Chapter 4

Gaussian Elimination,
LU-Factorization, Cholesky
Factorization, Reduced Row Echelon
Form

4.1 Motivating Example: Curve Interpolation

Curve wnterpolation is a problem that arises frequently
in computer graphics and in robotics (path planning).

There are many ways of tackling this problem and in this
section we will describe a solution using cubic splines.

Such splines consist of cubic Bézier curves.

They are often used because they are cheap to implement
and give more flexibility than quadratic Bézier curves.

219



220 CHAPTER 4. GAUSSIAN ELIMINATION, LU, CHLESKY, REDUCED ECHELON

A cubic Bézier curve C(t) (in R? or R?) is specified by
a list of four control points (by, by, bo, b3) and is given
parametrically by the equation

C(t) = (1 —=1)°by+3(1 —t)*t by + 3(1 — t)t* by + t° bs.

Clearly, C(0) = by, C(1) = b3, and for t € [0, 1], the
point C'(t) belongs to the convex hull of the control points
b07 b17 b27 b3-

The polynomials
(1—1)° 3(1—=t*, 3(1-t
are the Bernstein polynomials of degree 3.

Typically, we are only interested in the curve segment
corresponding to the values of ¢ in the interval [0, 1].

Still, the placement of the control points drastically affects
the shape of the curve segment, which can even have a
self-intersection; See Figures 4.1, 4.2, 4.3 illustrating var-
ious configuations.
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Figure 4.1: A “standard” Bézier curve

b1

b
0 by

Figure 4.2: A Bézier curve with an inflexion point
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bo b3

Figure 4.3: A self-intersecting Bézier curve

Interpolation problems require finding curves passing
through some given data points and possibly satisfying
some extra constraints.

A Bézier spline curve F'is a curve which is made up of
curve segments which are Bézier curves, say Cq,...,C),

(m > 2).
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We will assume that F' defined on [0, m|, so that for
1=1,....m

)

Fit)=Cit—i+1), i—1<t<i.

Typically, some smoothness is required between any two
junction points, that is, between any two points C;(1) and
C¢+1<O>, for ¢ = 1, e, MM — 1.

We require that C;(1) = C;;1(0) (C°-continuity), and
typically that the derivatives of C; at 1 and of C; 1 at 0
agree up to second order derivatives.

This is called C?-continuity, and it ensures that the tan-
gents agree as well as the curvatures.

There are a number of interpolation problems, and we
consider one of the most common problems which can be
stated as follows:
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Problem: Given N + 1 data points xg,...,zy, find a
C? cubic spline curve F', such that F(i) = x;, for all 1,
0<i<N(N>2).

A way to solve this problem is to find N + 3 auxiliary
points d_1, ..., dy4q called de Boor control points from
which N Bézier curves can be found. Actually,

d_1=xy and dy;1 =2zn

so we only need to find N + 1 points dy, ..., dy.

[t turns out that the C?-continuity constraints on the N
Bézier curves yield only N — 1 equations, so dy and dy
can be chosen arbitrarily.

In practice, dy and dy are chosen according to various
end conditions, such as prescribed velocities at zy and
xy. For the time being, we will assume that dy and dy
are given.
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Figure 4.4 illustrates an interpolation problem involving
N +1 =741 = 8 data points. The control points dj
and d; were chosen arbitrarily.

do
T2

1

do

¢ ¢

To = d,1 Ty = dg

Figure 4.4: A C? cubic interpolation spline curve passing through the points g, x1, x2, x5,
Ty, T, Lo, T
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It can be shown that dy, ..., dy_1 are given by the linear
system

I 1 d1 6331 — §d0

9 9

0 1 4 1 dN_Q 0z N—_2

\ A A .

It can be shown that the above matrix is invertible be-
cause it is strictly diagonally dominant.

Once the above system is solved, the Bézier cubics Cf, . .
Cy are determined as follows (we assume N > 2):

°)

For 2 < ¢ < N —1, the control points (b}, b, bb, b3) of C;
are given by

0 — Li—-1
2 1
b, = =d;,_1 + =d;
.
oy = i1+ Sd;
27 30T
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The control points (b}, b, b3, b}) of C are given by

b(l) = Xy

b1 = dy

1 1
by = ~dy + ~d
2 = 500+ 5
bil), — Iy,

and the control points (b, b1, by, bY) of Cy are given
by

) =Ny

1 1
Y = Zdn_q + =d
1 2N1‘|‘2N
b)Y = dy

bN = IN.

We will now describe various methods for solving linear
systems.

Since the matrix of the above system is tridiagonal, there
are specialized methods which are more efficient than the
general methods. We will discuss a few of these methods.
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4.2 Gaussian Elimination and LU-Factorization

Let A be an n X n matrix, let b € R" be an n-dimensional
vector and assume that A is invertible.

Our goal is to solve the system Ax = b. Since A is
assumed to be invertible, we know that this system has a
unique solution, z = A~'b.

Experience shows that two counter-intuitive facts are re-
vealed:
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(1) One should avoid computing the inverse, A™!, of A
explicitly. This is because this would amount to solv-
ing the n linear systems, Aul) = ej,forj=1,...,n,
where e; = (0,...,1,...,0) is the jth canonical basis
vector of R™ (with a 1 is the jth slot).

By doing so, we would replace the resolution of a single
system by the resolution of n systems, and we would
still have to multiply A~! by b.

(2) One does not solve (large) linear systems by comput-
ing determinants (using Cramer’s formulae).

This is because this method requires a number of ad-
ditions (resp. multiplications) proportional to (n+1)!
(resp. (n + 2)!).

The key idea on which most direct methods are based is
that if A is an upper-triangular matriz, which means
that a;; = 0 for 1 < j < i < n (resp. lower-triangular,
which means that a;; = 0 for 1 < ¢ < j < n), then
computing the solution, x, is trivial.
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Indeed, say A is an upper-triangular matrix

{CLM aio -+ Aip—2 Q1p—1 A1n \
0 ago -+ aap—2 Qop—1 Q24
0 0 --- 0 An—1n—1 Up-1n

\0 0 - 0 0y )

Then, det(A) = ay1a29- - a,, # 0, which implies that
a;; # 0 fore = 1,...,n, and we can solve the system
Az = b from bottom-up by back-substitution.

That is, first we compute x,, from the last equation, next

plug this value of x,, into the next to the last equation
and compute x,_; from it, etc.

This yields

nn

Ln—1 — an_ln_1<bn—1 - an—lnxn)

—1
Il = a11<bl — 12 — * =+ — alnxn).
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Note that the use of determinants can be avoided to prove
that if A is invertible then a;; Z0 fore=1,...,n.

Indeed, it can be shown directly (by induction) that an
upper (or lower) triangular matrix is invertible iff all its

diagonal entries are nonzero.

If A was lower-triangular, we would solve the system from
top-down by forward-substitution.

Thus, what we need is a method for transforming a matrix
to an equivalent one in upper-triangular form.

This can be done by elimination.
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Consider the following example:
2+ y + z = 95

dr — 6y
—2x + Ty + 2z

1
o |
NG

We can eliminate the variable x from the second and
the third equation as follows: Subtract twice the first
equation from the second and add the first equation to
the third. We get the new system

2 + y + z = D
— 8y — 2z = —12
8y + 3z = 14.

This time, we can eliminate the variable y from the third
equation by adding the second equation to the third:

20 + y + 2 = 5
— 8y — 2z = —12
z = 2.

This last system is upper-triangular.
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Using back-substitution, we find the solution: z = 2,
y=1x =1

Observe that we have performed only row operations.

The general method is to iteratively eliminate variables
using simple row operations (namely, adding or subtract-
ing a multiple of a row to another row of the matrix) while
simultaneously applying these operations to the vector b,
to obtain a system, M Ax = Mb, where M A is
upper-triangular.

Such a method is called Gaussian elimination.
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However, one extra twist is needed for the method to
work in all cases: It may be necessary to permute rows,
as illustrated by the following example:

r +y + z =1
r + y + 3z =1
2v + oy + 3z = 1.

In order to eliminate x from the second and third row,
we subtract the first row from the second and we subtract
twice the first row from the third:

Now, the trouble is that y does not occur in the second
row; so, we can’t eliminate y from the third row by adding
or subtracting a multiple of the second row to it.

The remedy is simple: permute the second and the third
row! We get the system:
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r+y + z =1
3y + 6z = —1
2z =10,

which is already in triangular form.

Another example where some permutations are needed is:

z = 1
—2x + Ty + 2z = 1
dr — Gy = —1.

First, we permute the first and the second row, obtaining

—2r + Ty + 2z = 1
z = 1
dr  — Oy —1

and then, we add twice the first row to the third (to
eliminate x) obtaining;

Y

—2x + Ty + 2z =1
2z
Sy + 4z

I
= =
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Again, we permute the second and the third row, getting
—2x + Ty + 2z =1

Sy + 4z
2z

I
I

an upper-triangular system.

Of course, in this example, z is already solved and we
could have eliminated it first, but for the general method,
we need to proceed in a systematic fashion.

We now describe the method of Gaussian Elimination
applied to a linear system, Ax = b, where A is assumed
to be invertible.

We use the variable k to keep track of the stages of elim-
ination. Initially, & = 1.
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(1) The first step is to pick some monzero entry, a;1,
in the first column of A. Such an entry must exist,
since A is invertible (otherwise, the first column of A
would be the zero vector, and the columns of A would
not be linearly independent).

The actual choice of such an element has some impact
on the numerical stability of the method, but this will
be examined later. For the time being, we assume that
some arbitrary choice is made. This chosen element is
called the pivot of the elimination step and is denoted
71 (so, in this first step, m = a;1).

(2) Next, we permute the row (i) corresponding to the
pivot with the first row. Such a step is called pivoting.
So, after this permutation, the first element of the first
TOW 1S NONZero.

(3) We now eliminate the variable x1 from all rows except
the first by adding suitable multiples of the first row
to these rows. More precisely we add —a;q /7 times
the first row to the ¢th row, for + = 2,...,n. At the
end of this step, all entries in the first column are zero
except the first.
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(4) Increment k by 1. If k = n, stop. Otherwise, k < n,
and then iteratively repeat steps (1), (2), (3) on the
(n — k+ 1) x (n — k + 1) subsystem obtained by
deleting the first £ — 1 rows and £ — 1 columns from
the current system.

If we let Aj = A and Ay, = (aj;) be the matrix obtained
after k£ — 1 elimination steps (2 < k < n), then the kth

elimination step is applied to the matrix A;. of the form

ko k 2
(all a/]]%Z o« o o e o o o« o o a’]]%n\
a22 « o o « o o o« o o a2n
Ay = ab. ... b
i ke ki

Actually, note
1] 1]

for all 2,5 with 1 < ¢ < k —2and ¢ < 5 < n, since
the first k£ — 1 rows remain unchanged after the (k£ —1)th
step.

a
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We will prove later that det(A;) = 4det(A). Conse-
quently, A; is invertible.

The fact that A, is invertible iff A is invertible can also
be shown without determinants from the fact that there
is some invertible matrix M, such that A, = M. A, as
we will see shortly.

Since Ay is invertible, some entry afk with £ <1 < nis
nonzero. Otherwise, the last n — k + 1 entries in the first
k columns of A;, would be zero, and the first k& columns
of A;, would vield k vectors in R,

But then, the first k£ columns of A; would be linearly de-
pendent and A; would not be invertible, a contradiction.
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So, one the entries afk with £ < 7 < n can be chosen
as pivot, and we permute the kth row with the 7th row,
obtaining the matrix o = (af)).

gl
The new pivot is . = aZk, and we zero the entries ¢ =
k+1,...,n in column k£ by adding —afk/ﬂk times row

k to row ¢. At the end of this step, we have A;;.

Observe that the first £ — 1 rows of A, are identical to
the first £ — 1 rows of Aj,1.

[t is easy to figure out what kind of matrices perform the
elementary row operations used during Gaussian elimina-
tion.



4.2. GAUSSIAN ELIMINATION AND LU-FACTORIZATION 241

The key point is that if A = PB, where A, B are m X n
matrices and P is a square matrix of dimension m, if (as
usual) we denote the rows of A and B by Ay, ..., A, and
By, ..., B,,, then the formula

m
Ajj = E Pikbr;
k=1

giving the (i, j)th entry in A shows that the ith row of
A 1s a linear combination of the rows of B:

A;=puBi+ -+ DimBn.

Therefore, multiplication of a matrixz on the left by a
square matriz performs row operations.

Similarly, multiplication of a matrix on the right by a
square matrix performs column operations
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The permutation of the kth row with the ¢th row is
achieved by multiplying A on the left by the transpo-
sition. matriz P(i, k), which is the matrix obtained from
the identity matrix by permuting rows ¢ and k, i.e.,

! )

P(i k) =

1

\ 1)

Observe that det(P ( k)) = —1. Furthermore, P(i, k) is
symmetric (P(i, k)" = P(i,k)), and

P(i, k)™t = P(i, k).

During the permutation step (2), if row k£ and row ¢ need
to be permuted, the matrix A is multiplied on the left by
the matrix Py such that P, = P(i, k), else we set P, = I.
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Adding (8 times row j to row 7 is achieved by multiplying
A on the left by the elementary matriz,

Eijp =1+ Pe;j,

where
(e )1 = 1 ifk=candl=
DRET 0 itk Aior ] #7,
1.e.,
1 1
- \ ([, ;)
1 1
Lij.p = or -
1 1
15 1 1

\ )\ 1

On the left, ¢ > 7. and on the right, ¢ < 7. Observe that
the inverse of E; ;.3 = I + fe;; is
Ez’,j;—[i’ =1 — 562']', and that det(Ez-’j;ﬁ) = 1.

Therefore, during step 3 (the elimination step), the ma-
trix A is multiplied on the left by a product, E}., of ma-
trices of the form Fj ;.. , with ¢ > k.
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Consequently, we see that

Ap1 = By P A,

and then

Ay =Ey 1P, - E1PA.

This justifies the claim made earlier, that A, = M A for
some invertible matrix M}.; we can pick

My, = By 1Py --- E1 Py,

a product of invertible matrices.

The fact that det(P(i, k)) = —1 and that det(F; j.53) =1
implies immediately the fact claimed above:

We always have

det(Ay) = £ det(A).
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Furthermore, since

Ay =Ep 1Py --- E1PA
and since Gaussian elimination stops for £ = n, the ma-
trix

A, =L, 1P EaP P A

is upper-triangular.

Also note that if we let
M=FE, 1P,_1- - E2PE P,
then det(M) = 41, and
det(A) = £ det(A,).

The matrices P(¢, k) and Ej ;3 are called elementary
matrices.
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Theorem 4.1. (Gaussian Elimination) Let A be an
n x n matriz (invertible or not). Then there is some
invertible matrix, M, so that U = MA s upper-
triangular. The piots are all nonzero iff A is in-
vertible.

Remark: Obviously, the matrix M can be computed as
M=FE, 1P, B2 E P,

but this expression is of no use.

Indeed, what we need is M ~!; when no permutations are
needed, it turns out that M ! can be obtained immedi-
ately from the matrices E}’s, in fact, from their inverses,
and no multiplications are necessary:.



4.2. GAUSSIAN ELIMINATION AND LU-FACTORIZATION 247

Remark: Instead of looking for an invertible matrix,
M, so that M A is upper-triangular, we can look for an
invertible matrix, M, so that M A is a diagonal matrix.

Only a simple change to Gaussian elimination is needed.

At every stage, k, after the pivot has been found and piv-
oting been performed, if necessary, in addition to adding
suitable multiples of the kth row to the rows below row
k in order to zero the entries in column k for ¢ = k +
1,...,n, also add suitable multiples of the kth row to
the rows above row k in order to zero the entries in col-
umn k fore=1,...,k — 1.

Such steps are also achieved by multiplying on the left by
elementary matrices Fj 1.5 ., except that ¢ < k, so that
these matrices are not lower-triangular matrices.

Nevertheless, at the end of the process, we find that
A, = MA, is a diagonal matrix.
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This method is called the Gauss-Jordan factorization.
Because it is more expansive than Gaussian elimination,
this method is not used much in practice.

However, Gauss-Jordan factorization can be used to com-
pute the inverse of a matrix, A.

It remains to discuss the choice of the pivot, and also con-
ditions that guarantee that no permutations are needed
during the Gaussian elimination process.

We begin by stating a necessary and suflicient condition
for an invertible matrix to have an LU-factorization (i.e.,
Gaussian elimination does not require pivoting).

We say that an invertible matrix, A, has an

LU -factorization if it can be written as A = LU, where
U is upper-triangular invertible and L is lower-triangular,
WlthLmzlfOI’Z: 1,...,%.

A lower-triangular matrix with diagonal entries equal to
1 is called a unit lower-triangular matrix.
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Given an n x n matrix, A = (a;;), for any k, with 1 <
k <mn,let A[l..k, 1..k] denote the submatrix of A whose
entries are a; j, where 1 <14, 75 < k.

Proposition 4.2. Let A be an invertible n X n-matrix.
Then, A, has an LU -factorization, A = LU, iff every
matriz A|l..k, 1..k] is invertible for k =1,....,n. Fur-
thermore, when A has an LU -factorization, we have

det(A[l..k, 1..k]) = mmo -, k=1,...,n,

where my, 1s the pivot obtained after k — 1 elimination
steps. Therefore, the kth pivot is given by

ail — det(A[l..l, 11]) ka =1
T = det(A|l..k, 1..k]) ,
k=2,...,n.
TtALE 11 k—1)) k=2

Corollary 4.3. (LU-Fuctorization) Let A be an in-
vertible n X n-matrix. If every matriz A[l..k,1..k| is
wnvertible for k =1,...,n, then Gausstan elimination
requires no pivoting and yields an LU -factorization,

A=LU.
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The reader should verity that the example below is indeed
an LU-factorization.

2110 1000\ /2110
4331 [2100|]0111
8795 |4310[]002°2
6798 3411/ \0002

One of the main reasons why the existence of an LU-
factorization for a matrix, A, is interesting is that if we
need to solve several linear systems, Ax = b, correspond-
ing to the same matrix, A, we can do this cheaply by
solving the two triangular systems

Lw=0>b, and Ux = w.

As we will see a bit later, symmetric positive definite
matrices satisfy the condition of Proposition 4.2.

Therefore, linear systems involving symmetric positive
definite matrices can be solved by Gaussian elimination
without pivoting.

Actually, it is possible to do better: This is the Cholesky
factorization.
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There is a certain asymmetry in the LU-decomposition
A = LU of an invertible matrix A. Indeed, the diagonal
entries of L are all 1, but this is generally false for U.

This asymmetry can be eliminated as follows: if

D= diag(UH; U2, - - - 7unn)

is the diagonal matrix consisting of the diagonal entries
in U (the pivots), then we if let U’ = DU, we can write

A= LDU

where L is lower- triangular, U’ is upper-triangular, all di-
agonal entries of both L and U” are 1, and D is a diagonal
matrix of pivots.

Such a decomposition is called an LDU -factorization.

We will see shortly than if A is symmetric, then U’ = L.
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The following easy proposition shows that, in principle,
A can be premultiplied by some permutation matrix, P,
so that PA can be converted to upper-triangular form
without using any pivoting.

A permutation matrix is a square matrix that has a sin-
gle 1 in every row and every column and zeros everywhere
else.

[t is shown in Section 5.1 that every permutation matrix
is a product of transposition matrices (the P(i, k)s), and
that P is invertible with inverse P'.

Proposition 4.4. Let A be an invertible n X n-matrizx.

Then, there 1s some permutation matrix, P, so that
PA[l..k, 1..k] is invertible for k =1,...,n.
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Remark: One can also prove Proposition 4.4 using a
clever reordering of the Gaussian elimination steps sug-

gested by Trefethen and Bau [32] (Lecture 21).

We are not aware of a detailed proof of Theorem 4.5 (see
below) in the standard texts.

Although Golub and Van Loan [16] state a version of this
theorem as their Theorem 3.1.4, they say that “The proof
is a messy subscripting argument.”

Meyer [25] also provides a sketch of proof (see the end of
Section 3.10).
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Theorem 4.5. For every invertible n X n-matriz, A,

the following hold:

(1) There is some permutation matriz, P, some upper-
triangular matrix, U, and some unit lower-triangular
matriz, L, so that PA = LU (recall, L;; = 1 for
i =1,...,n). Furthermore, if P = I, then L and
U are unique and they are produced as a result of
Gaussian elimination without pivoting.

(2)If B,y ... EZA = U is the result of Gaussian elim-
ination without pivoting, write as usual
A= FEp1... E1A (with Ay = (afj)), and let
Ci. = afk/a’,jk, with 1 <k<n-—1 and
kE+1<1<n. Then
/ 1 0 0 --- O\
by 1 0 --- 0
L= |4ts b3 1 - 01,
S S O
Kgnl £n2 EnS 1)

where the kth column of L s the kth column of
Ek_l, fork=1,...,n—1.
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(8)If B, \P,_1---E1PlA = U is the result of Gaus-
sian elimination with some pivoting, write
A, =FE, 1P._1--- E1PA, and define EJ’?, with
1<j<n-—1andj <k <n-—1, such that, for
7=1,...,n—2,
E‘; = b
EY=PE/"'P;, fork=j+1,....n—1,

and
E' i =E,.

Then,
Ef = PPy Pi1EiPjy - P Py
U=E"{---E"'P,_---PA,

and if we set

P=P, i P
L= (B )" (B

then

PA=LU.
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Furthermore,
(Ej)'=T+€, 1<j<n—1j<k<n—1,

where Ef s a lower triangular matrix of the form

(0... 0 0...0\

ol _ 0 ... k() 0-..- 0
j 0 ... ngjO .0l
. . ]; . e 2
\o... gnj 0 --. 0)
we have
ko k
and

EF=PRE, 1<j<n-2j+1<k<n-—1,

where P, = 1 or else P, = P(k,i) for some i such
that Kk +1 < 1 < n; of P, # I, this means that
(E})~" is obtained from (Ej-‘:_l)_1 by permuting the
entries on row ¢ and k in column j.

Because the matrices (E]l-“)_1 are all lower triangu-
lar, the matriz L 1s also lower triangular.
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In order to find L, define lower triangular matrices

Ay of the form

0 0 0 0O 0 --- ... O\
)‘gl 0 0 0 0 : 0
N A 0o 0 : : 0
A 5 5 0 0 = 5
k p—
)\%—1—11 )\%-HQ e )\]]2_1_1]{ O ... ... 0
)‘k:+21 >‘k+22 T )‘k+2k O . --- 0
\ )‘7]?&1 )\7]22 ce )\flk 0 -« .. O)

to assemble the columns of L iteratively as follows:
let

<_££+1k7 SR _€£k>
be the last n — k elements of the kth column of E,
and define A, inductively by setting
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then for k=2,....,n—1, define
/
k= Pel\p1,

and

0 0 0 0 0 : 0\
A0 00 0 0 0
At Ak 0 0 0

B : : 0 0 P

~ )\Zﬂl—l )\’ka—l )\’kkk—_ll 0 ... ... 01"
)‘lkk+_111 )\;fk—f—_112 )‘;ck+_11k4 gllzﬂk e )
\)\251—1 )‘;fz_l )‘;fk_—l1 gik O)

with P, = I or P, = P(k,i) for some i > k.

This means that in assembling L, row k and row 1
of Ni._1 need to be permuted when a pivoting step
permuting row k and row 1 of A 1S required.
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Then

I+ Ay =(Ey) - (B
A = glkglfa

fork=1,...,n—1, and therefore

L=1+A\,_4.

Part (3) of Theorem 4.5 shows the remarkable fact that in
assembling the matrix L while performing Gaussian elim-
ination with pivoting, the only change to the algorithm is
to make the same transposition on the rows of L (really
Ay, since the one’s are not altered) that we make on the
rows of A (really Ay) during a pivoting step involving row
k and row i.

We can also assemble P by starting with the identity
matrix and applying to P the same row transpositions
that we apply to A and A.
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Consider the matrix

I 2 =3 4
4 8 12 =8
A= 2 3 2 1
-3 -1 1 -4

We set By = 14, and we can also set Ay = 0. The first
step is to permute row 1 and row 2, using the pivot 4.
We also apply this permutation to Fy:

4 8 12 -8 0100
, |1 2 -3 4 {1000
4 = 2 3 2 1 P = 0010

3 -1 1 —4 0001
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Next, we subtract 1/4 times row 1 from row 2, 1/2 times
row 1 from row 3, and add 3/4 times row 1 to row 4, and
start assembling A:

48 12 -8 0 000
o0 —6 6 | 14 000
=101 -4 3 A= 1/2 000
0 5 10 —10 —3/400 0
0100
1000
Pi=10010
0001

Next we permute row 2 and row 4, using the pivot 5. We
also apply this permutation to A and P:

4 8 12 —8 0 000
A = 0 5 10 —10 A = —3/4 00 0
0 -1 -4 5 1/2 000
00 —6 6 1/4 000
0100
0001
P = 0010
1000
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Next we add 1/5 times row 2 to row 3, and update Aj:

48 12 —8 0 0 00
4|05 10 -0 | =3/4 0 00
T loo0 -2 3 . 1/2 —1/500
00 —6 6 1/4 0 00
0100
0001
P=10010
1000

Next we permute row 3 and row 4, using the pivot —6.
We also apply this permutation to A and P:

48 12 —8§ 0 0 00
A = 05 10 —10 A= —3/4 0 00
00 —6 6 1/4 0 00
00 —2 3 1/2 —1/50 0
0100
0001
Fs = 1000
0010
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Finally, we subtract 1/3 times row 3 from row 4, and
update Aj:

418 12 -8 0 0 00
05 10 —10 [-3/4 0 0 0
A=100-6 6 As = 1/4 0 0 0
00 0 1 1/2 —1/51/3 0
0100
0001
B=11000
0010

Consequently, adding the identity to A3, we obtain

1 0 0 0 4812 -8
| =3/4 1 0 0 {05 10 =10

=114 o 10" Y“loo-s 6 |
1/2 —1/51/3 1 00 0 1
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We check that

0100 1 2 -3 4
0001 4 8 12 -8
PA= 1000 2 3 2 1
0010 -3 -1 1 -4
4 &8 12 =8
-3 -1 1 -4
- 1 2 =3 4 |’
2 3 2 1
and that
1 0 0 0 48 12 —8
B —3/4 1 0 0 05 10 —10
LU = 1/4 0 1 0 00 —6 6
1/2 —1/51/3 1 00 0 1
4 &8 12 =8
-3 -1 1 —4
1 2 -3 4 PA.

2 3 2 1
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Note that if one willing to overwrite the lower triangular
part of the evolving matrix A, one can store the evolving
A there, since these entries will eventually be zero anyway!

There is also no need to save explicitly the permutation
matrix P. One could instead record the permutation
steps in an extra column (record the vector (7(1), ..., m(n))
corresponding to the permutation m applied to the rows).

We let the reader write such a bold and space-efficient
version of LU-decomposition!

Proposition 4.6. If an nvertible symmetric matrizc
A has an LU-decomposition, then A has a factoriza-
tion of the form

A=LDL"

where L is a lower-triangular matriz whose diagonal
entries are equal to 1, and where D consists of the
pivots. Furthermore, such a decomposition is unique.

Remark: It can be shown that Gaussian elimination +
back-substitution requires n’ /3+0(n?) additions, n®/3+
O(n?) multiplications and n*/2 + O(n) divisions.
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Let us now briefly comment on the choice of a pivot.

Although theoretically, any pivot can be chosen, the pos-
sibility of roundoff errors implies that it is not a good
idea to pick very small pivots. The following example
illustrates this point.

10074 +y =1
r + vy

|
o

Since 10™* is nonzero, it can be taken as pivot, and we
get

1074z + Y = 1
(1—10Yy = 2 —10%

Thus, the exact solution is
10 ~ 10 =2
“w-r YTt

X
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However, if roundoft takes place on the fourth digit, then

10* — 1 = 9999 and 10* — 2 = 9998 will be rounded off
both to 9990, and then, the solution is x = 0 and y = 1,
very far from the exact solution where x =~ 1 and y ~ 1.

The problem is that we picked a very small pivot.

If instead we permute the equations, the pivot is 1, and
after elimination, we get the system

xr + Y = 2
(1-10Hy = 1-2x 107"

This time, 1 —107* = 0.9999 and 1 — 2 x 10~* = 0.9998
are rounded off to 0.999 and the solution is
x =1,y = 1, much closer to the exact solution.
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To remedy this problem, one may use the strategy of
partial pivoting.

This consists of choosing during step k (1 < k <mn — 1)
one of the entries af, such that

k| _ k
ai}] = kfgggn‘%k‘-

By maximizing the value of the pivot, we avoid dividing
by undesirably small pivots.

Remark: A matrix, A, is called strictly column diag-
onally dominant ift

n
a; | > Z la;jl, forj=1,...,n
i=1, i

(resp. strictly row diagonally dominant iff

n
\a“-|> Z |CLZ']'|, fOI’iZl,...,?l.)

J=1,j#1
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[t has been known for a long time (before 1900, say by
Hadamard) that if a matrix, A, is strictly column diago-
nally dominant (resp. strictly row diagonally dominant),
then it is invertible. (This is a good exercise, try it!)

It can also be shown that if A is strictly column diago-
nally dominant, then Gaussian elimination with partial
pivoting does not actually require pivoting.

Another strategy, called complete pivoting, consists in
choosing some entry afj, where k < 7,7 < n, such that

_ k
i) = e Vgl

However, in this method, if the chosen pivot is not in
column £, it is also necessary to permute columns.
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This is achieved by multiplying on the right by a permu-
tation matrix.

However, complete pivoting tends to be too expensive in
practice, and partial pivoting is the method of choice.

A special case where the LU-factorization is particularly
eflicient is the case of tridiagonal matrices, which we now
consider.
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4.3 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

(i \

a9 52 C2
as b3 C3

Define the sequence

5o = 1.
51 — bl)
0 = bp0p—1 — apCr—10k—2, 2 <k <n.

Proposition 4.7. If A is the tridiagonal matriz above,
then 0 = det(A[l..k, 1..k]), fork=1,... n.
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Theorem 4.8. If A is the tridiagonal matrix above
and o0, # 0 for k=1,....n, then A has the following

LU -factorization:

CL25—1 1
01
Clgé.— 1

A= 2 .
a 5n—3
n—15n_2
(él C1

0
o
01

C3
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It follows that there is a simple method to solve a linear
system, Ax = d, where A is tridiagonal (and d; # 0 for
k=1,...,n).

For this, it is convenient to “squeeze” the diagonal matrix,
A, defined such that Ay = 0;/dx_1, into the factoriza-
tion so that A = (LA)(A™U), and if we let

C1

< 7

1 b
Or_

Zkzck%, 2<k<n-—1,
5 k

Zn = - _bn ApZn—1,
5n—1

A= (LA)(A™U) is written as
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& )
<1

as —
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As a consequence, the system Ax = d can be solved by
constructing three sequences: First, the sequence

C1
21 — —
by’
Cr;
Zk:b ) ]{:2,. ,n—l,
k— QpRi—1

Zn = bn — QpZp—1,

corresponding to the recurrence 0 = bp0p_1 — QpCL—10k—2
and obtained by dividing both sides of this equation by
0j—1, next

dy dp — apwg

= -—, W k:2,...,n,
by

w1 — b y
k— Apck—1

corresponding to solving the system LAw = d, and fi-
nally

Tp =Wy, Xp=WE—ZTrr1, k=n—1n-—2...,1,

corresponding to solving the system A~'Ux = w.
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Remark: It can be verified that this requires 3(n — 1)
additions, 3(n — 1) multiplications, and 2n divisions, a
total of 8n — 6 operations, which is much less that the
O(2n?/3) required by Gaussian elimination in general.

We now consider the special case of symmetric positive
definite matrices (SPD matrices).

Recall that an n x n symmetric matrix, A, is positive

definite ift
' Az >0 for all z € R" with = # 0.

Equivalently, A is symmetric positive definite iff all its
eigenvalues are strictly positive.
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The following facts about a symmetric positive definite
matrice, A, are easily established:

(1) The matrix A is invertible. (Indeed, if Az = 0, then
x' Az = 0, which implies z = 0.)

(2) We have a;; > 0 for i =1,...,n. (Just observe that
for x = e;, the 1th canonical basis vector of R", we

have e} Ae; = a;; > 0.)

(3) For every n x n invertible matrix, Z, the matrix
Z' AZ is symmetric positive definite iff A is symmet-
ric positive definite.

Next, we prove that a symmetric positive definite matrix
has a special LU-factorization of the foom A = BB,
where B is a lower-triangular matrix whose diagonal ele-
ments are strictly positive.

This is the Cholesky factorization.
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4.4 SPD Matrices and the Cholesky Decomposition

First, we note that a symmetric positive definite matrix
satisfies the condition of Proposition 4.2.

Proposition 4.9. If A is a symmetric positive def-
inite matriz, then All..k,1..k| is symmetric positive
definite, and thus invertible for k =1,..., n.

Let A be a symmetric positive definite matrix and write
A — ai WT |
w C
where C'is an (n — 1) X (n — 1) symmetric matrix and
Wis an (n — 1) x 1 matrix.

Since A is symmetric positive definite, a;; > 0, and we
can compute o = y/ay1. The trick is that we can factor
A uniquely as

()
“\W/aI)\oC—WWT/a;, ) \0O T )
(& 0)(1 0 )(aW/a)

ie.,as A= B1AB], where By is lower-triangular with
positive diagonal entries.
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Thus, By is invertible, and by fact (3) above, A; is also
symmetric positive definite.

Theorem 4.10. (Cholesky Factorization) Let A be
a symmetric positive definite matriz. Then, there is
some lower-triangular matriz, B, so that A = BB'.
Furthermore, B can be chosen so that its diagonal ele-
ments are strictly positive, in which case, B is unique.

Remark: If A = BB', where B is any invertible ma-
trix, then A is symmetric positive definite.

The proot of Theorem 4.10 immediately yields an algo-
rithm to compute B from A. For j=1,...,n

i1 1/2
bjj = (%’j —Zbﬁ) :
k=1

and fori=j5+1,....n(and j=1,...,n—1)

-1
bij = (aij - bz‘kbjk> /0j -
k=1

)
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The above formulae are used to compute the jth column
of B from top-down, using the first § — 1 columns of B
previously computed, and the matrix A.

The Cholesky factorization can be used to solve linear
systems, Ax = b, where A is symmetric positive definite:

Solve the two systems Bw = b and B'z = w.

Remark: It can be shown that this methods requires
n’/6 + O(n?) additions, n®/6 + O(n?) multiplications,
n?/2+ O(n) divisions, and O(n) square root extractions.

Thus, the Cholesky method requires half of the num-
ber of operations required by Gaussian elimination (since
Gaussian elimination requires n®/3 + O(n?) additions,
n? /3+O0(n?) multiplications, and n*/2+4O(n) divisions).

It also requires half of the space (only B is needed, as
opposed to both L and U).

Furthermore, it can be shown that Cholesky’s method is
numerically stable.
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We now give three more criteria for a symmetric matrix
to be positive definite.

Proposition 4.11. Let A be any n X n symmetric
matriz. The following conditions are equivalent:

(a) A is positive definite.
(b) All principal minors of A are positive; that is:
det(A[l..k,1..k]) > 0 for k = 1,...,n (Sylvester’s

criterion ).

(c) A has an LU-factorization and all pivots are pos-
1tive.

(d) A has an LDL'-factorization and all pivots in D
are positive.

For more on the stability analysis and efficient implemen-
tation methods of Gaussian elimination, LU-factoring
and Cholesky factoring, see Demmel [11], Trefethen and
Bau [32], Ciarlet [9], Golub and Van Loan [16], Strang
29, 30], and Kincaid and Cheney [20].
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4.5 Reduced Row Echelon Form

(Gaussian elimination described in Section 4.2 can also be
applied to rectangular matrices.

This yields a method for determining whether a system
Ax = b is solvable, and a description of all the solutions
when the system is solvable, for any rectangular m x n
matrix A.

[t turns out that the discussion is simpler if we rescale
all pivots to be 1, and for this we need a third kind of

elementary matrix.

For any A # 0, let E; ) be the n x n diagonal matrix

o )
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Note that E; ) is also given by
Eix=1+(A—1)e;,
and that £ is invertible with
E\ =E, 1.

Now, after £ — 1 elimination steps, if the bottom portion
ko k k
(@r Gsrfes - - -+ W)
of the kth column of the current matrix Ay is nonzero so
that a pivot m; can be chosen, after a permutation of rows
if necessary, we also divide row k by 7. to obtain the pivot
1, and not only do we zero all the entriesi = k+1,...,m
in column k. but also all the entries? =1,...,k— 1. so
that the only nonzero entry in column k is a 1 in row k.

These row operations are achieved by multiplication on
the left by elementary matrices.
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If af, = a} 4, =+ =ak, =0, we move on to column

k+ 1.
The result is that after performing such elimination steps,
we obtain a matrix that has a special shape known as a

reduced row echelon matriz.

Here is an example illustrating this process: Starting from
the matrix

A =

—_ = =
o — O
co Ut DO
>~ DN —
b_L

o 1 Ot

we perform the following steps

1
A1—>A2: 0
0

o — O
S W DO
LY = =
-J b Ut

by subtracting row 1 from row 2 and row 3;
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10215 102 1 5
Ay— 02637 — |0133/27)2
01312 013 1 2

102 1 5

s Ay=(013 372 72|,

000 —1/2 —3/2

after choosing the pivot 2 and permuting row 2 and row
3, dividing row 2 by 2, and subtracting row 2 from row 3;

102 1 5 1020 2
Ay — 0133272 — A4, =[0130 -1
000 1 3 0001 3

after dividing row 3 by —1/2, subtracting row 3 from row
1, and subtracting (3/2) x row 3 from row 2.

It is clear that columns 1,2 and 4 are linearly indepen-
dent, that column 3 is a linear combination of columns
1 and 2, and that column 5 is a linear combinations of
columns 1, 2, 4.
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In general, the sequence of steps leading to a reduced
echelon matrix is not unique.

For example, we could have chosen 1 instead of 2 as the
second pivot in matrix As.

Nevertherless, the reduced row echelon matrix obtained
from any given matrix is unique; that is, it does not de-
pend on the the sequence of steps that are followed during
the reduction process.

If we want to solve a linear system of equations of the
form Ax = b, we apply elementary row operations to
both the matrix A and the right-hand side b.

To do this conveniently, we form the augmented matriz
(A, b), which is the m x (n+1) matrix obtained by adding
b as an extra column to the matrix A.
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For example if

1021 5
A=|1152] and o=|[7].
1284 12

then the augmented matrix is

1021 5
(Ab)=(11527
128412

oo Ot DO

Now, for any matrix M, since
M(A,b) = (MA, Mb),

performing elementary row operations on (A, b) is equiv-

alent to simultaneously performing operations on both A
and b.
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For example, consider the system

T + 223 + x4 = O
r1 + X9 + Or3 + 2004 = 7
r1 + 229 + S8x3 + 4xy = 12.

[ts augmented matrix is the matrix

10
(A= [11
1 2

co Ot DO

L 5
27
4 12

considered above, so the reduction steps applied to this
matrix yield the system

T + 213 = 2
To + 3T3 = —1
Ty — 3.
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This reduced system has the same set of solutions as
the original, and obviously x3 can be chosen arbitrarily.
Therefore, our system has infinitely many solutions given

by

r1=2—2x3, xTo=—1—3x3, 34=23,

where x3 is arbitrary:.

The following proposition shows that the set of solutions
of a system Ax = b is preserved by any sequence of row
operations.

Proposition 4.12. Given any m X n matrix A and
any vector b € R™, for any sequence of elementary
row operations By, ..., Ey, if P = Ej--- Ey and (A", V)
P(A,b), then the solutions of Ax = b are the same as
the solutions of Alx = V.
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Another important fact is this:

Proposition 4.13. Given a m X n matriz A, for
any sequence of row operations Ey,...,E., if P =
Ep---Eyand B = PA, then the subspaces spanned by
the rows of A and the rows of B are identical. There-
fore, A and B have the same row rank. Furthermore,
the matrices A and B also have the same (column)
rank.

Remark: The subspaces spanned by the columns of A
and B can be different! However, their dimension must
be the same.

We already know from Proposition 3.21 that the row rank
is equal to the column rank.

We will see that the reduction to row echelon form pro-
vides another proof of this important fact.
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Definition 4.1. A m x n matrix A is a reduced row
echelon matriz iff the following conditions hold:

(a) The first nonzero entry in every row is 1. This entry
is called a pivot.

(b) The first nonzero entry of row ¢ + 1 is to the right of
the first nonzero entry of row .

(¢) The entries above a pivot are zero.

[f a matrix satisfies the above conditions, we also say that
it is in reduced row echelon form, for short rref.

Note that condition (b) implies that the entries below a
pivot are also zero. For example, the matrix

1
A=10
0

S O O
S = O

1
2
0

1s a reduced row echelon matrix.
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Proposition 4.14. Given any m X n matriz A, there
1 a sequence of row operations E, ..., E. such that if

P=FE,.---FE, then U = PA is a reduced row echelon
matrix.

Remark: There is a Matlab function named rref that
converts any matrix to its reduced row echelon form:.

If A is any matrix and if R is a reduced row echelon
form of A, the second part of Proposition 4.13 can be
sharpened a little.

Namely, the rank of A is equal to the number of pivots
in R.

Given a system of the form Ax = b, we can apply the
reduction procedure to the augmented matrix (A, b) to
obtain a reduced row echelon matrix (A’ b’) such that the
system A’x = b’ has the same solutions as the original
system Ax = b.
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The advantage of the reduced system A'x = b’ is that
there is a simple test to check whether this system is
solvable, and to find its solutions if it is solvable.

Indeed, if any row of the matrix A’ is zero and if the
corresponding entry in b’ is nonzero, then it is a pivot
and we have the “equation”

0=1,

which means that the system A’z = b’ has no solution.

On the other hand, if there is no pivot in &', then for every
row ¢ in which b, # 0, there is some column j in A’ where
the entry on row ¢ is 1 (a pivot).

Consequently, we can assign arbitrary values to the vari-
able x; if column k does not contain a pivot, and then
solve for the pivot variables.
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For example, if we consider the reduced row echelon ma-
trix

(A"b) =

o O =
o OO
SO = O
SN =

there is no solution to A’x = b' because the third equation
is 0= 1.

On the other hand, the reduced system

1
(A= 1|0
0

o O O
S = O

11
2 3
00

has solutions. We can pick the variables x9, x4 corre-
sponding to nonpivot columns arbitrarily, and then solve
for x3 (using the second equation) and zy (using the first
equation).
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The above reasoning proved the following theorem:

Theorem 4.15. Giwen any system Ax = b where A
is a m X n matriz, if the augmented matriz (A,b) is a
reduced row echelon matriz, then the system Ax = b
has a solution iff there is no pivot in b. In that case,
an arbitrary value can be assigned to the variable x;
of column § does not contain a pivot.

Nonpivot variables are often called free variables.

Putting Proposition 4.14 and Theorem 4.15 together we
obtain a criterion to decide whether a system Az = b has
a solution:

Convert the augmented system (A, b) to a row reduced
echelon matrix (A, b') and check whether b has no pivot.
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If we have a homogeneous system Ax = 0, which means
that b = 0, of course x = 0 is always a solution, but
Theorem 4.15 implies that if the system Ax = 0 has
more variables than equations, then it has some nonzero
solution (we call it a nontrivial solution).

Proposition 4.16. Given any homogeneous system
Az =0 of m equations in n variables, if m < n, then
there is a nonzero vector x € R" such that Ax = 0.

Theorem 4.15 can also be used to characterize when a
square matrix is invertible. First, note the following sim-
ple but important fact:

If a square n x n matrix A is a row reduced echelon
matrix, then either A is the identity or the bottom row
of A is zero.
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Proposition 4.17. Let A be a square matrix of di-
mension n. The following conditions are equivalent:

(a) The matriz A can be reduced to the identity by a
sequence of elementary row operations.

(b) The matriz A is a product of elementary matrices.
(c) The matrix A is invertible.

(d) The system of homogeneous equations Ax =0 has
only the trivial solution x = 0.

Proposition 4.17 yields a method for computing the in-
verse of an invertible matrix A: reduce A to the identity
using elementary row operations, obtaining

E, - -E/A=1.
Multiplying both sides by A~! we get
A'=E, - E.
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From a practical point of view, we can build up the prod-
uct £, - -+ Ey by reducing to row echelon form the aug-
mented n X 2n matrix (A, I,,) obtained by adding the n
columns of the identity matrix to A.

This is just another way of performing the Gauss—Jordan
procedure.

Here is an example: let us find the inverse of the matrix
5 4
A= (20
We form the 2 x 4 block matrix

an-(2149)

and apply elementary row operations to reduce A to the
identity:.



4.5. REDUCED ROW ECHELON FORM

1O\ _ (54 10
0 1 1111

by subtracting row 1 from row 2,

54 10\ _ (105 —4
1111 11 -1 1

by subtracting 4 X row 2 from row 1,

10 5 —4 10 5 —4\ 1
(1 1 -1 1)H(01—6 5)‘“”4 )
by subtracting row 1 from row 2. Thus

(5 —4
A _(_6 5).

For example:
54
An=(q
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Proposition 4.17 can also be used to give an elementary
proof of the fact that if a square matrix A has a left
inverse B (resp. a right inverse B), so that BA = [
(resp. AB = I), then A is invertible and A~! = B. This

is an interesting exercise, try it!

For the sake of completeness, we prove that the reduced
row echelon form of a matrix is unique.

Proposition 4.18. Let A be any m x n matriz. If U
and V' are two reduced row echelon matrices obtained
from A by applying two sequences of elementary row
operations Ey, ..., E, and Iy, ..., F,, so that

U=E, -EiA and V =F, - FA,

thenU =V and E,--- Ey = Iy, --- I1. In other words,
the reduced row echelon form of any matrix is unique.

The reduction to row echelon form also provides a method
to describe the set of solutions of a linear system of the

form Ax = b.
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Proposition 4.19. Let A be any m X n matriz and
let b € R™ be any vector. If the system Ax = b has a
solution, then the set Z of all solutions of this system
s the set

Z =x9+ Ker(A) ={xg+ x| Az = 0},

where xo € R" is any solution of the system Ax = b,
which means that Axy = b (xq is called a special so-
lution), and where Ker (A) = {x € R" | Ax = 0}, the
set of solutions of the homogeneous system associated
with Ax = b.

Given a linear system Ax = b, reduce the augmented
matrix (A, b) to its row echelon form (A"} b").

As we showed before, the system Axz = b has a solution
iff ¥ contains no pivot. Assume that this is the case.

Then, if (A’,0’) has r pivots, which means that A’ has
r pivots since b’ has no pivot, we know that the first r
columns of I, appear in A’.
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We can permute the columns of A" and renumber the vari-
ables in x correspondingly so that the first r columns of
I,, match the first r columns of A’, and then our reduced
echelon matrix is of the form (R, b") with

and

where F'is a r X (n — r) matrix and d € R". Note that
R has m — r zero rows.

Then, because

I, F d\ [ d
Om—r,r Om—r,n—r On—r B Om—r 7

we see that
o d
"\ 0,

is a special solution of Rx = b/, and thus to Az = b.
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In other words, we get a special solution by assigning the
first  components of 4" to the pivot variables and setting
the nonpivot variables (the free variables) to zero.

We can also find a basis of the kernel (nullspace) of A
using F'.

If = (u,v) is in the kernel of A, with u € R" and
v € R"™", then z is also in the kernel of R, which means
that Rx = 0; that is,

I, F u\ (u+Fv) [ 0O
Om—fr’,fr’ Om—r,n—r v B Om—r B Om—fr’ .

Therefore, u = —Fv, and Ker (A) consists of all vectors

of the form
—Ftv\ (—F
v ) L) "

for any arbitrary v € R"™".
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It follows that the n — r columns of the matrix

form a basis of the kernel of A.

In summary, if Nt ..., N" " are the columns of N, then

the general solution of the equation Ax = b is given by

T = (Od ) + 2, N -+, N" ",

where x,41, ..., x, are the free variables, that is, the non-
pivot variables.

Instead of performing elementary row operations on a ma-
trix A, we can perform elementary columns operations,
which means that we multiply A by elementary matrices
on the right.
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We can define the notion of a reduced column echelon
matrix and show that every matrix can be reduced to a
unique reduced column echelon form.

Now, given any m X n matrix A, if we first convert A to
its reduced row echelon form R, it is easy to see that we
can apply elementary column operations that will reduce
R to a matrix of the form

Ir Or,n—r
Om—r,r Om—r,n—r 7

where r is the number of pivots (obtained during the row
reduction).
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Therefore, for every m x n matrix A, there exist two se-
quences of elementary matrices £y, ..., Byand Fi, ..., F,
such that

EmelAFlqu:< I, Oy )

Om—r,r Om—r,n—r

The matrix on the right-hand side is called the rank nor-
mal form of A.

Clearly, r is the rank of A. It is easy to see that the rank
normal form also yields a proof of the fact that A and its
transpose A' have the same rank.



