be given later on (see Chapter 7).

Definition 6.4. Given any square matrix A 2 Mn(C),
a complex number � 2 C is an eigenvalue of A if there
is some nonzero vector u 2 Cn, such that

Au = �u.

If � is an eigenvalue of A, then the nonzero vectors u 2
Cn such that Au = �u are called eigenvectors of A
associated with �; together with the zero vector, these
eigenvectors form a subspace of Cn denoted by E�(A),
and called the eigenspace associated with �.

Remark: Note that Definition 6.4 requires an eigen-
vector to be nonzero.
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A somewhat unfortunate consequence of this requirement
is that the set of eigenvectors is not a subspace, since the
zero vector is missing!

On the positive side, whenever eigenvectors are involved,
there is no need to say that they are nonzero.

If A is a square real matrix A 2 Mn(R), then we re-
strict Definition 6.4 to real eigenvalues � 2 R and real
eigenvectors.

However, it should be noted that although every complex
matrix always has at least some complex eigenvalue, a real
matrix may not have any real eigenvalues. For example,
the matrix

A =

✓
0 �1
1 0

◆

has the complex eigenvalues i and �i, but no real eigen-
values.

Thus, typically, even for real matrices, we consider com-
plex eigenvalues.
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Observe that � 2 C is an eigenvalue of A
i↵ Au = �u for some nonzero vector u 2 Cn

i↵ (�I � A)u = 0
i↵ the matrix �I � A defines a linear map which has a
nonzero kernel, that is,
i↵ �I � A not invertible.

However, from Proposition 5.10, �I � A is not invertible
i↵

det(�I � A) = 0.

Now, det(�I � A) is a polynomial of degree n in the
indeterminate �, in fact, of the form

�n � tr(A)�n�1 + · · · + (�1)n det(A).

Thus, we see that the eigenvalues of A are the zeros (also
called roots) of the above polynomial.

Since every complex polynomial of degree n has exactly
n roots, counted with their multiplicity, we have the fol-
lowing definition:



362 CHAPTER 6. VECTOR NORMS AND MATRIX NORMS

Definition 6.5. Given any square n ⇥ n matrix
A 2 Mn(C), the polynomial

det(�I � A) = �n � tr(A)�n�1 + · · · + (�1)n det(A)

is called the characteristic polynomial of A. The n (not
necessarily distinct) roots �1, . . . , �n of the characteristic
polynomial are all the eigenvalues of A and constitute
the spectrum of A.

We let

⇢(A) = max
1in

|�i|

be the largest modulus of the eigenvalues of A, called the
spectral radius of A.
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Proposition 6.4. For any matrix norm k k on Mn(C)
and for any square n ⇥ n matrix A, we have

⇢(A)  kAk .

Remark: Proposition 6.4 still holds for real matrices
A 2 Mn(R), but a di↵erent proof is needed since in the
above proof the eigenvector u may be complex.

We use Theorem 6.3 and a trick based on the fact that

⇢(Ak) = (⇢(A))k for all k � 1.

Now, it turns out that if A is a real n ⇥ n symmetric
matrix, then the eigenvalues of A are all real and there
is some orthogonal matrix Q such that

A = Qdiag(�1, . . . , �n)Q
>,

where diag(�1, . . . , �n) denotes the matrix whose only
nonzero entries (if any) are its diagonal entries, which are
the (real) eigenvalues of A.
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Similarly, if A is a complex n ⇥ n Hermitian matrix,
then the eigenvalues of A are all real and there is some
unitary matrix U such that

A = Udiag(�1, . . . , �n)U
⇤,

where diag(�1, . . . , �n) denotes the matrix whose only
nonzero entries (if any) are its diagonal entries, which are
the (real) eigenvalues of A.

We now return to matrix norms. We begin with the so-
called Frobenius norm, which is just the norm k k2 on
Cn2

, where the n ⇥ n matrix A is viewed as the vec-
tor obtained by concatenating together the rows (or the
columns) of A.

The reader should check that for any n ⇥ n complex ma-
trix A = (aij),

✓ nX

i,j=1

|aij|2
◆1/2

=
p
tr(A⇤A) =

p
tr(AA⇤).
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Definition 6.6. The Frobenius norm k kF is defined so
that for every square n ⇥ n matrix A 2 Mn(C),

kAkF =

✓ nX

i,j=1

|aij|2
◆1/2

=
p
tr(AA⇤) =

p
tr(A⇤A).

The following proposition show that the Frobenius norm
is a matrix norm satisfying other nice properties.

Proposition 6.5.The Frobenius norm k kF on Mn(C)
satisfies the following properties:

(1) It is a matrix norm; that is, kABkF  kAkF kBkF ,
for all A, B 2 Mn(C).

(2) It is unitarily invariant, which means that for all
unitary matrices U, V , we have

kAkF = kUAkF = kAV kF = kUAV kF .

(3)
p

⇢(A⇤A)  kAkF 
p

n
p

⇢(A⇤A), for all A 2
Mn(C).
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Remark: The Frobenius norm is also known as the
Hilbert-Schmidt norm or the Schur norm . So many
famous names associated with such a simple thing!

We now give another method for obtaining matrix norms
using subordinate norms.

First, we need a proposition that shows that in a finite-
dimensional space, the linear map induced by a matrix is
bounded, and thus continuous.

Proposition 6.6. For every norm k k on Cn (or Rn),
for every matrix A 2 Mn(C) (or A 2 Mn(R)), there is
a real constant CA � 0, such that

kAuk  CA kuk ,

for every vector u 2 Cn (or u 2 Rn if A is real).

Proposition 6.6 says that every linear map on a finite-
dimensional space is bounded .
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This implies that every linear map on a finite-dimensional
space is continuous.

Actually, it is not hard to show that a linear map on a
normed vector space E is bounded i↵ it is continuous,
regardless of the dimension of E.

Proposition 6.6 implies that for every matrix A 2 Mn(C)
(or A 2 Mn(R)),

sup
x2Cn

x 6=0

kAxk
kxk  CA.

Now, since k�uk = |�| kuk, it is easy to show that

sup
x2Cn

x 6=0

kAxk
kxk = sup

x2Cn

kxk=1

kAxk .

Similarly

sup
x2Rn

x 6=0

kAxk
kxk = sup

x2Rn

kxk=1

kAxk .
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Definition 6.7. If k k is any norm on Cn, we define the
function k k on Mn(C) by

kAk = sup
x2Cn

x 6=0

kAxk
kxk = sup

x2Cn

kxk=1

kAxk .

The function A 7! kAk is called the subordinate matrix
norm or operator norm induced by the norm k k.

It is easy to check that the function A 7! kAk is indeed
a norm, and by definition, it satisfies the property

kAxk  kAk kxk , for all x 2 Cn.

A norm k k on Mn(C) satisfying the above property is
said to be subordinate to the vector norm k k on Cn.

This implies that

kABk  kAk kBk for all A, B 2 Mn(C),

showing that A 7! kAk is a matrix norm (it is submulti-
plicative).
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Observe that the operator norm is also defined by

kAk = inf{� 2 R | kAxk  � kxk , for all x 2 Cn}.

The definition also implies that

kIk = 1.

The above shows that the Frobenius norm is not a sub-
ordinate matrix norm (why?).

The notion of subordinate norm can be slightly general-
ized.

Definition 6.8. If K = R or K = C, for any norm k k
on Mm,n(K), and for any two norms k ka on Kn and k kb
on Km, we say that the norm k k is subordinate to the
norms k ka and k kb if

kAxkb  kAk kxka for all A 2 Mm,n(K) and all x 2 Kn.
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Remark: For any norm k k on Cn, we can define the
function k kR on Mn(R) by

kAkR = sup
x2Rn

x 6=0

kAxk
kxk = sup

x2Rn

kxk=1

kAxk .

The function A 7! kAkR is a matrix norm on Mn(R),
and

kAkR  kAk ,

for all real matrices A 2 Mn(R).

However, it is possible to construct vector norms k k on
Cn and real matrices A such that

kAkR < kAk .

In order to avoid this kind of di�culties, we define sub-
ordinate matrix norms over Mn(C).

Luckily, it turns out that kAkR = kAk for the vector
norms, k k1 , k k2, and k k1.
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Proposition 6.7. For every square matrix
A = (aij) 2 Mn(C), we have

kAk1 = sup
x2Cn

kxk1=1

kAxk1 = max
j

nX

i=1

|aij|

kAk1 = sup
x2Cn

kxk1=1

kAxk1 = max
i

nX

j=1

|aij|

kAk2 = sup
x2Cn

kxk2=1

kAxk2 =
p

⇢(A⇤A) =
p

⇢(AA⇤).

Furthermore, kA⇤k2 = kAk2, the norm k k2 is unitar-
ily invariant, which means that

kAk2 = kUAV k2

for all unitary matrices U, V , and if A is a normal
matrix, then kAk2 = ⇢(A).

The norm kAk2 is often called the spectral norm .
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Observe that property (3) of proposition 6.5 says that

kAk2  kAkF 
p

n kAk2 ,

which shows that the Frobenius norm is an upper bound
on the spectral norm. The Frobenius norm is much easier
to compute than the spectal norm.

The reader will check that the above proof still holds if the
matrix A is real, confirming the fact that kAkR = kAk
for the vector norms k k1 , k k2, and k k1.

It is also easy to verify that the proof goes through for
rectangular matrices, with the same formulae.

Similarly, the Frobenius norm is also a norm on rectan-
gular matrices. For these norms, whenever AB makes
sense, we have

kABk  kAk kBk .
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The following proposition will be needed when we deal
with the condition number of a matrix.

Proposition 6.8. Let k k be any matrix norm and let
B be a matrix such that kBk < 1.

(1) If k k is a subordinate matrix norm, then the ma-
trix I + B is invertible and

��(I + B)�1
��  1

1 � kBk.

(2) If a matrix of the form I + B is singular, then
kBk � 1 for every matrix norm (not necessarily
subordinate).
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The following result is needed to deal with the conver-
gence of sequences of powers of matrices.

Proposition 6.9. For every matrix A 2 Mn(C) and
for every ✏ > 0, there is some subordinate matrix
norm k k such that

kAk  ⇢(A) + ✏.

The proof uses Theorem 7.4, which says that there ex-
ists some invertible matrix U and some upper triangular
matrix T such that

A = UTU�1.

Note that equality is generally not possible; consider the
matrix

A =

✓
0 1
0 0

◆
,

for which ⇢(A) = 0 < kAk, since A 6= 0.
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6.3 Condition Numbers of Matrices

Unfortunately, there exist linear systems Ax = b whose
solutions are not stable under small perturbations of
either b or A.

For example, consider the system
0

BB@

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

1

CCA

0

BB@

x1

x2

x3

x4

1

CCA =

0

BB@

32
23
33
31

1

CCA .

The reader should check that it has the solution
x = (1, 1, 1, 1). If we perturb slightly the right-hand side,
obtaining the new system

0

BB@

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

1

CCA

0

BB@

x1 +�x1

x2 +�x2

x3 +�x3

x4 +�x4

1

CCA =

0

BB@

32.1
22.9
33.1
30.9

1

CCA ,

the new solutions turns out to be
x = (9.2, �12.6, 4.5, �1.1).
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In other words, a relative error of the order 1/200 in the
data (here, b) produces a relative error of the order 10/1
in the solution, which represents an amplification of the
relative error of the order 2000.

Now, let us perturb the matrix slightly, obtaining the new
system

0

BB@

10 7 8.1 7.2
7.08 5.04 6 5
8 5.98 9.98 9

6.99 4.99 9 9.98

1

CCA

0

BB@

x1 +�x1

x2 +�x2

x3 +�x3

x4 +�x4

1

CCA =

0

BB@

32
23
33
31

1

CCA .

This time, the solution is x = (�81, 137, �34, 22).

Again, a small change in the data alters the result rather
drastically.

Yet, the original system is symmetric, has determinant 1,
and has integer entries.
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The problem is that the matrix of the system is badly
conditioned , a concept that we will now explain.

Given an invertible matrix A, first, assume that we per-
turb b to b + �b, and let us analyze the change between
the two exact solutions x and x + �x of the two systems

Ax = b

A(x + �x) = b + �b.

We also assume that we have some norm k k and we use
the subordinate matrix norm on matrices. From

Ax = b

Ax + A�x = b + �b,

we get
�x = A�1�b,

and we conclude that

k�xk 
��A�1

�� k�bk
kbk  kAk kxk .
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Consequently, the relative error in the result k�xk / kxk
is bounded in terms of the relative error k�bk / kbk in the
data as follows:

k�xk
kxk 

�
kAk

��A�1
�� �k�bk

kbk .

Now let us assume that A is perturbed to A + �A, and
let us analyze the change between the exact solutions of
the two systems

Ax = b

(A +�A)(x +�x) = b.

After some calculations, we get

k�xk
kx +�xk 

�
kAk

��A�1
�� �k�Ak

kAk .

Observe that the above reasoning is valid even if the ma-
trix A + �A is singular, as long as x + �x is a solution
of the second system.

Furthermore, if k�Ak is small enough, it is not unreason-
able to expect that the ratio k�xk / kx +�xk is close to
k�xk / kxk.
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This will be made more precise later.

In summary, for each of the two perturbations, we see that
the relative error in the result is bounded by the relative
error in the data, multiplied the number kAk

��A�1
��.

In fact, this factor turns out to be optimal and this sug-
gests the following definition:

Definition 6.9. For any subordinate matrix norm k k,
for any invertible matrix A, the number

cond(A) = kAk
��A�1

��

is called the condition number of A relative to k k.

The condition number cond(A) measures the sensitivity
of the linear system Ax = b to variations in the data
b and A; a feature referred to as the condition of the
system.

Thus, when we says that a linear system is ill-conditioned ,
we mean that the condition number of its matrix is large.
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We can sharpen the preceding analysis as follows:

Proposition 6.10. Let A be an invertible matrix and
let x and x+ �x be the solutions of the linear systems

Ax = b

A(x + �x) = b + �b.

If b 6= 0, then the inequality

k�xk
kxk  cond(A)

k�bk
kbk

holds and is the best possible. This means that for a
given matrix A, there exist some vectors b 6= 0 and
�b 6= 0 for which equality holds.
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Proposition 6.11. Let A be an invertible matrix and
let x and x +�x be the solutions of the two systems

Ax = b

(A +�A)(x +�x) = b.

If b 6= 0, then the inequality

k�xk
kx +�xk  cond(A)

k�Ak
kAk

holds and is the best possible. This means that given
a matrix A, there exist a vector b 6= 0 and a matrix
�A 6= 0 for which equality holds. Furthermore, if
k�Ak is small enough (for instance, if
k�Ak < 1/

��A�1
��), we have

k�xk
kxk  cond(A)

k�Ak
kAk (1 + O(k�Ak));

in fact, we have

k�xk
kxk  cond(A)

k�Ak
kAk

✓
1

1 � kA�1k k�Ak

◆
.
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Remark: If A and b are perturbed simultaneously, so
that we get the “perturbed” system

(A +�A)(x + �x) = b + �b,

it can be shown that if k�Ak < 1/
��A�1

�� (and b 6= 0),
then

k�xk
kxk  cond(A)

1 � kA�1k k�Ak

✓
k�Ak
kAk +

k�bk
kbk

◆
.

We now list some properties of condition numbers and
figure out what cond(A) is in the case of the spectral
norm (the matrix norm induced by k k2).
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First, we need to introduce a very important factorization
of matrices, the singular value decomposition , for short,
SVD .

It can be shown that given any n⇥n matrix A 2 Mn(C),
there exist two unitary matrices U and V , and a real
diagonal matrix ⌃ = diag(�1, . . . , �n), with
�1 � �2 � · · · � �n � 0, such that

A = V ⌃U ⇤.

The nonnegative numbers �1, . . . , �n are called the
singular values of A.

If A is a real matrix, the matrices U and V are orthogonal
matrices.
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The factorization A = V ⌃U ⇤ implies that

A⇤A = U⌃2U ⇤ and AA⇤ = V ⌃2V ⇤,

which shows that �2
1, . . . , �

2
n are the eigenvalues of both

A⇤A and AA⇤, that the columns of U are correspond-
ing eivenvectors for A⇤A, and that the columns of V are
corresponding eivenvectors for AA⇤.

In the case of a normal matrix if �1, . . . , �n are the (com-
plex) eigenvalues of A, then

�i = |�i|, 1  i  n.
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Proposition 6.12. For every invertible matrix
A 2 Mn(C), the following properties hold:

(1)

cond(A) � 1,

cond(A) = cond(A�1)

cond(↵A) = cond(A) for all ↵ 2 C � {0}.

(2) If cond2(A) denotes the condition number of A with
respect to the spectral norm, then

cond2(A) =
�1

�n
,

where �1 � · · · � �n are the singular values of A.

(3) If the matrix A is normal, then

cond2(A) =
|�1|
|�n|

,

where �1, . . . , �n are the eigenvalues of A sorted so
that |�1| � · · · � |�n|.

(4) If A is a unitary or an orthogonal matrix, then

cond2(A) = 1.
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(5) The condition number cond2(A) is invariant under
unitary transformations, which means that

cond2(A) = cond2(UA) = cond2(AV ),

for all unitary matrices U and V .

Proposition 6.12 (4) shows that unitary and orthogonal
transformations are very well-conditioned, and part (5)
shows that unitary transformations preserve the condition
number.

In order to compute cond2(A), we need to compute the
top and bottom singular values of A, which may be hard.

The inequality

kAk2  kAkF 
p

n kAk2 ,

may be useful in getting an approximation of
cond2(A) = kAk2

��A�1
��

2
, if A�1 can be determined.

Remark: There is an interesting geometric characteri-
zation of cond2(A).
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If ✓(A) denotes the least angle between the vectors Au
and Av as u and v range over all pairs of orthonormal
vectors, then it can be shown that

cond2(A) = cot(✓(A)/2)).

Thus, if A is nearly singular, then there will be some
orthonormal pair u, v such that Au and Av are nearly
parallel; the angle ✓(A) will the be small and cot(✓(A)/2))
will be large.

It should also be noted that in general (if A is not a
normal matrix) a matrix could have a very large condition
number even if all its eigenvalues are identical!

For example, if we consider the n ⇥ n matrix

A =

0

BBBBBBBB@

1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
... ... . . . . . . . . . ... ...
0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1

1

CCCCCCCCA

,

it turns out that cond2(A) � 2n�1.
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Going back to our matrix

A =

0

BB@

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

1

CCA ,

which is a symmetric, positive, definite, matrix, it can be
shown that its eigenvalues, which in this case are also its
singular values because A is SPD, are

�1 ⇡ 30.2887 > �2 ⇡ 3.858 >

�3 ⇡ 0.8431 > �4 ⇡ 0.01015,

so that

cond2(A) =
�1

�4
⇡ 2984.

The reader should check that for the perturbation of the
right-hand side b used earlier, the relative errors k�xk /kxk
and k�xk /kxk satisfy the inequality

k�xk
kxk  cond(A)

k�bk
kbk

and comes close to equality.


