
Chapter 5

Determinants

5.1 Permutations, Signature of a Permutation

We will follow an algorithmic approach due to Emil Artin.
We need a few preliminaries about permutations on a
finite set.

We need to show that every permutation on n elements
is a product of transpositions, and that the parity of the
number of transpositions involved is an invariant of the
permutation.

Let [n] = {1, 2 . . . , n}, where n 2 N, and n > 0.
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Definition 5.1. A permutation on n elements is a bi-
jection ⇡ : [n] ! [n]. When n = 1, the only function
from [1] to [1] is the constant map: 1 7! 1. Thus, we will
assume that n � 2.

A transposition is a permutation ⌧ : [n] ! [n] such that,
for some i < j (with 1  i < j  n), ⌧ (i) = j, ⌧ (j) = i,
and ⌧ (k) = k, for all k 2 [n] � {i, j}. In other words, a
transposition exchanges two distinct elements i, j 2 [n].

If ⌧ is a transposition, clearly, ⌧ � ⌧ = id.

We will also use the terminology product of permuta-
tions (or transpositions), as a synonym for composition
of permutations.

Clearly, the composition of two permutations is a permu-
tation and every permutation has an inverse which is also
a permutation.

Therefore, the set of permutations on [n] is a group often
denoted Sn.

It is easy to show by induction that the group Sn has n!
elements.
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Proposition 5.1. For every n � 2, every permuta-
tion ⇡ : [n] ! [n] can be written as a nonempty com-
position of transpositions.

Remark: When ⇡ = idn is the identity permutation,
we can agree that the composition of 0 transpositions is
the identity.

Proposition 5.1 shows that the transpositions generate
the group of permutations Sn.

A transposition ⌧ that exchanges two consecutive ele-
ments k and k + 1 of [n] (1  k  n � 1) may be
called a basic transposition.

We leave it as a simple exercise to prove that every trans-
position can be written as a product of basic transposi-
tions.

Therefore, the group of permutationsSn is also generated
by the basic transpositions.
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Given a permutation written as a product of transpo-
sitions, we now show that the parity of the number of
transpositions is an invariant.

Definition 5.2. For every n � 2, let � : Zn ! Z be
the function given by

�(x1, . . . , xn) =
Y

1i<jn

(xi � xj).

It is clear that if the xi are pairwise distinct, then
�(x1, . . . , xn) 6= 0.
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Proposition 5.2. For every basic transposition ⌧ of
[n] (n � 2), we have

�(x⌧(1), . . . , x⌧(n)) = ��(x1, . . . , xn).

The above also holds for every transposition, and more
generally, for every composition of transpositions
� = ⌧p � · · · � ⌧1, we have

�(x�(1), . . . , x�(n)) = (�1)p�(x1, . . . , xn).

Consequently, for every permutation � of [n], the par-
ity of the number p of transpositions involved in any
decomposition of � as � = ⌧p � · · · � ⌧1 is an invariant
(only depends on �).

In view of Proposition 5.2, the following definition makes
sense:

Definition 5.3. For every permutation � of [n], the par-
ity ✏(�) of the the number of transpositions involved in
any decomposition of � is called the signature of �.
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The reader should check that ✏(⌧ ) = �1 for every trans-
position ⌧ .

Remark: When ⇡ = idn is the identity permutation,
since we agreed that the composition of 0 transpositions
is the identity, it it still correct that (�1)0 = ✏(id) = +1.

From proposition 5.2, it is immediate that

✏(⇡0 � ⇡) = ✏(⇡0)✏(⇡).

In particular, since ⇡�1 � ⇡ = idn, we get

✏(⇡�1) = ✏(⇡).
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5.2 Alternating Multilinear Maps

First, we define multilinear maps, symmetric multilinear
maps, and alternating multilinear maps.

Remark: Most of the definitions and results presented
in this section also hold when K is a commutative ring.

Let E1, . . . , En, and F , be vector spaces over a field K,
where n � 1.

Definition 5.4. A function f : E1 ⇥ . . . ⇥ En ! F is a
multilinear map (or an n-linear map) if it is linear in
each argument, holding the others fixed. More explicitly,
for every i, 1  i  n, for all x1 2 E1 . . ., xi�1 2 Ei�1,
xi+1 2 Ei+1, . . ., xn 2 En, for all x, y 2 Ei, for all
� 2 K,

f (x1, . . . , xi�1, x + y, xi+1, . . . , xn)

= f (x1, . . . , xi�1, x, xi+1, . . . , xn)

+ f (x1, . . . , xi�1, y, xi+1, . . . , xn),

f (x1, . . . , xi�1, �x, xi+1, . . . , xn)

= �f (x1, . . . , xi�1, x, xi+1, . . . , xn).
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When F = K, we call f an n-linear form (or multilin-
ear form).

If n � 2 and E1 = E2 = . . . = En, an n-linear map
f : E ⇥ . . . ⇥ E ! F is called symmetric, if

f (x1, . . . , xn) = f (x⇡(1), . . . , x⇡(n)),

for every permutation ⇡ on {1, . . . , n}.

An n-linear map f : E ⇥ . . . ⇥ E ! F is called
alternating , if

f (x1, . . . , xn) = 0

whenever xi = xi+1, for some i, 1  i  n � 1 (in other
words, when two adjacent arguments are equal).

It does not harm to agree that when n = 1, a linear map
is considered to be both symmetric and alternating, and
we will do so.
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When n = 2, a 2-linear map f : E1 ⇥ E2 ! F is called a
bilinear map. We have already seen several examples of
bilinear maps.

The operation h�, �i : E⇤ ⇥ E ! K applying a linear
form to a vector is a bilinear map.

Symmetric bilinear maps (and multilinear maps) play an
important role in geometry (inner products, quadratic
forms), and in di↵erential calculus (partial derivatives).

A bilinear map is symmetric if

f (u, v) = f (v, u),

for all u, v 2 E.

Alternating multilinear maps satisfy the following simple
but crucial properties.
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Proposition 5.3. Let f : E ⇥ . . . ⇥ E ! F be an
n-linear alternating map, with n � 2. The following
properties hold:

(1)
f (. . . , xi, xi+1, . . .) = �f (. . . , xi+1, xi, . . .)

(2)
f (. . . , xi, . . . , xj, . . .) = 0,

where xi = xj, and 1  i < j  n.

(3)

f (. . . , xi, . . . , xj, . . .) = �f (. . . , xj, . . . , xi, . . .),

where 1  i < j  n.

(4)
f (. . . , xi, . . .) = f (. . . , xi + �xj, . . .),

for any � 2 K, and where i 6= j.

Proposition 5.3 will now be used to show a fundamental
property of alternating multilinear maps.

First, we need to extend the matrix notation a little bit.
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Given an n ⇥ n matrix A = (ai j) over K, we can define
a map L(A) : En ! En as follows:

L(A)1(u) = a1 1u1 + · · · + a1 nun,

. . .

L(A)n(u) = an 1u1 + · · · + an nun,

for all u1, . . . , un 2 E and with u = (u1, . . . , un).

It is immediately verified that L(A) is linear. Then, given
two n⇥n matrice A = (ai j) and B = (bi j), by repeating
the calculations establishing the product of matrices (just
before Definition 2.1), we can show that

L(AB) = L(A) � L(B).

It is then convenient to use the matrix notation to de-
scribe the e↵ect of the linear map L(A), as

0

BB@

L(A)1(u)
L(A)2(u)

...
L(A)n(u)

1

CCA =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

0

BB@

u1

u2
...

un

1

CCA .
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Lemma 5.4. Let f : E ⇥ . . . ⇥ E ! F be an n-linear
alternating map. Let (u1, . . . , un) and (v1, . . . , vn) be
two families of n vectors, such that,

v1 = a1 1u1 + · · · + an 1un,

. . .

vn = a1 nu1 + · · · + an nun.

Equivalently, letting

A =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

assume that we have
0

BB@

v1

v2
...
vn

1

CCA = A>

0

BB@

u1

u2
...

un

1

CCA .

Then,

f (v1, . . . , vn) =
⇣X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n) n

⌘
f (u1, . . . , un),

where the sum ranges over all permutations ⇡ on
{1, . . . , n}.
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The quantity

det(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n) n

is in fact the value of the determinant of A (which, as we
shall see shortly, is also equal to the determinant of A>).

However, working directly with the above definition is
quite ackward, and we will proceed via a slightly indirect
route

Remark: The reader might have been puzzled by the
fact that it is the transpose matrix A> rather than A
itself that appears in Lemma 5.4.
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The reason is that if we want the generic term in the
determinant to be

✏(⇡)a⇡(1) 1 · · · a⇡(n) n,

where the permutation applies to the first index, then we
have to express the vjs in terms of the uis in terms of A>

as we did.

Furthermore, since

vj = a1 ju1 + · · · + ai jui + · · · + an jun,

we see that vj corresponds to the jth column of the matrix
A, and so the determinant is viewed as a function of the
columns of A.

The literature is split on this point. Some authors prefer
to define a determinant as we did. Others use A itself, in
which case we get the expression

X

�2Sn

✏(�)a1 �(1) · · · an �(n).

Corollary 5.7 show that these two expressions are equal,
so it doesn’t matter which is chosen. This is a matter of
taste.
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5.3 Definition of a Determinant

Recall that the set of all square n ⇥ n-matrices with co-
e�cients in a field K is denoted by Mn(K).

Definition 5.5. A determinant is defined as any map

D : Mn(K) ! K,

which, when viewed as a map on (Kn)n, i.e., a map of the
n columns of a matrix, is n-linear alternating and such
that D(In) = 1 for the identity matrix In.

Equivalently, we can consider a vector space E of dimen-
sion n, some fixed basis (e1, . . . , en), and define

D : En ! K

as an n-linear alternating map such that
D(e1, . . . , en) = 1.
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First, we will show that such maps D exist, using an
inductive definition that also gives a recursive method for
computing determinants.

Actually, we will define a family (Dn)n�1 of (finite) sets
of maps D : Mn(K) ! K.

Second, we will show that determinants are in fact uniquely
defined, that is, we will show that each Dn consists of a
single map.

This will show the equivalence of the direct definition
det(A) of Lemma 5.4 with the inductive definition D(A).

Given a matrix A 2 Mn(K), we denote its n columns by
A1, . . . , An.
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Definition 5.6. For every n � 1, we define a finite set
Dn of maps D : Mn(K) ! K inductively as follows:

When n = 1, D1 consists of the single map D such that,
D(A) = a, where A = (a), with a 2 K.

Assume that Dn�1 has been defined, where n � 2. We
define the set Dn as follows.

For every matrix A 2 Mn(K), let Ai j be the (n � 1) ⇥
(n � 1)-matrix obtained from A = (ai j) by deleting row
i and column j.

Then, Dn consists of all the maps D such that, for some
i, 1  i  n,

D(A) = (�1)i+1ai 1D(Ai 1) + · · · + (�1)i+nai nD(Ai n),

where for every j, 1  j  n, D(Ai j) is the result of
applying any D in Dn�1 to Ai j.

Each (�1)i+jD(Ai j) is called the cofactor of ai j, and
the inductive expression for D(A) is called a Laplace ex-
pansion of D according to the i-th row .



324 CHAPTER 5. DETERMINANTS

Given a matrix A 2 Mn(K), each D(A) is called a de-
terminant of A.

We can think of each member of Dn as an algorithm to
evaluate “the” determinant of A.

The main point is that these algorithms, which recur-
sively evaluate a determinant using all possible Laplace
row expansions, all yield the same result , det(A).

Given a n ⇥ n-matrix A = (ai j),

A =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

its determinant is denoted by D(A) or det(A), or more
explicitly by

det(A) =

��������

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

��������
.
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Example 5.1.

1. When n = 2, if

A =

✓
a b
c d

◆

expanding according to any row, we have

D(A) = ad � bc.

2. When n = 3, if

A =

0

@
a1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3

1

A

expanding according to the first row, we have

D(A) = a1 1

����
a2 2 a2 3

a3 2 a3 3

�����a1 2

����
a2 1 a2 3

a3 1 a3 3

����+a1 3

����
a2 1 a2 2

a3 1 a3 2

����

that is,

D(A) = a1 1(a2 2a3 3�a3 2a2 3)�a1 2(a2 1a3 3�a3 1a2 3)

+ a1 3(a2 1a3 2 � a3 1a2 2),

which gives the explicit formula

D(A) = a1 1a2 2a3 3 + a2 1a3 2a1 3 + a3 1a1 2a2 3

� a1 1a3 2a2 3 � a2 1a1 2a3 3 � a3 1a2 2a1 3.
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We now show that each D 2 Dn is a determinant (map).

Lemma 5.5. For every n � 1, for every D 2 Dn as
defined in Definition 5.6, D is an alternating multi-
linear map such that D(In) = 1.

Lemma 5.5 shows the existence of determinants. We now
prove their uniqueness.

Theorem 5.6. For every n � 1, for every D 2 Dn,
for every matrix A 2 Mn(K), we have

D(A) =
X

⇡2Sn

✏(⇡)a⇡(1) 1 · · · a⇡(n) n,

where the sum ranges over all permutations ⇡ on
{1, . . . , n}. As a consequence, Dn consists of a single
map for every n � 1, and this map is given by the
above explicit formula.

From now on, we will favor the notation det(A) over
D(A) for the determinant of a square matrix.
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Remark: There is a geometric interpretation of deter-
minants which we find quite illuminating. Given n lin-
early independent vectors (u1, . . . , un) in Rn, the set

Pn = {�1u1 + · · · + �nun | 0  �i  1, 1  i  n}

is called a parallelotope .

If n = 2, then P2 is a parallelogram and if n = 3, then
P3 is a parallelepiped , a skew box having u1, u2, u3 as
three of its corner sides.

Then, it turns out that det(u1, . . . , un) is the
signed volume of the parallelotope Pn (where volume
means n-dimensional volume).

The sign of this volume accounts for the orientation of Pn

in Rn.

We can now prove some properties of determinants.
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Corollary 5.7. For every matrix A 2 Mn(K), we
have det(A) = det(A>).

A useful consequence of Corollary 5.7 is that the deter-
minant of a matrix is also a multilinear alternating map
of its rows .

This fact, combined with the fact that the determinant of
a matrix is a multilinear alternating map of its columns
is often useful for finding short-cuts in computing deter-
minants.

We illustrate this point on the following example which
shows up in polynomial interpolation.
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Example 5.2.Consider the so-calledVandermonde de-
terminant

V (x1, . . . , xn) =

����������

1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

... ... . . . ...
xn�1

1 xn�1
2 . . . xn�1

n

����������

.

We claim that

V (x1, . . . , xn) =
Y

1i<jn

(xj � xi),

with V (x1, . . . , xn) = 1, when n = 1. This can proved
by induction on n � 1.

Lemma 5.4 can be reformulated nicely as follows.
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Proposition 5.8. Let f : E ⇥ . . . ⇥ E ! F be an n-
linear alternating map. Let (u1, . . . , un) and (v1, . . . , vn)
be two families of n vectors, such that

v1 = a1 1u1 + · · · + a1 nun,

. . .

vn = an 1u1 + · · · + an nun.

Equivalently, letting

A =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

assume that we have
0

BB@

v1

v2
...
vn

1

CCA = A

0

BB@

u1

u2
...

un

1

CCA .

Then,

f (v1, . . . , vn) = det(A)f (u1, . . . , un).
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As a consequence, we get the very useful property that
the determinant of a product of matrices is the product
of the determinants of these matrices.

Proposition 5.9. For any two n ⇥ n-matrices A and
B, we have

det(AB) = det(A) det(B).

It should be noted that all the results of this section, up
to now, also hold when K is a commutative ring, and not
necessarily a field.

We can now characterize when an n ⇥ n-matrix A is
invertible in terms of its determinant det(A).
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5.4 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring, and
when needed a field.

Definition 5.7. Let K be a commutative ring. Given a
matrix A 2 Mn(K), let eA = (bi j) be the matrix defined
such that

bi j = (�1)i+j det(Aj i),

the cofactor of aj i. The matrix eA is called the adjugate
of A, and each matrix Aj i is called a minor of the matrix
A.

� Note the reversal of the indices in

bi j = (�1)i+j det(Aj i).

Thus, eA is the transpose of the matrix of cofactors of
elements of A.
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Proposition 5.10. Let K be a commutative ring. For
every matrix A 2 Mn(K), we have

A eA = eAA = det(A)In.

As a consequence, A is invertible i↵ det(A) is invert-
ible, and if so, A�1 = (det(A))�1 eA.

When K is a field, an element a 2 K is invertible i↵
a 6= 0. In this case, the second part of the proposition
can be stated as A is invertible i↵ det(A) 6= 0.

Note in passing that this method of computing the inverse
of a matrix is usually not practical .

We now consider some applications of determinants to
linear independence and to solving systems of linear equa-
tions.

To avoid complications, we assume again that K is a field
(usually, K = R or K = C).
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Let A be an n⇥n-matrix, x a column vectors of variables,
and b another column vector, and let A1, . . . , An denote
the columns of A.

Observe that the system of equation Ax = b,
0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

an 1 an 2 . . . an n

1

CCA

0

BB@

x1

x2
...

xn

1

CCA =

0

BB@

b1

b2
...
bn

1

CCA

is equivalent to

x1A
1 + · · · + xjA

j + · · · + xnA
n = b,

since the equation corresponding to the i-th row is in both
cases

ai 1x1 + · · · + ai jxj + · · · + ai nxn = bi.

First, we characterize linear independence of the column
vectors of a matrix A in terms of its determinant.
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Proposition 5.11. Given an n ⇥ n-matrix A over
a field K, the columns A1, . . . , An of A are linearly
dependent i↵ det(A) = det(A1, . . . , An) = 0. Equiva-
lently, A has rank n i↵ det(A) 6= 0.

If we combine Proposition 5.11 with Proposition 3.22, we
obtain the following criterion for finding the rank of a
matrix.

Proposition 5.12. Given any m ⇥ n matrix A over
a field K (typically K = R or K = C), the rank of
A is the maximum natural number r such that there
is an r ⇥ r submatrix B of A obtained by selecting r
rows and r columns of A, and such that det(B) 6= 0.



336 CHAPTER 5. DETERMINANTS

5.5 Systems of Linear Equations and Determinants

We now characterize when a system of linear equations
of the form Ax = b has a unique solution.

Proposition 5.13. Given an n ⇥ n-matrix A over a
field K, the following properties hold:

(1) For every column vector b, there is a unique col-
umn vector x such that Ax = b i↵ the only solution
to Ax = 0 is the trivial vector x = 0, i↵ det(A) 6= 0.

(2) If det(A) 6= 0, the unique solution of Ax = b is
given by the expressions

xj =
det(A1, . . . , Aj�1, b, Aj+1, . . . , An)

det(A1, . . . , Aj�1, Aj, Aj+1, . . . , An)
,

known as Cramer’s rules.

(3) The system of linear equations Ax = 0 has a nonzero
solution i↵ det(A) = 0.

As pleasing as Cramer’s rules are, it is usually impracti-
cal to solve systems of linear equations using the above
expressions.
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5.6 Determinant of a Linear Map

Given a vector space E of finite dimension n, given a
basis (u1, . . . , un) of E, for every linear map f : E ! E,
if M(f ) is the matrix of f w.r.t. the basis (u1, . . . , un),
we can define

det(f ) = det(M(f )).

Using properties of determinants, it is not hard to show
that det(f ) is independent of the basis of E.

Definition 5.8. Given a vector space E of finite dimen-
sion, for any linear map f : E ! E, we define the deter-
minant det(f ) of f as the determinant det(M(f )) of the
matrix of f in any basis (since, from the discussion just
before this definition, this determinant does not depend
on the basis).

Proposition 5.14.Given any vector space E of finite
dimension n, a linear map f : E ! E is invertible i↵
det(f ) 6= 0.
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Given a vector space of finite dimension n, it is easily seen
that the set of bijective linear maps f : E ! E such that
det(f ) = 1 is a group under composition.

This group is a subgroup of the general linear group
GL(E).

It is called the special linear group (of E), and it is
denoted by SL(E), or when E = Kn, by SL(n, K), or
even by SL(n).
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5.7 The Cayley–Hamilton Theorem

The results of this section apply to matrices over any
commutative ring K.

First, we need the concept of the characteristic polyno-
mial of a matrix.

Definition 5.9. If K is any commutative ring, for every
n⇥n matrix A 2 Mn(K), the characteristic polynomial
PA(X) of A is the determinant

PA(X) = det(XI � A).

The characteristic polynomial PA(X) is a polynomial in
K[X ], the ring of polynomials in the indeterminate X
with coe�cients in the ring K.
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For example, when n = 2, if

A =

✓
a b
c d

◆
,

then

PA(X) =

����
X � a �b

�c X � d

���� = X2 � (a + d)X + ad � bc.

We can substitute the matrix A for the variable X in the
polynomial PA(X), obtaining a matrix PA. If we write

PA(X) = Xn + c1X
n�1 + · · · + cn,

then
PA = An + c1A

n�1 + · · · + cnI.

We have the following remarkable theorem.
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Theorem 5.15. (Cayley–Hamilton) If K is any com-
mutative ring, for every n ⇥ n matrix A 2 Mn(K), if
we let

PA(X) = Xn + c1X
n�1 + · · · + cn

be the characteristic polynomial of A, then

PA = An + c1A
n�1 + · · · + cnI = 0.

As a concrete example, when n = 2, the matrix

A =

✓
a b
c d

◆

satisfies the equation

A2 � (a + d)A + (ad � bc)I = 0.
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Most readers will probably find the proof of Theorem 5.15
rather clever but very mysterious and unmotivated.

The conceptual di�culty is that we really need to under-
stand how polynomials in one variable “act” on vectors,
in terms of the matrix A.

This can be done and yields a more “natural” proof.

Actually, the reasoning is simpler and more general if we
free ourselves from matrices and instead consider a finite-
dimensional vector space E and some given linear map
f : E ! E.

Given any polynomial p(X) = a0Xn+a1Xn�1+ · · ·+an

with coe�cients in the field K, we define the linear map
p(f ) : E ! E by

p(f ) = a0f
n + a1f

n�1 + · · · + anid,

where fk = f � · · · � f , the k-fold composition of f with
itself.

Note that

p(f )(u) = a0f
n(u) + a1f

n�1(u) + · · · + anu,

for every vector u 2 E.
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Then, we define a new kind of scalar multiplication
· : K[X ] ⇥ E ! E by polynomials as follows: for every
polynomial p(X) 2 K[X ], for every u 2 E,

p(X) · u = p(f )(u).

It is easy to verify that this is a “good action,” which
means that

p · (u + v) = p · u + p · v

(p + q) · u = p · u + q · u

(pq) · u = p · (q · u)

1 · u = u,

for all p, q 2 K[X ] and all u, v 2 E.

With this new scalar multiplication, E is a K[X ]-module.
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If p = � is just a scalar in K (a polynomial of degree 0),
then

� · u = (�id)(u) = �u,

which means that K acts on E by scalar multiplication
as before.

If p(X) = X (the monomial X), then

X · u = f (u).

Now, if we pick a basis (e1, . . . , en), if a polynomial p(X) 2
K[X ] has the property that

p(X) · ei = 0, i = 1, . . . , n,

then this means that p(f )(ei) = 0 for i = 1, . . . , n, which
means that the linear map p(f ) vanishes on E.

This suggests the plan of attack for our second proof of
the Cayley–Hamilton theorem.

For simplicity, we state the theorem for vector spaces over
a field. The proof goes through for a free module over a
commutative ring.
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Theorem 5.16. (Cayley–Hamilton) For every finite-
dimensional vector space over a field K, for every lin-
ear map f : E ! E, for every basis (e1, . . . , en), if A
is the matrix over f over the basis (e1, . . . , en) and if

PA(X) = Xn + c1X
n�1 + · · · + cn

is the characteristic polynomial of A, then

PA(f ) = fn + c1f
n�1 + · · · + cnid = 0.

If K is a field, then the characteristic polynomial of a lin-
ear map f : E ! E is independent of the basis (e1, . . . , en)
chosen in E.

To prove this, observe that the matrix of f over another
basis will be of the form P�1AP , for some inverible ma-
trix P , and then

det(XI � P�1AP ) = det(XP�1IP � P�1AP )

= det(P�1(XI � A)P )

= det(P�1) det(XI � A) det(P )

= det(XI � A).
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Therefore, the characteristic polynomial of a linear map
is intrinsic to f , and it is denoted by Pf .

The zeros (roots) of the characteristic polynomial of a
linear map f are called the eigenvalues of f . They play
an important role in theory and applications. We will
come back to this topic later on.

5.8 Further Readings

Thorough expositions of the material covered in Chap-
ters 1–3 and 5 can be found in Strang [30, 29], Lax [23],
Lang [21], Artin [1], Mac Lane and Birkho↵ [24], Ho↵man
and Kunze [19], Bourbaki [5, 6], Van Der Waerden [33],
Serre [27], Horn and Johnson [18], and Bertin [4]. These
notions of linear algebra are nicely put to use in classical
geometry, see Berger [2, 3], Tisseron [31] and Dieudonné
[12].


