
Chapter 3

Direct Sums, A�ne Maps, The Dual
Space, Duality

3.1 Direct Products, Sums, and Direct Sums

There are some useful ways of forming new vector spaces
from older ones.

Definition 3.1. Given p � 2 vector spaces E1, . . . , Ep,
the product F = E1⇥ · · ·⇥Ep can be made into a vector
space by defining addition and scalar multiplication as
follows:

(u1, . . . , up) + (v1, . . . , vp) = (u1 + v1, . . . , up + vp)

�(u1, . . . , up) = (�u1, . . . , �up),

for all ui, vi 2 Ei and all � 2 R.

With the above addition and multiplication, the vector
space F = E1 ⇥ · · · ⇥ Ep is called the direct product of
the vector spaces E1, . . . , Ep.
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The projection maps pri : E1 ⇥ · · · ⇥ Ep ! Ei given by

pri(u1, . . . , up) = ui

are clearly linear.

Similarly, the maps ini : Ei ! E1 ⇥ · · · ⇥ Ep given by

ini(ui) = (0, . . . , 0, ui, 0, . . . , 0)

are injective and linear.

It can be shown (using bases) that

dim(E1 ⇥ · · · ⇥ Ep) = dim(E1) + · · · + dim(Ep).

Let us now consider a vector space E and p subspaces
U1, . . . , Up of E.

We have a map

a : U1 ⇥ · · · ⇥ Up ! E

given by
a(u1, . . . , up) = u1 + · · · + up,

with ui 2 Ui for i = 1, . . . , p.
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It is clear that this map is linear, and so its image is a
subspace of E denoted by

U1 + · · · + Up

and called the sum of the subspaces U1, . . . , Up.

By definition,

U1 + · · · + Up = {u1 + · · · + up | ui 2 Ui, 1  i  p},

and it is immediately verified that U1 + · · · + Up is the
smallest subspace of E containing U1, . . . , Up.

If the map a is injective, then Ker a = 0, which means
that if ui 2 Ui for i = 1, . . . , p and if

u1 + · · · + up = 0

then u1 = · · · = up = 0.

In this case, every u 2 U1 + · · · + Up has a unique ex-
pression as a sum

u = u1 + · · · + up,

with ui 2 Ui, for i = 1, . . . , p.
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It is also clear that for any p nonzero vectors ui 2 Ui,
u1, . . . , up are linearly independent.

Definition 3.2. For any vector space E and any p � 2
subspaces U1, . . . , Up of E, if the map a defined above is
injective, then the sum U1 + · · · + Up is called a direct
sum and it is denoted by

U1 � · · · � Up.

The space E is the direct sum of the subspaces Ui if

E = U1 � · · · � Up.

Observe that when the map a is injective, then it is a
linear isomorphism between U1 ⇥ · · · ⇥ Up and
U1 � · · · � Up.

The di↵erence is that U1 ⇥ · · · ⇥ Up is defined even if
the spaces Ui are not assumed to be subspaces of some
common space.

There are natural injections from each Ui to E denoted
by ini : Ui ! E.



3.1. DIRECT PRODUCTS, SUMS, AND DIRECT SUMS 155

Now, if p = 2, it is easy to determine the kernel of the
map a : U1 ⇥ U2 ! E. We have

a(u1, u2) = u1 + u2 = 0 i↵ u1 = �u2, u1 2 U1, u2 2 U2,

which implies that

Ker a = {(u, �u) | u 2 U1 \ U2}.

Now, U1 \ U2 is a subspace of E and the linear map
u 7! (u, �u) is clearly an isomorphism, so Ker a is iso-
morphic to U1 \ U2.

As a consequence, we get the following result:

Proposition 3.1. Given any vector space E and any
two subspaces U1 and U2, the sum U1 + U2 is a direct
sum i↵ U1 \ U2 = 0.

Because of the isomorphism

U1 ⇥ · · · ⇥ Up ⇡ U1 � · · · � Up,

we have

dim(U1 � · · · � Up) = dim(U1) + · · · + dim(Up).
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If E is a direct sum

E = U1 � · · · � Up,

since every u 2 E can be written in a unique way as

u = u1 + · · · + up

for some ui 2 Ui for i = 1 . . . , p, we can define the maps
⇡i : E ! Ui, called projections , by

⇡i(u) = ⇡i(u1 + · · · + up) = ui.

It is easy to check that these maps are linear and satisfy
the following properties:

⇡j � ⇡i =

(
⇡i if i = j

0 if i 6= j,

⇡1 + · · · + ⇡p = idE.

A function f such that f�f = f is said to be idempotent .
Thus, the projections ⇡i are idempotent.

Conversely, the following proposition can be shown:
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Proposition 3.2. Let E be a vector space. For any
p � 2 linear maps fi : E ! E, if

fj � fi =

(
fi if i = j

0 if i 6= j,

f1 + · · · + fp = idE,

then if we let Ui = fi(E), we have a direct sum

E = U1 � · · · � Up.

We also have the following proposition characterizing idem-
potent linear maps whose proof is also left as an exercise.

Proposition 3.3. For every vector space E, if
f : E ! E is an idempotent linear map, i.e., f�f = f ,
then we have a direct sum

E = Ker f � Im f,

so that f is the projection onto its image Im f .

We are now ready to prove a very crucial result relating
the rank and the dimension of the kernel of a linear map.
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Theorem 3.4. Let f : E ! F be a linear map. For
any choice of a basis (f1, . . . , fr) of Im f , let (u1, . . . , ur)
be any vectors in E such that fi = f (ui), for i =
1, . . . , r. If s : Im f ! E is the unique linear map de-
fined by s(fi) = ui, for i = 1, . . . , r, then s is injective,
f � s = id, and we have a direct sum

E = Ker f � Im s

as illustrated by the following diagram:

Ker f // E = Ker f � Im s
f
//

Im f ✓ F.
s
oo

As a consequence,

dim(E) = dim(Ker f )+dim(Im f ) = dim(Ker f )+rk(f ).

Remark: The dimension dim(Ker f ) of the kernel of a
linear map f is often called the nullity of f .

We now derive some important results using Theorem 3.4.
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Proposition 3.5. Given a vector space E, if U and
V are any two subspaces of E, then

dim(U) + dim(V ) = dim(U + V ) + dim(U \ V ),

an equation known as Grassmann’s relation.

The Grassmann relation can be very useful to figure out
whether two subspace have a nontrivial intersection in
spaces of dimension > 3.

For example, it is easy to see that in R5, there are sub-
spaces U and V with dim(U) = 3 and dim(V ) = 2 such
that U \ V = 0

However, we can show that if dim(U) = 3 and dim(V ) =
3, then dim(U \ V ) � 1.

As another consequence of Proposition 3.5, if U and V
are two hyperplanes in a vector space of dimension n, so
that dim(U) = n � 1 and dim(V ) = n � 1, we have

dim(U \ V ) � n � 2,

and so, if U 6= V , then

dim(U \ V ) = n � 2.
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Proposition 3.6. If U1, . . . , Up are any subspaces of
a finite dimensional vector space E, then

dim(U1 + · · · + Up)  dim(U1) + · · · + dim(Up),

and

dim(U1 + · · · + Up) = dim(U1) + · · · + dim(Up)

i↵ the Uis form a direct sum U1 � · · · � Up.

Another important corollary of Theorem 3.4 is the fol-
lowing result:

Proposition 3.7. Let E and F be two vector spaces
with the same finite dimension dim(E) = dim(F ) =
n. For every linear map f : E ! F , the following
properties are equivalent:

(a) f is bijective.

(b) f is surjective.

(c) f is injective.

(d) Ker f = 0.
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One should be warned that Proposition 3.7 fails in infinite
dimension.

We also have the following basic proposition about injec-
tive or surjective linear maps.

Proposition 3.8. Let E and F be vector spaces, and
let f : E ! F be a linear map. If f : E ! F is
injective, then there is a surjective linear map r : F !
E called a retraction, such that r�f = idE. If f : E !
F is surjective, then there is an injective linear map
s : F ! E called a section, such that f � s = idF .

The notion of rank of a linear map or of a matrix impor-
tant, both theoretically and practically, since it is the key
to the solvability of linear equations.

Proposition 3.9.Given a linear map f : E ! F , the
following properties hold:

(i) rk(f ) + dim(Ker f ) = dim(E).

(ii) rk(f )  min(dim(E), dim(F )).
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The rank of a matrix is defined as follows.

Definition 3.3. Given a m ⇥ n-matrix A = (ai j), the
rank rk(A) of the matrix A is the maximum number of
linearly independent columns of A (viewed as vectors in
Rm).

In view of Proposition 1.4, the rank of a matrix A is
the dimension of the subspace of Rm generated by the
columns of A.

Let E and F be two vector spaces, and let (u1, . . . , un) be
a basis of E, and (v1, . . . , vm) a basis of F . Let f : E !
F be a linear map, and let M(f ) be its matrix w.r.t. the
bases (u1, . . . , un) and (v1, . . . , vm).
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Since the rank rk(f ) of f is the dimension of Im f , which
is generated by (f (u1), . . . , f (un)), the rank of f is the
maximum number of linearly independent vectors in
(f (u1), . . . , f (un)), which is equal to the number of lin-
early independent columns of M(f ), since F and Rm are
isomorphic.

Thus, we have rk(f ) = rk(M(f )), for every matrix rep-
resenting f .

We will see later, using duality, that the rank of a ma-
trix A is also equal to the maximal number of linearly
independent rows of A.
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Figure 3.1: How did Newton start a business
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3.2 A�ne Maps

We showed in Section 1.5 that every linear map f must
send the zero vector to the zero vector, that is,

f (0) = 0.

Yet, for any fixed nonzero vector u 2 E (where E is any
vector space), the function tu given by

tu(x) = x + u, for all x 2 E

shows up in pratice (for example, in robotics).

Functions of this type are called translations . They are
not linear for u 6= 0, since tu(0) = 0 + u = u.

More generally, functions combining linear maps and trans-
lations occur naturally in many applications (robotics,
computer vision, etc.), so it is necessary to understand
some basic properties of these functions.
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For this, the notion of a�ne combination turns out to
play a key role.

Recall from Section 1.5 that for any vector space E, given
any family (ui)i2I of vectors ui 2 E, an a�ne combina-
tion of the family (ui)i2I is an expression of the form

X

i2I

�iui with
X

i2I

�i = 1,

where (�i)i2I is a family of scalars.

A linear combination is always an a�ne combination, but
an a�ne combination is a linear combination, with the
restriction that the scalars �i must add up to 1.

A�ne combinations are also called barycentric combina-
tions .

Although this is not obvious at first glance, the condi-
tion that the scalars �i add up to 1 ensures that a�ne
combinations are preserved under translations.
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To make this precise, consider functions f : E ! F ,
where E and F are two vector spaces, such that there
is some linear map h : E ! F and some fixed vector
b 2 F (a translation vector ), such that

f (x) = h(x) + b, for all x 2 E.

The map f given by
✓

x1

x2

◆
7!

✓
8/5 �6/5
3/10 2/5

◆✓
x1

x2

◆
+

✓
1
1

◆

is an example of the composition of a linear map with a
translation.

We claim that functions of this type preserve a�ne com-
binations.
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Proposition 3.10. For any two vector spaces E and
F , given any function f : E ! F defined such that

f (x) = h(x) + b, for all x 2 E,

where h : E ! F is a linear map and b is some fixed
vector in F , for every a�ne combination

P
i2I �iui

(with
P

i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if (ui).

In other words, f preserves a�ne combinations.

Surprisingly, the converse of Proposition 3.10 also holds.
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Proposition 3.11. For any two vector spaces E and
F , let f : E ! F be any function that preserves a�ne
combinations, i.e., for every a�ne combinationP

i2I �iui (with
P

i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if (ui).

Then, for any a 2 E, the function h : E ! F given
by

h(x) = f (a + x) � f (a)

is a linear map independent of a, and

f (a + x) = f (a) + h(x), for all x 2 E.

In particular, for a = 0, if we let c = f (0), then

f (x) = c + h(x), for all x 2 E.
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We should think of a as a chosen origin in E.

The function f maps the origin a in E to the origin f (a)
in F .

Proposition 3.11 shows that the definition of h does not
depend on the origin chosen in E. Also, since

f (x) = c + h(x), for all x 2 E

for some fixed vector c 2 F , we see that f is the com-
position of the linear map h with the translation tc (in
F ).

The unique linear map h as above is called the linear
map associated with f and it is sometimes denoted by
�!
f .

Observe that the linear map associated with a pure trans-
lation is the identity.

In view of Propositions 3.10 and 3.11, it is natural to
make the following definition.
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Definition 3.4. For any two vector spaces E and F , a
function f : E ! F is an a�ne map if f preserves a�ne
combinations, i.e., for every a�ne combination

P
i2I �iui

(with
P

i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if (ui).

Equivalently, a function f : E ! F is an a�ne map if

there is some linear map h : E ! F (also denoted by
�!
f )

and some fixed vector c 2 F such that

f (x) = c + h(x), for all x 2 E.

Note that a linear map always maps the standard origin
0 in E to the standard origin 0 in F .

However an a�ne map usually maps 0 to a nonzero vector
c = f (0). This is the “translation component” of the
a�ne map.
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When we deal with a�ne maps, it is often fruitful to think
of the elements of E and F not only as vectors but also
as points .

In this point of view, points can only be combined using
a�ne combinations , but vectors can be combined in an
unrestricted fashion using linear combinations.

We can also think of u + v as the result of translating
the point u by the translation tv.

These ideas lead to the definition of a�ne spaces , but
this would lead us to far afield, and for our purposes, it
is enough to stick to vector spaces.

Still, one should be aware that a�ne combinations really
apply to points, and that points are not vectors!

If E and F are finite dimensional vector spaces, with
dim(E) = n and dim(F ) = m, then it is useful to repre-
sent an a�ne map with respect to bases in E in F .
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However, the translation part c of the a�ne map must be
somewhow incorporated.

There is a standard trick to do this which amounts to
viewing an a�ne map as a linear map between spaces of
dimension n + 1 and m + 1.

We also have the extra flexibility of choosing origins,
a 2 E and b 2 F .

Let (u1, . . . , un) be a basis of E, (v1, . . . , vm) be a basis
of F , and let a 2 E and b 2 F be any two fixed vectors
viewed as origins .

Our a�ne map f has the property that

f (a + x) = c + h(x), x 2 E.

Thus, using our origins a and b, we can write

f (a + x) � b = c � b + h(x), x 2 E.
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Over the basis (u1, . . . , un), we write

x = x1u1 + · · · + xnun,

and over the basis (v1, . . . , vm), we write

y = y1v1 + · · · + ymvm.

We also write

d = c � b = d1v1 + · · · + dmvm.

Then, with y = f (a + x) � b, we have

y = h(x) + d.

If we let A be the m ⇥ n matrix representing the linear
map h, that is, the jth column of A consists of the coor-
dinates of h(uj) over the basis (v1, . . . , vm), then we can
write

y = Ax + d, x 2 Rn.

This is the matrix representation of our a�ne map f .
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The reason for using the origins a and b is that it gives
us more flexibility.

In particular, when E = F , if there is some a 2 E such
that f (a) = a (a is a fixed point of f ), then we can pick
b = a.

Then, because f (a) = a, we get

v = f (u) = f (a+u�a) = f (a)+h(u�a) = a+h(u�a),

that is
v � a = h(u � a).

With respect to the new origin a, if we define x and y by

x = u � a

y = v � a,

then we get
y = h(x).

Then, f really behaves like a linear map, but with respect
to the new origin a (not the standard origin 0). This is
the case of a rotation around an axis that does not pass
through the origin.
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Remark: A pair (a, (u1, . . . , un)) where (u1, . . . , un) is
a basis of E and a is an origin chosen in E is called an
a�ne frame .

We now describe the trick which allows us to incorporate
the translation part d into the matrix A.

We define the (m+1)⇥(n+1) matrix A0 obtained by first
adding d as the (n + 1)th column, and then (0, . . . , 0| {z }

n

, 1)

as the (m + 1)th row:

A0 =

✓
A d
0n 1

◆
.

Then, it is clear that
✓

y
1

◆
=

✓
A d
0n 1

◆✓
x
1

◆

i↵

y = Ax + d.
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This amounts to considering a point x 2 Rn as a point
(x, 1) in the (a�ne) hyperplane Hn+1 in Rn+1 of equa-
tion xn+1 = 1.

Then, an a�ne map is the restriction to the hyperplane
Hn+1 of the linear map bf from Rn+1 to Rm+1 corre-
sponding to the matrix A0, which maps Hn+1 into Hm+1

( bf (Hn+1) ✓ Hm+1).

Figure 3.2 illustrates this process for n = 2.

x1

x2

x3

(x1, x2, 1)

H3 : x3 = 1

x = (x1, x2)

Figure 3.2: Viewing Rn as a hyperplane in Rn+1 (n = 2)
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For example, the map
✓

x1

x2

◆
7!

✓
1 1
1 3

◆✓
x1

x2

◆
+

✓
3
0

◆

defines an a�ne map f which is represented in R3 by
0

@
x1

x2

1

1

A 7!

0

@
1 1 3
1 3 0
0 0 1

1

A

0

@
x1

x2

1

1

A .

It is easy to check that the point a = (6, �3) is fixed
by f , which means that f (a) = a, so by translating the
coordinate frame to the origin a, the a�ne map behaves
like a linear map.

The idea of considering Rn as an hyperplane in Rn+1 can
be used to define projective maps .



3.2. AFFINE MAPS 179

Al\ cal<) have +,ov( lejs.
1h'O..{e -ro\.l( '). 

I OJ¥' q cat 

Figure 3.3: Dog Logic
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3.3 The Dual Space E⇤ and Linear Forms

We already observed that the field K itself (K = R or
K = C) is a vector space (over itself).

The vector space Hom(E, K) of linear maps from E to
the field K, the linear forms , plays a particular role.

We take a quick look at the connection between E and
E⇤ = Hom(E, K), its dual space .

As we will see shortly, every linear map f : E ! F gives
rise to a linear map f> : F ⇤ ! E⇤, and it turns out that
in a suitable basis, the matrix of f> is the transpose of
the matrix of f .

Thus, the notion of dual space provides a conceptual ex-
planation of the phenomena associated with transposi-
tion.

But it does more, because it allows us to view subspaces
as solutions of sets of linear equations and vice-versa.
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Consider the following set of two “linear equations” in
R3,

x � y + z = 0

x � y � z = 0,

and let us find out what is their set V of common solutions
(x, y, z) 2 R3.

By subtracting the second equation from the first, we get
2z = 0, and by adding the two equations, we find that
2(x � y) = 0, so the set V of solutions is given by

y = x

z = 0.

This is a one dimensional subspace of R3. Geometrically,
this is the line of equation y = x in the plane z = 0.
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Now, why did we say that the above equations are linear?

This is because, as functions of (x, y, z), both maps
f1 : (x, y, z) 7! x � y + z and f2 : (x, y, z) 7! x � y � z
are linear.

The set of all such linear functions fromR3 toR is a vector
space; we used this fact to form linear combinations of the
“equations” f1 and f2.

Observe that the dimension of the subspace V is 1.

The ambient space has dimension n = 3 and there are
two “independent” equations f1, f2, so it appears that
the dimension dim(V ) of the subspace V defined by m
independent equations is

dim(V ) = n � m,

which is indeed a general fact.
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More generally, in Rn, a linear equation is determined by
an n-tuple (a1, . . . , an) 2 Rn, and the solutions of this
linear equation are given by the n-tuples (x1, . . . , xn) 2
Rn such that

a1x1 + · · · + anxn = 0;

these solutions constitute the kernel of the linear map
(x1, . . . , xn) 7! a1x1 + · · · + anxn.

The above considerations assume that we are working in
the canonical basis (e1, . . . , en) of Rn, but we can define
“linear equations” independently of bases and in any di-
mension, by viewing them as elements of the vector space
Hom(E, K) of linear maps from E to the field K.
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Definition 3.5. Given a vector space E, the vector
space Hom(E, K) of linear maps from E to K is called
the dual space (or dual) of E. The space Hom(E, K) is
also denoted by E⇤, and the linear maps in E⇤ are called
the linear forms , or covectors . The dual space E⇤⇤ of
the space E⇤ is called the bidual of E.

As a matter of notation, linear forms f : E ! K will also
be denoted by starred symbol, such as u⇤, x⇤, etc.

IfE is a vector space of finite dimension n and (u1, . . . , un)
is a basis of E, for any linear form f ⇤ 2 E⇤, for every
x = x1u1 + · · · + xnun 2 E, we have

f ⇤(x) = �1x1 + · · · + �nxn,

where �i = f ⇤(ui) 2 K, for every i, 1  i  n.

Thus, with respect to the basis (u1, . . . , un), f ⇤(x) is a
linear combination of the coordinates of x, and we can
view a linear form as a linear equation .
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Given a linear form u⇤ 2 E⇤ and a vector v 2 E, the
result u⇤(v) of applying u⇤ to v is also denoted by hu⇤, vi.

This defines a binary operation h�, �i : E⇤ ⇥ E ! K
satisfying the following properties:

hu⇤
1 + u⇤

2, vi = hu⇤
1, vi + hu⇤

2, vi
hu⇤, v1 + v2i = hu⇤, v1i + hu⇤, v2i

h�u⇤, vi = �hu⇤, vi
hu⇤, �vi = �hu⇤, vi.

The above identities mean that h�, �i is a bilinear map,
since it is linear in each argument.

It is often called the canonical pairing between E⇤ and
E.
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In view of the above identities, given any fixed vector v 2
E, the map evalv : E⇤ ! K (evaluation at v) defined
such that

evalv(u
⇤) = hu⇤, vi = u⇤(v) for every u⇤ 2 E⇤

is a linear map from E⇤ to K, that is, evalv is a linear
form in E⇤⇤.

Again from the above identities, the map
evalE : E ! E⇤⇤, defined such that

evalE(v) = evalv for every v 2 E,

is a linear map.

We shall see that it is injective, and that it is an isomor-
phism when E has finite dimension.
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We now formalize the notion of the set V 0 of linear equa-
tions vanishing on all vectors in a given subspace V ✓ E,
and the notion of the set U 0 of common solutions of a
given set U ✓ E⇤ of linear equations.

The duality theorem (Theorem 3.12) shows that the di-
mensions of V and V 0, and the dimensions of U and U 0,
are related in a crucial way.

It also shows that, in finite dimension, the maps V 7! V 0

and U 7! U 0 are inverse bijections from subspaces of E
to subspaces of E⇤.
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Definition 3.6.Given a vector space E and its dual E⇤,
we say that a vector v 2 E and a linear form u⇤ 2 E⇤

are orthogonal i↵ hu⇤, vi = 0. Given a subspace V of
E and a subspace U of E⇤, we say that V and U are
orthogonal i↵ hu⇤, vi = 0 for every u⇤ 2 U and every
v 2 V . Given a subset V of E (resp. a subset U of E⇤),
the orthogonal V 0 of V is the subspace V 0 of E⇤ defined
such that

V 0 = {u⇤ 2 E⇤ | hu⇤, vi = 0, for every v 2 V }

(resp. the orthogonal U 0 of U is the subspace U 0 of E
defined such that

U 0 = {v 2 E | hu⇤, vi = 0, for every u⇤ 2 U}).

The subspace V 0 ✓ E⇤ is also called the annihilator of
V .



3.3. THE DUAL SPACE E⇤ AND LINEAR FORMS 189

The subspace U 0 ✓ E annihilated by U ✓ E⇤ does not
have a special name. It seems reasonable to call it the
linear subspace (or linear variety) defined by U .

Informally, V 0 is the set of linear equations that vanish
on V , and U 0 is the set of common zeros of all linear
equations in U . We can also define V 0 by

V 0 = {u⇤ 2 E⇤ | V ✓ Keru⇤}

and U 0 by

U 0 =
\

u⇤2U

Keru⇤.

Observe that E0 = 0, and {0}0 = E⇤.

Furthermore, if V1 ✓ V2 ✓ E, then V 0
2 ✓ V 0

1 ✓ E⇤, and
if U1 ✓ U2 ✓ E⇤, then U 0

2 ✓ U 0
1 ✓ E.
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It can also be shown that that V ✓ V 00 for every sub-
space V of E, and that U ✓ U 00 for every subspace U of
E⇤.

We will see shortly that in finite dimension, we have

V = V 00 and U = U 00.

Given a vector space E and any basis (ui)i2I for E, we
can associate to each ui a linear form u⇤

i 2 E⇤, and the
u⇤

i have some remarkable properties.

Definition 3.7. Given a vector space E and any basis
(ui)i2I for E, by Proposition 1.10, for every i 2 I , there
is a unique linear form u⇤

i such that

u⇤
i (uj) =

⇢
1 if i = j
0 if i 6= j,

for every j 2 I . The linear form u⇤
i is called the coordi-

nate form of index i w.r.t. the basis (ui)i2I .
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Remark: Given an index set I , authors often define the
so called Kronecker symbol �i j, such that

�i j =

⇢
1 if i = j
0 if i 6= j,

for all i, j 2 I .

Then,
u⇤

i (uj) = �i j.

The reason for the terminology coordinate form is as
follows: If E has finite dimension and if (u1, . . . , un) is a
basis of E, for any vector

v = �1u1 + · · · + �nun,

we have

u⇤
i (v) = �i.

Therefore, u⇤
i is the linear function that returns the ith co-

ordinate of a vector expressed over the basis (u1, . . . , un).

We have the following important duality theorem.
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Theorem 3.12. (Duality theorem) Let E be a vector
space of dimension n. The following properties hold:

(a) For every basis (u1, . . . , un) of E, the family of co-
ordinate forms (u⇤

1, . . . , u
⇤
n) is a basis of E⇤.

(b) For every subspace V of E, we have V 00 = V .

(c) For every pair of subspaces V and W of E such
that E = V �W , with V of dimension m, for every
basis (u1, . . . , un) of E such that (u1, . . . , um) is a
basis of V and (um+1, . . . , un) is a basis of W , the
family (u⇤

1, . . . , u
⇤
m) is a basis of the orthogonal W 0

of W in E⇤. Furthermore, we have W 00 = W , and

dim(W ) + dim(W 0) = dim(E).

(d) For every subspace U of E⇤, we have

dim(U) + dim(U 0) = dim(E),

where U 0 is the orthogonal of U in E, and
U 00 = U .
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Part (a) of Theorem 3.12 shows that

dim(E) = dim(E⇤),

and if (u1, . . . , un) is a basis of E, then (u⇤
1, . . . , u

⇤
n) is

a basis of the dual space E⇤ called the dual basis of
(u1, . . . , un).

By part (c) and (d) of theorem 3.12, the maps V 7! V 0

and U 7! U 0, where V is a subspace of E and U is a
subspace of E⇤, are inverse bijections.

These maps set up a duality between subspaces of E, and
subspaces of E⇤.

� One should be careful that this bijection does not hold
if E has infinite dimension. Some restrictions on the

dimensions of U and V are needed.
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When E is of finite dimension n and (u1, . . . , un) is a
basis of E, we noted that the family (u⇤

1, . . . , u
⇤
n) is a

basis of the dual space E⇤,

Let us see how the coordinates of a linear form '⇤ 2 E⇤

over the basis (u⇤
1, . . . , u

⇤
n) vary under a change of basis.

Let (u1, . . . , un) and (v1, . . . , vn) be two bases of E, and
let P = (ai j) be the change of basis matrix from (u1, . . . , un)
to (v1, . . . , vn), so that

vj =
nX

i=1

ai jui.

If

'⇤ =
nX

i=1

'iu
⇤
i =

nX

i=1

'0
iv

⇤
i ,

after some algebra, we get

'0
j =

nX

i=1

ai j'i.
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Comparing with the change of basis

vj =
nX

i=1

ai jui,

we note that this time, the coordinates ('i) of the linear
form '⇤ change in the same direction as the change of
basis.

For this reason, we say that the coordinates of linear forms
are covariant .

By abuse of language, it is often said that linear forms
are covariant , which explains why the term covector is
also used for a linear form.

Observe that if (e1, . . . , en) is a basis of the vector space
E, then, as a linear map from E to K, every linear form
f 2 E⇤ is represented by a 1 ⇥ n matrix, that is, by a
row vector

(�1 · · · �n),

with respect to the basis (e1, . . . , en) of E, and 1 of K,
where f (ei) = �i.
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A vector u =
Pn

i=1 uiei 2 E is represented by a n ⇥ 1
matrix, that is, by a column vector

0

@
u1
...

un

1

A ,

and the action of f on u, namely f (u), is represented by
the matrix product

�
�1 · · · �n

�
0

@
u1
...

un

1

A = �1u1 + · · · + �nun.

On the other hand, with respect to the dual basis (e⇤
1, . . . , e

⇤
n)

of E⇤, the linear form f is represented by the column vec-
tor

0

@
�1
...

�n

1

A .



3.3. THE DUAL SPACE E⇤ AND LINEAR FORMS 197

We will now pin down the relationship between a vector
space E and its bidual E⇤⇤.

Proposition 3.13. Let E be a vector space. The fol-
lowing properties hold:

(a) The linear map evalE : E ! E⇤⇤ defined such that

evalE(v) = evalv, for all v 2 E,

that is, evalE(v)(u⇤) = hu⇤, vi = u⇤(v) for every
u⇤ 2 E⇤, is injective.

(b) When E is of finite dimension n, the linear map
evalE : E ! E⇤⇤ is an isomorphism (called the
canonical isomorphism).

When E is of finite dimension and (u1, . . . , un) is a basis
of E, in view of the canonical isomorphism
evalE : E ! E⇤⇤, the basis (u⇤⇤

1 , . . . , u⇤⇤
n ) of the bidual is

identified with (u1, . . . , un).

Proposition 3.13 can be reformulated very fruitfully in
terms of pairings.
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Definition 3.8. Given two vector spaces E and F over
K, a pairing between E and F is a bilinear map
' : E ⇥ F ! K. Such a pairing is nondegenerate i↵

(1) for every u 2 E, if '(u, v) = 0 for all v 2 F , then
u = 0, and

(2) for every v 2 F , if '(u, v) = 0 for all u 2 E, then
v = 0.

A pairing ' : E ⇥ F ! K is often denoted by
h�, �i : E ⇥ F ! K.

For example, the map h�, �i : E⇤ ⇥ E ! K defined
earlier is a nondegenerate pairing (use the proof of (a) in
Proposition 3.13).

Given a pairing ' : E ⇥F ! K, we can define two maps
l' : E ! F ⇤ and r' : F ! E⇤ as follows:
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For every u 2 E, we define the linear form l'(u) in F ⇤

such that

l'(u)(y) = '(u, y) for every y 2 F ,

and for every v 2 F , we define the linear form r'(v) in
E⇤ such that

r'(v)(x) = '(x, v) for every x 2 E.

Proposition 3.14.Given two vector spaces E and F
over K, for every nondegenerate pairing
' : E ⇥ F ! K between E and F , the maps
l' : E ! F ⇤ and r' : F ! E⇤ are linear and injec-
tive. Furthermore, if E and F have finite dimension,
then this dimension is the same and l' : E ! F ⇤ and
r' : F ! E⇤ are bijections.

When E has finite dimension, the nondegenerate pair-
ing h�, �i : E⇤ ⇥ E ! K yields another proof of the
existence of a natural isomorphism between E and E⇤⇤.

Interesting nondegenerate pairings arise in exterior alge-
bra.
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ME,-rt< Ie. C l-OCK 

Figure 3.4: Metric Clock
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3.4 Hyperplanes and Linear Forms

Actually, Proposition 3.15 below follows from parts (c)
and (d) of Theorem 3.12, but we feel that it is also inter-
esting to give a more direct proof.

Proposition 3.15. Let E be a vector space. The fol-
lowing properties hold:

(a) Given any nonnull linear form f ⇤ 2 E⇤, its kernel
H = Ker f ⇤ is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f ⇤ 2 E⇤ such that H = Ker f ⇤.

(c) Given any hyperplane H in E and any (nonnull)
linear form f ⇤ 2 E⇤ such that H = Ker f ⇤, for
every linear form g⇤ 2 E⇤, H = Ker g⇤ i↵ g⇤ = �f ⇤

for some � 6= 0 in K.

We leave as an exercise the fact that every subspace
V 6= E of a vector space E, is the intersection of all
hyperplanes that contain V .

We now consider the notion of transpose of a linear map
and of a matrix.



202 CHAPTER 3. DIRECT SUMS, AFFINE MAPS, THE DUAL SPACE, DUALITY

3.5 Transpose of a Linear Map and of a Matrix

Given a linear map f : E ! F , it is possible to define a
map f> : F ⇤ ! E⇤ which has some interesting proper-
ties.

Definition 3.9. Given a linear map f : E ! F , the
transpose f> : F ⇤ ! E⇤ of f is the linear map defined
such that

f>(v⇤) = v⇤ � f,

for every v⇤ 2 F ⇤.

Equivalently, the linear map f> : F ⇤ ! E⇤ is defined
such that

hv⇤, f (u)i = hf>(v⇤), ui,

for all u 2 E and all v⇤ 2 F ⇤.
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It is easy to verify that the following properties hold:

(f + g)> = f> + g>

(g � f )> = f> � g>

id>
E = idE⇤.

� Note the reversal of composition on the right-hand side
of (g � f )> = f> � g>.

We also have the following property showing the natural-
ity of the eval map.

Proposition 3.16. For any linear map f : E ! F ,
we have

f>> � evalE = evalF � f,

or equivalently, the following diagram commutes:

E⇤⇤ f>>
//F ⇤⇤

E

evalE

OO

f
//F.

evalF

OO
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If E and F are finite-dimensional, then evalE and evalF
are isomorphisms, and if we identify E with its bidual
E⇤⇤ and F with its bidual F ⇤⇤, then

(f>)> = f.

Proposition 3.17. Given a linear map f : E ! F ,
for any subspace V of E, we have

f (V )0 = (f>)�1(V 0) = {w⇤ 2 F ⇤ | f>(w⇤) 2 V 0}.

As a consequence,

Ker f> = (Im f )0 and Ker f = (Im f>)0.
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The following theorem shows the relationship between the
rank of f and the rank of f>.

Theorem 3.18. Given a linear map f : E ! F , the
following properties hold.

(a) The dual (Im f )⇤ of Im f is isomorphic to
Im f> = f>(F ⇤); that is,

(Im f )⇤ ⇡ Im f>.

(b) If F is finite dimensional, then rk(f ) = rk(f>).

The following proposition can be shown, but it requires a
generalization of the duality theorem.

Proposition 3.19. If f : E ! F is any linear map,
then the following identities hold:

Im f> = (Ker (f ))0

Ker (f>) = (Im f )0

Im f = (Ker (f>)0

Ker (f ) = (Im f>)0.



206 CHAPTER 3. DIRECT SUMS, AFFINE MAPS, THE DUAL SPACE, DUALITY

The following proposition shows the relationship between
the matrix representing a linear map f : E ! F and the
matrix representing its transpose f> : F ⇤ ! E⇤.

Proposition 3.20. Let E and F be two vector spaces,
and let (u1, . . . , un) be a basis for E, and (v1, . . . , vm)
be a basis for F . Given any linear map f : E ! F ,
if M(f ) is the m ⇥ n-matrix representing f w.r.t.
the bases (u1, . . . , un) and (v1, . . . , vm), the n ⇥ m-
matrix M(f>) representing f> : F ⇤ ! E⇤ w.r.t. the
dual bases (v⇤

1, . . . , v
⇤
m) and (u⇤

1, . . . , u
⇤
n) is the trans-

pose M(f )> of M(f ).

We now can give a very short proof of the fact that the
rank of a matrix is equal to the rank of its transpose.

Proposition 3.21. Given a m ⇥ n matrix A over a
field K, we have rk(A) = rk(A>).

Thus, given an m ⇥ n-matrix A, the maximum number
of linearly independent columns is equal to the maximum
number of linearly independent rows.
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Proposition 3.22.Given any m⇥n matrix A over a
field K (typically K = R or K = C), the rank of A is
the maximum natural number r such that there is an
invertible r ⇥ r submatrix of A obtained by selecting
r rows and r columns of A.

For example, the 3 ⇥ 2 matrix

A =

0

@
a11 a12

a21 a22

a31 a32

1

A

has rank 2 i↵ one of the three 2 ⇥ 2 matrices
✓

a11 a12

a21 a22

◆ ✓
a11 a12

a31 a32

◆ ✓
a21 a22

a31 a32

◆

is invertible. We will see in Chapter 5 that this is equiv-
alent to the fact the determinant of one of the above
matrices is nonzero.

This is not a very e�cient way of finding the rank of
a matrix. We will see that there are better ways using
various decompositions such as LU, QR, or SVD.
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Figure 3.5: Beauty
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3.6 The Four Fundamental Subspaces

Given a linear map f : E ! F (where E and F are
finite-dimensional), Proposition 3.17 revealed that the
four spaces

Im f, Im f>, Ker f, Ker f>

play a special role. They are often called the fundamental
subspaces associated with f .

These spaces are related in an intimate manner, since
Proposition 3.17 shows that

Ker f = (Im f>)0

Ker f> = (Im f )0,

and Theorem 3.18 shows that

rk(f ) = rk(f>).
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It is instructive to translate these relations in terms of
matrices (actually, certain linear algebra books make a
big deal about this!).

If dim(E) = n and dim(F ) = m, given any basis (u1, . . .,
un) of E and a basis (v1, . . . , vm) of F , we know that f is
represented by an m⇥n matrix A = (ai j), where the jth
column of A is equal to f (uj) over the basis (v1, . . . , vm).

Furthermore, the transpose map f> is represented by the
n ⇥ m matrix A> (with respect to the dual bases).

Consequently, the four fundamental spaces

Im f, Im f>, Ker f, Ker f>

correspond to
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(1) The column space of A, denoted by ImA or R(A);
this is the subspace of Rm spanned by the columns of
A, which corresponds to the image Im f of f .

(2) The kernel or nullspace of A, denoted by KerA or
N (A); this is the subspace of Rn consisting of all
vectors x 2 Rn such that Ax = 0.

(3) The row space of A, denoted by ImA> or R(A>);
this is the subspace of Rn spanned by the rows of A,
or equivalently, spanned by the columns of A>, which
corresponds to the image Im f> of f>.

(4) The left kernel or left nullspace of A denoted by
KerA> orN (A>); this is the kernel (nullspace) ofA>,
the subspace of Rm consisting of all vectors y 2 Rm

such that A>y = 0, or equivalently, y>A = 0.

Recall that the dimension r of Im f , which is also equal
to the dimension of the column space ImA = R(A), is
the rank of A (and f ).



212 CHAPTER 3. DIRECT SUMS, AFFINE MAPS, THE DUAL SPACE, DUALITY

Then, some our previous results can be reformulated as
follows:

1. The column space R(A) of A has dimension r.

2. The nullspace N (A) of A has dimension n � r.

3. The row space R(A>) has dimension r.

4. The left nullspace N (A>) of A has dimension m � r.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part I (see
Strang [30]).
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The two statements

Ker f = (Im f>)0

Ker f> = (Im f )0

translate to

(1) The nullspace of A is the orthogonal of the row space
of A.

(2) The left nullspace of A is the orthogonal of the column
space of A.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part II (see
Strang [30]).

Since vectors are represented by column vectors and linear
forms by row vectors (over a basis in E or F ), a vector
x 2 Rn is orthogonal to a linear form y if

yx = 0.
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Then, a vector x 2 Rn is orthogonal to the row space of
A i↵ x is orthogonal to every row of A, namely
Ax = 0, which is equivalent to the fact that x belong to
the nullspace of A.

Similarly, the column vector y 2 Rm (representing a
linear form over the dual basis of F ⇤) belongs to the
nullspace of A> i↵ A>y = 0, i↵ y>A = 0, which means
that the linear form given by y> (over the basis in F ) is
orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space
of A is equal to the orthogonal of the left nullspace of
A, we get the following criterion for the solvability of an
equation of the form Ax = b:

The equation Ax = b has a solution i↵ for all y 2 Rm, if
A>y = 0, then y>b = 0.
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Indeed, the condition on the right-hand side says that b
is orthogonal to the left nullspace of A, that is, that b
belongs to the column space of A.

This criterion can be cheaper to check that checking di-
rectly that b is spanned by the columns of A. For exam-
ple, if we consider the system

x1 � x2 = b1

x2 � x3 = b2

x3 � x1 = b3

which, in matrix form, is written Ax = b as below:
0

@
1 �1 0
0 1 �1

�1 0 1

1

A

0

@
x1

x2

x3

1

A =

0

@
b1

b2

b3

1

A ,

we see that the rows of the matrix A add up to 0.
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In fact, it is easy to convince ourselves that the left nullspace
of A is spanned by y = (1, 1, 1), and so the system is solv-
able i↵ y>b = 0, namely

b1 + b2 + b3 = 0.

Note that the above criterion can also be stated negatively
as follows:

The equation Ax = b has no solution i↵ there is some
y 2 Rm such that A>y = 0 and y>b 6= 0.
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Figure 3.6: Brain Size?
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