
Chapter 2

Matrices and Linear Maps

2.1 Matrices

Proposition 1.10 shows that given two vector spaces E
and F and a basis (uj)j2J of E, every linear map f : E !
F is uniquely determined by the family (f (uj))j2J of the
images under f of the vectors in the basis (uj)j2J .

If we also have a basis (vi)i2I of F , then every vector
f (uj) can be written in a unique way as

f (uj) =
X

i2I

ai jvi,

where j 2 J , for a family of scalars (ai j)i2I .

Thus, with respect to the two bases (uj)j2J of E and
(vi)i2I of F , the linear map f is completely determined
by a “I ⇥ J -matrix”

M(f ) = (ai j)i2I, j2J.
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Remark: Note that we intentionally assigned the index
set J to the basis (uj)j2J of E, and the index I to the
basis (vi)i2I of F , so that the rows of the matrix M(f )
associated with f : E ! F are indexed by I , and the
columns of the matrix M(f ) are indexed by J .

Obviously, this causes a mildly unpleasant reversal. If we
had considered the bases (ui)i2I of E and (vj)j2J of F ,
we would obtain a J ⇥ I-matrix M(f ) = (aj i)j2J, i2I .

No matter what we do, there will be a reversal! We de-
cided to stick to the bases (uj)j2J of E and (vi)i2I of F ,
so that we get an I ⇥ J -matrix M(f ), knowing that we
may occasionally su↵er from this decision!
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When I and J are finite, and say, when |I| = m and |J | =
n, the linear map f is determined by the matrix M(f )
whose entries in the j-th column are the components of
the vector f (uj) over the basis (v1, . . . , vm), that is, the
matrix

M(f ) =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

whose entry on row i and column j is ai j (1  i  m,
1  j  n).
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We will now show that when E and F have finite dimen-
sion, linear maps can be very conveniently represented
by matrices, and that composition of linear maps corre-
sponds to matrix multiplication.

We will follow rather closely an elegant presentation method
due to Emil Artin.

Let E and F be two vector spaces, and assume that E
has a finite basis (u1, . . . , un) and that F has a finite
basis (v1, . . . , vm). Recall that we have shown that every
vector x 2 E can be written in a unique way as

x = x1u1 + · · · + xnun,

and similarly every vector y 2 F can be written in a
unique way as

y = y1v1 + · · · + ymvm.

Let f : E ! F be a linear map between E and F .
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Then, for every x = x1u1 + · · ·+ xnun in E, by linearity,
we have

f (x) = x1f (u1) + · · · + xnf (un).

Let
f (uj) = a1 jv1 + · · · + am jvm,

or more concisely,

f (uj) =
mX

i=1

ai jvi,

for every j, 1  j  n.

This can be expressed by writing the coe�cients
a1j, a2j, . . . , amj of f (uj) over the basis (v1, . . . , vm), as
the jth column of a matrix, as shown below:

f (u1) f (u2) . . . f (un)

v1

v2
...

vm

0

BB@

a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn

1

CCA
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Then, substituting the right-hand side of each f (uj) into
the expression for f (x), we get

f (x) = x1(
mX

i=1

ai 1vi) + · · · + xn(
mX

i=1

ai nvi),

which, by regrouping terms to obtain a linear combination
of the vi, yields

f (x) = (
nX

j=1

a1 jxj)v1 + · · · + (
nX

j=1

am jxj)vm.

Thus, letting f (x) = y = y1v1 + · · · + ymvm, we have

yi =
nX

j=1

ai jxj (1)

for all i, 1  i  m.

To make things more concrete, let us treat the case where
n = 3 and m = 2.
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In this case,

f (u1) = a11v1 + a21v2

f (u2) = a12v1 + a22v2

f (u3) = a13v1 + a23v2,

which in matrix form is expressed by

f (u1) f (u2) f (u3)

v1

v2

✓
a11 a12 a13

a21 a22 a23

◆
,

and for any x = x1u1 + x2u2 + x3u3, we have

f (x) = f (x1u1 + x2u2 + x3u3)

= x1f (u1) + x2f (u2) + x3f (u3)

= x1(a11v1 + a21v2) + x2(a12v1 + a22v2)

+ x3(a13v1 + a23v2)

= (a11x1 + a12x2 + a13x3)v1

+ (a21x1 + a22x2 + a23x3)v2.

Consequently, since

y = y1v1 + y2v2,
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we have

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3.

This agrees with the matrix equation

✓
y1

y2

◆
=

✓
a11 a12 a13

a21 a22 a23

◆0

@
x1

x2

x3

1

A .

Let us now consider how the composition of linear maps
is expressed in terms of bases.

Let E, F , and G, be three vectors spaces with respec-
tive bases (u1, . . . , up) for E, (v1, . . . , vn) for F , and
(w1, . . . , wm) for G.

Let g : E ! F and f : F ! G be linear maps.

As explained earlier, g : E ! F is determined by the im-
ages of the basis vectors uj, and f : F ! G is determined
by the images of the basis vectors vk.



2.1. MATRICES 77

We would like to understand how f � g : E ! G is de-
termined by the images of the basis vectors uj.

Remark: Note that we are considering linear maps
g : E ! F and f : F ! G, instead of f : E ! F and
g : F ! G, which yields the composition f � g : E ! G
instead of g � f : E ! G.

Our perhaps unusual choice is motivated by the fact that
if f is represented by a matrix M(f ) = (ai k) and g is
represented by a matrix M(g) = (bk j), then
f � g : E ! G is represented by the product AB of the
matrices A and B.

If we had adopted the other choice where f : E ! F and
g : F ! G, then g � f : E ! G would be represented by
the product BA.

Obviously, this is a matter of taste! We will have to live
with our perhaps unorthodox choice.
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Thus, let

f (vk) =
mX

i=1

ai kwi,

for every k, 1  k  n, and let

g(uj) =
nX

k=1

bk jvk,

for every j, 1  j  p.

Also if
x = x1u1 + · · · + xpup,

let
y = g(x)

and
z = f (y) = (f � g)(x),

with
y = y1v1 + · · · + ynvn

and
z = z1w1 + · · · + zmwm.
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After some calculations, we get

zi =
pX

j=1

(
nX

k=1

ai kbk j)xj.

Thus, defining ci j such that

ci j =
nX

k=1

ai kbk j,

for 1  i  m, and 1  j  p, we have

zi =
pX

j=1

ci jxj (4)

Identity (4) suggests defining a multiplication operation
on matrices, and we proceed to do so.
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Definition 2.1. If K = R or K = C, an m⇥n-matrix
over K is a family (ai j)1im, 1jn of scalars in K, rep-
resented by an array

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

In the special case where m = 1, we have a row vector ,
represented by

(a1 1 · · · a1 n)

and in the special case where n = 1, we have a column
vector , represented by

0

@
a1 1
...

am 1

1

A

In these last two cases, we usually omit the constant index
1 (first index in case of a row, second index in case of a
column).
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The set of all m ⇥ n-matrices is denoted by Mm,n(K) or
Mm,n.

An n⇥n-matrix is called a square matrix of dimension
n.

The set of all square matrices of dimension n is denoted
by Mn(K), or Mn.

Remark: As defined, a matrix A = (ai j)1im, 1jn

is a family , that is, a function from {1, 2, . . . , m} ⇥
{1, 2, . . . , n} to K.

As such, there is no reason to assume an ordering on the
indices. Thus, the matrix A can be represented in many
di↵erent ways as an array, by adopting di↵erent orders
for the rows or the columns.

However, it is customary (and usually convenient) to as-
sume the natural ordering on the sets {1, 2, . . . , m} and
{1, 2, . . . , n}, and to represent A as an array according
to this ordering of the rows and columns.
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We also define some operations on matrices as follows.

Definition 2.2. Given two m ⇥ n matrices A = (ai j)
and B = (bi j), we define their sum A+B as the matrix
C = (ci j) such that ci j = ai j + bi j; that is,

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA +

0

BB@

b1 1 b1 2 . . . b1 n

b2 1 b2 2 . . . b2 n
... ... . . . ...

bm 1 bm 2 . . . bm n

1

CCA

=

0

BB@

a1 1 + b1 1 a1 2 + b1 2 . . . a1 n + b1 n

a2 1 + b2 1 a2 2 + b2 2 . . . a2 n + b2 n
... ... . . . ...

am 1 + bm 1 am 2 + bm 2 . . . am n + bm n

1

CCA .

We define the matrix �A as the matrix (�ai j).

Given a scalar � 2 K, we define the matrix �A as the
matrix C = (ci j) such that ci j = �ai j; that is

�

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA =

0

BB@

�a1 1 �a1 2 . . . �a1 n

�a2 1 �a2 2 . . . �a2 n
... ... . . . ...

�am 1 �am 2 . . . �am n

1

CCA .
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Given an m⇥n matrices A = (ai k) and an n⇥p matrices
B = (bk j), we define their product AB as the m ⇥ p
matrix C = (ci j) such that

ci j =
nX

k=1

ai kbk j,

for 1  i  m, and 1  j  p. In the product AB = C
shown below

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

0

BB@

b1 1 b1 2 . . . b1 p

b2 1 b2 2 . . . b2 p
... ... . . . ...

bn 1 bn 2 . . . bn p

1

CCA

=

0

BB@

c1 1 c1 2 . . . c1 p

c2 1 c2 2 . . . c2 p
... ... . . . ...

cm 1 cm 2 . . . cm p

1

CCA
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note that the entry of index i and j of the matrix AB ob-
tained by multiplying the matrices A and B can be iden-
tified with the product of the row matrix corresponding
to the i-th row of A with the column matrix corre-
sponding to the j-column of B:

(ai 1 · · · ai n)

0

@
b1 j
...

bn j

1

A =
nX

k=1

ai kbk j.

The square matrix In of dimension n containing 1 on
the diagonal and 0 everywhere else is called the identity
matrix . It is denoted by

In =

0

BB@

1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

1

CCA

Given an m ⇥ n matrix A = (ai j), its transpose A> =
(a>

j i), is the n ⇥ m-matrix such that a>
j i = ai j, for all i,

1  i  m, and all j, 1  j  n.

The transpose of a matrix A is sometimes denoted by At,
or even by tA.
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Note that the transpose A> of a matrix A has the prop-
erty that the j-th row of A> is the j-th column of A.

In other words, transposition exchanges the rows and the
columns of a matrix.

The following observation will be useful later on when we
discuss the SVD. Given any m⇥n matrix A and any n⇥p
matrix B, if we denote the columns of A by A1, . . . , An

and the rows of B by B1, . . . , Bn, then we have

AB = A1B1 + · · · + AnBn.

For every square matrix A of dimension n, it is immedi-
ately verified that AIn = InA = A.

If a matrix B such that AB = BA = In exists, then it is
unique, and it is called the inverse of A. The matrix B
is also denoted by A�1.

An invertible matrix is also called a nonsingular matrix,
and a matrix that is not invertible is called a singular
matrix.
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Proposition 1.12 shows that if a square matrix A has a
left inverse, that is a matrix B such that BA = I , or a
right inverse, that is a matrix C such that AC = I , then
A is actually invertible; so B = A�1 and C = A�1. This
also follows from Proposition 3.7.

It is immediately verified that the set Mm,n(K) of m ⇥ n
matrices is a vector space under addition of matrices and
multiplication of a matrix by a scalar.

Consider the m ⇥ n-matrices Ei,j = (eh k), defined such
that ei j = 1, and eh k = 0, if h 6= i or k 6= j.

It is clear that every matrix A = (ai j) 2 Mm,n(K) can
be written in a unique way as

A =
mX

i=1

nX

j=1

ai jEi,j.

Thus, the family (Ei,j)1im,1jn is a basis of the vector
space Mm,n(K), which has dimension mn.
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Square matrices provide a natural example of a noncom-
mutative ring with zero divisors.

Example 2.1. For example, letting A, B be the 2 ⇥ 2-
matrices

A =

✓
1 0
0 0

◆
, B =

✓
0 0
1 0

◆
,

then

AB =

✓
1 0
0 0

◆✓
0 0
1 0

◆
=

✓
0 0
0 0

◆
,

and

BA =

✓
0 0
1 0

◆✓
1 0
0 0

◆
=

✓
0 0
1 0

◆
.

We now formalize the representation of linear maps by
matrices.
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Definition 2.3. Let E and F be two vector spaces, and
let (u1, . . . , un) be a basis for E, and (v1, . . . , vm) be a
basis for F . Each vector x 2 E expressed in the basis
(u1, . . . , un) as x = x1u1 + · · · + xnun is represented by
the column matrix

M(x) =

0

@
x1
...

xn

1

A

and similarly for each vector y 2 F expressed in the basis
(v1, . . . , vm). Every linear map f : E ! F is represented
by the matrix M(f ) = (ai j), where ai j is the i-th compo-
nent of the vector f (uj) over the basis (v1, . . . , vm), i.e.,
where

f (uj) =
mX

i=1

ai jvi, for every j, 1  j  n.

The coe�cients a1j, a2j, . . . , amj of f (uj) over the basis
(v1, . . . , vm) form the jth column of the matrix M(f )
shown below:

f (u1) f (u2) . . . f (un)

v1

v2
...

vm

0

BB@

a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn

1

CCA .
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The matrix M(f ) associated with the linear map
f : E ! F is called the matrix of f with respect to the
bases (u1, . . . , un) and (v1, . . . , vm).

When E = F and the basis (v1, . . . , vm) is identical to
the basis (u1, . . . , un) of E, the matrix M(f ) associated
with f : E ! E (as above) is called thematrix of f with
respect to the basis (u1, . . . , un).

Remark: As in the remark after Definition 2.1, there
is no reason to assume that the vectors in the bases
(u1, . . . , un) and (v1, . . . , vm) are ordered in any particu-
lar way.

However, it is often convenient to assume the natural or-
dering. When this is so, authors sometimes refer to the
matrix M(f ) as the matrix of f with respect to the
ordered bases (u1, . . . , un) and (v1, . . . , vm).
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Then, given a linear map f : E ! F represented by the
matrix M(f ) = (ai j) w.r.t. the bases (u1, . . . , un) and
(v1, . . . , vm), by equations (1) and the definition of matrix
multiplication, the equation y = f (x) corresponds to
the matrix equation M(y) = M(f )M(x), that is,

0

@
y1
...

ym

1

A =

0

@
a1 1 . . . a1 n
... . . . ...

am 1 . . . am n

1

A

0

@
x1
...

xn

1

A .

Recall that
0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

0

BB@

x1

x2
...

xn

1

CCA

= x1

0

BB@

a1 1

a2 1
...

am 1

1

CCA + x2

0

BB@

a1 2

a2 2
...

am 2

1

CCA + · · · + xn

0

BB@

a1 n

a2 n
...

am n

1

CCA .
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Sometimes, it is necessary to incoporate the bases
(u1, . . . , un) and (v1, . . . , vm) in the notation for the ma-
trix M(f ) expressing f with respect to these bases. This
turns out to be a messy enterprise!

We propose the following course of action: write
U = (u1, . . . , un) and V = (v1, . . . , vm) for the bases of
E and F , and denote by

MU ,V(f )

the matrix of f with respect to the bases U and V .

Furthermore, write xU for the coordinates
M(x) = (x1, . . . , xn) of x 2 E w.r.t. the basis U and
write yV for the coordinates M(y) = (y1, . . . , ym) of
y 2 F w.r.t. the basis V . Then,

y = f (x)

is expressed in matrix form by

yV = MU ,V(f )xU .

When U = V , we abbreviate MU ,V(f ) as MU(f ).
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The above notation seems reasonable, but it has the slight
disadvantage that in the expression MU ,V(f )xU , the input
argument xU which is fed to the matrix MU ,V(f ) does not
appear next to the subscript U in MU ,V(f ).

We could have used the notation MV ,U(f ), and some peo-
ple do that. But then, we find a bit confusing that V
comes before U when f maps from the space E with the
basis U to the space F with the basis V .

So, we prefer to use the notation MU ,V(f ).

Be aware that other authors such as Meyer [25] use the
notation [f ]U ,V , and others such as Dummit and Foote
[13] use the notation MV

U (f ), instead of MU ,V(f ).

This gets worse! You may find the notation MU
V (f ) (as

in Lang [21]), or U [f ]V , or other strange notations.
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Let us illustrate the representation of a linear map by a
matrix in a concrete situation.

Let E be the vector space R[X ]4 of polynomials of degree
at most 4, let F be the vector space R[X ]3 of polynomi-
als of degree at most 3, and let the linear map be the
derivative map d: that is,

d(P + Q) = dP + dQ

d(�P ) = �dP,

with � 2 R.

We choose (1, x, x2, x3, x4) as a basis ofE and (1, x, x2, x3)
as a basis of F .

Then, the 4 ⇥ 5 matrix D associated with d is obtained
by expressing the derivative dxi of each basis vector xi

for i = 0, 1, 2, 3, 4 over the basis (1, x, x2, x3).
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We find

D =

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA .

Then, if P denotes the polynomial

P = 3x4 � 5x3 + x2 � 7x + 5,

we have
dP = 12x3 � 15x2 + 2x � 7,

the polynomial P is represented by the vector
(5, �7, 1, �5, 3) and dP is represented by the vector
(�7, 2, �15, 12), and we have

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA

0

BBBB@

5
�7
1

�5
3

1

CCCCA
=

0

BB@

�7
2

�15
12

1

CCA ,

as expected!
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The kernel (nullspace) of d consists of the polynomials of
degree 0, that is, the constant polynomials.

Therefore dim(Ker d) = 1, and from

dim(E) = dim(Ker d) + dim(Im d)

(see Theorem 3.4), we get dim(Im d) = 4
(since dim(E) = 5).

For fun, let us figure out the linear map from the vector
space R[X ]3 to the vector space R[X ]4 given by integra-
tion (finding the primitive, or anti-derivative) of xi, for
i = 0, 1, 2, 3).

The 5 ⇥ 4 matrix S representing
R

with respect to the
same bases as before is

S =

0

BBBB@

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

1

CCCCA
.
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We verify that DS = I4,

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA

0

BBBB@

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

1

CCCCA
=

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA ,

as it should!

The equation DS = I4 show that S is injective and has
D as a left inverse. However, SD 6= I5, and instead

0

BBBB@

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

1

CCCCA

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA =

0

BBBB@

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

CCCCA
,

because constant polynomials (polynomials of degree 0)
belong to the kernel of D.
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The function that associates to a linear map
f : E ! F the matrix M(f ) w.r.t. the bases (u1, . . . , un)
and (v1, . . . , vm) has the property that matrix multipli-
cation corresponds to composition of linear maps.

This allows us to transfer properties of linear maps to
matrices.
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Proposition 2.1. (1) Given any matrices
A 2 Mm,n(K), B 2 Mn,p(K), and C 2 Mp,q(K), we
have

(AB)C = A(BC);

that is, matrix multiplication is associative.

(2) Given any matrices A, B 2 Mm,n(K), and
C, D 2 Mn,p(K), for all � 2 K, we have

(A + B)C = AC + BC

A(C + D) = AC + AD

(�A)C = �(AC)

A(�C) = �(AC),

so that matrix multiplication
· : Mm,n(K) ⇥ Mn,p(K) ! Mm,p(K) is bilinear.

Note that Proposition 2.1 implies that the vector space
Mn(K) of square matrices is a (noncommutative) ring
with unit In.
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The following proposition states the main properties of
the mapping f 7! M(f ) between Hom(E, F ) and Mm,n.

In short, it is an isomorphism of vector spaces.

Proposition 2.2. Given three vector spaces E, F ,
G, with respective bases (u1, . . . , up), (v1, . . . , vn), and
(w1, . . . , wm), the mapping M : Hom(E, F ) ! Mn,p that
associates the matrix M(g) to a linear map g : E ! F
satisfies the following properties for all x 2 E, all
g, h : E ! F , and all f : F ! G:

M(g(x)) = M(g)M(x)

M(g + h) = M(g) + M(h)

M(�g) = �M(g)

M(f � g) = M(f )M(g).

Thus, M : Hom(E, F ) ! Mn,p is an isomorphism of
vector spaces, and when p = n and the basis (v1, . . . , vn)
is identical to the basis (u1, . . . , up),
M : Hom(E, E) ! Mn is an isomorphism of rings.
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In view of Proposition 2.2, it seems preferable to represent
vectors from a vector space of finite dimension as column
vectors rather than row vectors.

Thus, from now on, we will denote vectors of Rn (or more
generally, of Kn) as columm vectors.

It is important to observe that the isomorphism
M : Hom(E, F ) ! Mn,p given by Proposition 2.2 de-
pends on the choice of the bases (u1, . . . , up) and
(v1, . . . , vn), and similarly for the isomorphism
M : Hom(E, E) ! Mn, which depends on the choice of
the basis (u1, . . . , un).

Thus, it would be useful to know how a change of basis
a↵ects the representation of a linear map f : E ! F as
a matrix.
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Proposition 2.3. Let E be a vector space, and let
(u1, . . . , un) be a basis of E. For every family (v1, . . . , vn),
let P = (ai j) be the matrix defined such that vj =Pn

i=1 ai jui. The matrix P is invertible i↵ (v1, . . . , vn)
is a basis of E.

Definition 2.4.Given a vector space E of dimension n,
for any two bases (u1, . . . , un) and (v1, . . . , vn) of E, let
P = (ai j) be the invertible matrix defined such that

vj =
nX

i=1

ai jui,

which is also the matrix of the identity id : E ! E with
respect to the bases (v1, . . . , vn) and (u1, . . . , un), in that
order . Indeed, we express each id(vj) = vj over the basis
(u1, . . . , un). The coe�cients a1j, a2j, . . . , anj of vj over
the basis (u1, . . . , un) form the jth column of the matrix
P shown below:

v1 v2 . . . vn

u1

u2
...

un

0

BB@

a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...

an1 an2 . . . ann

1

CCA .
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The matrix P is called the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn).

Clearly, the change of basis matrix from (v1, . . . , vn) to
(u1, . . . , un) is P�1.

Since P = (ai j) is the matrix of the identity id : E ! E
with respect to the bases (v1, . . . , vn) and (u1, . . . , un),
given any vector x 2 E, if x = x1u1 + · · · + xnun over
the basis (u1, . . . , un) and x = x0

1v1+ · · ·+x0
nvn over the

basis (v1, . . . , vn), from Proposition 2.2, we have
0

@
x1
...

xn

1

A =

0

@
a1 1 . . . a1 n
... . . . ...

an 1 . . . an n

1

A

0

@
x0

1
...

x0
n

1

A

showing that the old coordinates (xi) of x (over (u1, . . . , un))
are expressed in terms of the new coordinates (x0

i) of x
(over (v1, . . . , vn)).

Now we face the painful task of assigning a “good” nota-
tion incorporating the bases U = (u1, . . . , un) and
V = (v1, . . . , vn) into the notation for the change of basis
matrix from U to V .
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Because the change of basis matrix from U to V is the
matrix of the identity map idE with respect to the bases
V and U in that order , we could denote it by MV ,U(id)
(Meyer [25] uses the notation [I ]V ,U).

We prefer to use an abbreviation for MV ,U(id) and we will
use the notation

PV ,U

for the change of basis matrix from U to V .

Note that

PU ,V = P�1
V ,U .

Then, if we write xU = (x1, . . . , xn) for the old co-
ordinates of x with respect to the basis U and xV =
(x0

1, . . . , x
0
n) for the new coordinates of x with respect to

the basis V , we have

xU = PV ,U xV , xV = P�1
V ,U xU .
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The above may look backward, but remember that the
matrix MU ,V(f ) takes input expressed over the basis U
to output expressed over the basis V .

Consequently, PV ,U takes input expressed over the basis V
to output expressed over the basis U , and xU = PV ,U xV
matches this point of view!

� Beware that some authors (such as Artin [1]) define the
change of basis matrix from U to V as PU ,V = P�1

V ,U .
Under this point of view, the old basis U is expressed in
terms of the new basis V . We find this a bit unnatural.

Also, in practice, it seems that the new basis is often
expressed in terms of the old basis, rather than the other
way around.

Since the matrix P = PV ,U expresses the new basis
(v1, . . . , vn) in terms of the old basis (u1, . . ., un), we
observe that the coordinates (xi) of a vector x vary in
the opposite direction of the change of basis.
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For this reason, vectors are sometimes said to be con-
travariant .

However, this expression does not make sense! Indeed, a
vector in an intrinsic quantity that does not depend on a
specific basis.

What makes sense is that the coordinates of a vector
vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.

Example 2.2. Let E = F = R2, with u1 = (1, 0),
u2 = (0, 1), v1 = (1, 1) and v2 = (�1, 1).

The change of basis matrix P from the basis U = (u1, u2)
to the basis V = (v1, v2) is

P =

✓
1 �1
1 1

◆

and its inverse is

P�1 =

✓
1/2 1/2

�1/2 1/2

◆
.
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The old coordinates (x1, x2) with respect to (u1, u2) are
expressed in terms of the new coordinates (x0

1, x
0
2) with

respect to (v1, v2) by
✓

x1

x2

◆
=

✓
1 �1
1 1

◆✓
x0

1

x0
2

◆
,

and the new coordinates (x0
1, x

0
2) with respect to (v1, v2)

are expressed in terms of the old coordinates (x1, x2) with
respect to (u1, u2) by

✓
x0

1

x0
2

◆
=

✓
1/2 1/2

�1/2 1/2

◆✓
x1

x2

◆
.
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Example 2.3. Let E = F = R[X ]3 be the set of poly-
nomials of degree at most 3, and consider the bases U =
(1, x, x2, x3) and V = (B3

0(x), B
3
1(x), B

3
2(x), B

3
3(x)), where

B3
0(x), B

3
1(x), B

3
2(x), B

3
3(x) are theBernstein polynomi-

als of degree 3, given by

B3
0(x) = (1 � x)3 B3

1(x) = 3(1 � x)2x

B3
2(x) = 3(1 � x)x2 B3

3(x) = x3.

By expanding the Bernstein polynomials, we find that the
change of basis matrix PV ,U is given by

PV ,U =

0

BB@

1 0 0 0
�3 3 0 0
3 �6 3 0

�1 3 �3 1

1

CCA .

We also find that the inverse of PV ,U is

P�1
V ,U =

0

BB@

1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

1

CCA .
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Therefore, the coordinates of the polynomial 2x3 � x+ 1
over the basis V are

0

BB@

1
2/3
1/3
2

1

CCA =

0

BB@

1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

1

CCA

0

BB@

1
�1
0
2

1

CCA ,

and so

2x3 � x + 1 = B3
0(x) +

2

3
B3

1(x) +
1

3
B3

2(x) + 2B3
3(x).

Our next example is the Haar wavelets, a fundamental
tool in signal processing.
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2.2 Haar Basis Vectors and a Glimpse at Wavelets

We begin by considering Haar wavelets in R4.

Wavelets play an important role in audio and video signal
processing, especially for compressing long signals into
much smaller ones than still retain enough information
so that when they are played, we can’t see or hear any
di↵erence.

Consider the four vectors w1, w2, w3, w4 given by

w1 =

0

BB@

1
1
1
1

1

CCA w2 =

0

BB@

1
1

�1
�1

1

CCA w3 =

0

BB@

1
�1
0
0

1

CCA w4 =

0

BB@

0
0
1

�1

1

CCA .

Note that these vectors are pairwise orthogonal, so they
are indeed linearly independent (we will see this in a later
chapter).

Let W = {w1, w2, w3, w4} be the Haar basis , and let
U = {e1, e2, e3, e4} be the canonical basis of R4.
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The change of basis matrix W = PW ,U from U to W is
given by

W =

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA ,

and we easily find that the inverse of W is given by

W�1 =

0

BB@

1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2

1

CCA

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 0 0
0 0 1 �1

1

CCA .

So, the vector v = (6, 4, 5, 1) over the basis U becomes
c = (c1, c2, c3, c4) = (4, 1, 1, 2) over the Haar basis W ,
with

0

BB@

4
1
1
2

1

CCA =

0

BB@

1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2

1

CCA

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 0 0
0 0 1 �1

1

CCA

0

BB@

6
4
5
1

1

CCA .
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Given a signal v = (v1, v2, v3, v4), we first transform v
into its coe�cients c = (c1, c2, c3, c4) over the Haar basis
by computing c = W�1v. Observe that

c1 =
v1 + v2 + v3 + v4

4

is the overall average value of the signal v. The coe�cient
c1 corresponds to the background of the image (or of the
sound).

Then, c2 gives the coarse details of v, whereas, c3 gives
the details in the first part of v, and c4 gives the details
in the second half of v.

Reconstruction of the signal consists in computing
v = Wc.
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The trick for good compression is to throw away some
of the coe�cients of c (set them to zero), obtaining a
compressed signal bc, and still retain enough crucial in-
formation so that the reconstructed signal bv = Wbc
looks almost as good as the original signal v.

Thus, the steps are:

inputv �! coe�cients c = W�1v �! compressed bc
�! compressed bv = Wbc.

This kind of compression scheme makes modern video
conferencing possible.

It turns out that there is a faster way to find c = W�1v,
without actually using W�1. This has to do with the
multiscale nature of Haar wavelets.
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Given the original signal v = (6, 4, 5, 1) shown in Figure
2.1, we compute averages and half di↵erences obtaining

6 4 5 1

Figure 2.1: The original signal v

Figure 2.2: We get the coe�cients c3 = 1 and c4 = 2.

5 5 3 3

1

�1

2

�2

Figure 2.2: First averages and first half di↵erences

Note that the original signal v can be reconstruced from
the two signals in Figure 2.2.

Then, again we compute averages and half di↵erences ob-
taining Figure 2.3.

4 4 4 4
1 1

�1 �1

Figure 2.3: Second averages and second half di↵erences

We get the coe�cients c1 = 4 and c2 = 1.
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Again, the signal on the left of Figure 2.2 can be recon-
structed from the two signals in Figure 2.3.

This method can be generalized to signals of any length
2n. The previous case corresponds to n = 2.

Let us consider the case n = 3.

The Haar basis (w1, w2, w3, w4, w5, w6, w7, w8) is given
by the matrix

W =

0

BBBBBBBBBB@

1 1 1 0 1 0 0 0
1 1 1 0 �1 0 0 0
1 1 �1 0 0 1 0 0
1 1 �1 0 0 �1 0 0
1 �1 0 1 0 0 1 0
1 �1 0 1 0 0 �1 0
1 �1 0 �1 0 0 0 1
1 �1 0 �1 0 0 0 �1

1

CCCCCCCCCCA
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The columns of this matrix are orthogonal and it is easy
to see that

W�1 = diag(1/8, 1/8, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2)W>.

A pattern is begining to emerge. It looks like the second
Haar basis vector w2 is the “mother” of all the other
basis vectors, except the first, whose purpose is to perform
averaging.

Indeed, in general, given

w2 = (1, . . . , 1, �1, . . . , �1)| {z }
2n

,

the other Haar basis vectors are obtained by a “scaling
and shifting process.”
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Starting from w2, the scaling process generates the vec-
tors

w3, w5, w9, . . . , w2j+1, . . . , w2n�1+1,

such that w2j+1+1 is obtained from w2j+1 by forming two
consecutive blocks of 1 and �1 of half the size of the
blocks in w2j+1, and setting all other entries to zero. Ob-
serve that w2j+1 has 2

j blocks of 2n�j elements.

The shifting process, consists in shifting the blocks of
1 and �1 in w2j+1 to the right by inserting a block of
(k � 1)2n�j zeros from the left, with 0  j  n � 1 and
1  k  2j.

Thus, we obtain the following formula for w2j+k:

w2j+k(i) =8
>>>><

>>>>:

0 1  i  (k � 1)2n�j

1 (k � 1)2n�j + 1  i  (k � 1)2n�j + 2n�j�1

�1 (k � 1)2n�j + 2n�j�1 + 1  i  k2n�j

0 k2n�j + 1  i  2n,

with 0  j  n � 1 and 1  k  2j.
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Of course
w1 = (1, . . . , 1)| {z }

2n

.

The above formulae look a little better if we change our
indexing slightly by letting k vary from 0 to 2j � 1 and
using the index j instead of 2j.

In this case, the Haar basis is denoted by

w1, h
0
0, h

1
0, h

1
1, h

2
0, h

2
1, h

2
2, h

2
3, . . . , h

j
k, . . . , h

n�1
2n�1�1

,

and

hj
k(i) =

8
>>>><

>>>>:

0 1  i  k2n�j

1 k2n�j + 1  i  k2n�j + 2n�j�1

�1 k2n�j + 2n�j�1 + 1  i  (k + 1)2n�j

0 (k + 1)2n�j + 1  i  2n,

with 0  j  n � 1 and 0  k  2j � 1.
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It turns out that there is a way to understand these for-
mulae better if we interpret a vector u = (u1, . . . , um) as
a piecewise linear function over the interval [0, 1).

We define the function plf(u) such that

plf(u)(x) = ui,
i � 1

m
 x <

i

m
, 1  i  m.

In words, the function plf(u) has the value u1 on the
interval [0, 1/m), the value u2 on [1/m, 2/m), etc., and
the value um on the interval [(m � 1)/m, 1).

For example, the piecewise linear function associated with
the vector

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, �1.1, �1.3)

is shown in Figure 2.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

5

6

7

Figure 2.4: The piecewise linear function plf(u)
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Then, each basis vector hj
k corresponds to the function

 j
k = plf(hj

k).

In particular, for all n, the Haar basis vectors

h0
0 = w2 = (1, . . . , 1, �1, . . . , �1)| {z }

2n

yield the same piecewise linear function  given by

 (x) =

8
><

>:

1 if 0  x < 1/2

�1 if 1/2  x < 1

0 otherwise,

whose graph is shown in Figure 2.5.

1

1

�1

0

Figure 2.5: The Haar wavelet  
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Then, it is easy to see that  j
k is given by the simple

expression

 j
k(x) =  (2jx � k), 0  j  n � 1, 0  k  2j � 1.

The above formula makes it clear that  j
k is obtained from

 by scaling and shifting.

The function �0
0 = plf(w1) is the piecewise linear function

with the constant value 1 on [0, 1), and the functions  j
k

together with '0
0 are known as the Haar wavelets .

Rather than using W�1 to convert a vector u to a vec-
tor c of coe�cients over the Haar basis, and the matrix
W to reconstruct the vector u from its Haar coe�cients
c, we can use faster algorithms that use averaging and
di↵erencing.
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If c is a vector of Haar coe�cients of dimension 2n, we
compute the sequence of vectors u0, u1, . . ., un as follows:

u0 = c

uj+1 = uj

uj+1(2i � 1) = uj(i) + uj(2j + i)

uj+1(2i) = uj(i) � uj(2j + i),

for j = 0, . . . , n � 1 and i = 1, . . . , 2j.

The reconstructed vector (signal) is u = un.

If u is a vector of dimension 2n, we compute the sequence
of vectors cn, cn�1, . . . , c0 as follows:

cn = u

cj = cj+1

cj(i) = (cj+1(2i � 1) + cj+1(2i))/2

cj(2j + i) = (cj+1(2i � 1) � cj+1(2i))/2,

for j = n � 1, . . . , 0 and i = 1, . . . , 2j.

The vector over the Haar basis is c = c0.
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Here is an example of the conversion of a vector to its
Haar coe�cients for n = 3.

Given the sequence u = (31, 29, 23, 17, �6, �8, �2, �4),
we get the sequence

c3 = (31, 29, 23, 17, �6, �8, �2, �4)

c2 = (30, 20, �7, �3, 1, 3, 1, 1)

c1 = (25, �5, 5, �2, 1, 3, 1, 1)

c0 = (10, 15, 5, �2, 1, 3, 1, 1),

so c = (10, 15, 5, �2, 1, 3, 1, 1).

Conversely, given c = (10, 15, 5, �2, 1, 3, 1, 1), we get the
sequence

u0 = (10, 15, 5, �2, 1, 3, 1, 1)

u1 = (25, �5, 5, �2, 1, 3, 1, 1)

u2 = (30, 20, �7, �3, 1, 3, 1, 1)

u3 = (31, 29, 23, 17, �6, �8, �2, �4),

which gives back u = (31, 29, 23, 17, �6, �8, �2, �4).



2.2. HAAR BASIS VECTORS; A GLIMPSE AT WAVELETS 123

An important and attractive feature of the Haar basis is
that it provides a multiresolution analysis of a signal.

Indeed, given a signal u, if c = (c1, . . . , c2n) is the vector
of its Haar coe�cients, the coe�cients with low index give
coarse information about u, and the coe�cients with high
index represent fine information.

This multiresolution feature of wavelets can be exploited
to compress a signal, that is, to use fewer coe�cients to
represent it. Here is an example.

Consider the signal

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, �1.1, �1.3),

whose Haar transform is

c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1).

The piecewise-linear curves corresponding to u and c are
shown in Figure 2.6.

Since some of the coe�cients in c are small (smaller than
or equal to 0.2) we can compress c by replacing them by
0.
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Figure 2.6: A signal and its Haar transform

We get
c2 = (2, 0, 0, 3, 0, 0, 2, 0),

and the reconstructed signal is

u2 = (2, 2, 2, 2, 7, 3, �1, �1).

The piecewise-linear curves corresponding to u2 and c2

are shown in Figure 2.7.
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Figure 2.7: A compressed signal and its compressed Haar transform
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An interesting (and amusing) application of the Haar
wavelets is to the compression of audio signals.

It turns out that if your type load handel in Matlab

an audio file will be loaded in a vector denoted by y, and
if you type sound(y), the computer will play this piece
of music.

You can convert y to its vector of Haar coe�cients, c.
The length of y is 73113, so first tuncate the tail of y to
get a vector of length 65536 = 216.

A plot of the signals corresponding to y and c is shown
in Figure 2.8.
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Figure 2.8: The signal “handel” and its Haar transform
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Then, run a program that sets all coe�cients of c whose
absolute value is less that 0.05 to zero. This sets 37272
coe�cients to 0.

The resulting vector c2 is converted to a signal y2. A
plot of the signals corresponding to y2 and c2 is shown in
Figure 2.9.
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Figure 2.9: The compressed signal “handel” and its Haar transform

When you type sound(y2), you find that the music
doesn’t di↵er much from the original, although it sounds
less crisp.
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Another neat property of the Haar transform is that it can
be instantly generalized to matrices (even rectangular)
without any extra e↵ort!

This allows for the compression of digital images. But
first, we address the issue of normalization of the Haar
coe�cients.

As we observed earlier, the 2n ⇥ 2n matrix Wn of Haar
basis vectors has orthogonal columns, but its columns do
not have unit length.

As a consequence, W>
n is not the inverse of Wn, but rather

the matrix
W�1

n = DnW
>
n

with

Dn = diag
⇣
2�n, 2�n|{z}

20

, 2�(n�1), 2�(n�1)
| {z }

21

,

2�(n�2), . . . , 2�(n�2)
| {z }

22

, . . . , 2�1, . . . , 2�1
| {z }

2n�1

⌘
.
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Therefore, we define the orthogonal matrix

Hn = WnD
1
2
n

whose columns are the normalized Haar basis vectors,
with

D
1
2
n = diag

⇣
2�n

2 , 2�n
2|{z}

20

, 2�n�1
2 , 2�n�1

2| {z }
21

,

2�n�2
2 , . . . , 2�n�2

2| {z }
22

, . . . , 2�1
2 , . . . , 2�1

2| {z }
2n�1

⌘
.

We call Hn the normalized Haar transform matrix.

Because Hn is orthogonal, H�1
n = H>

n .

Given a vector (signal) u, we call c = H>
n u the normal-

ized Haar coe�cients of u.
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When computing the sequence of ujs, use

uj+1(2i � 1) = (uj(i) + uj(2j + i))/
p
2

uj+1(2i) = (uj(i) � uj(2j + i))/
p
2,

and when computing the sequence of cjs, use

cj(i) = (cj+1(2i � 1) + cj+1(2i))/
p
2

cj(2j + i) = (cj+1(2i � 1) � cj+1(2i))/
p
2.

Note that things are now more symmetric, at the expense
of a division by

p
2. However, for long vectors, it turns

out that these algorithms are numerically more stable.
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Let us now explain the 2D version of the Haar transform.

We describe the version using the matrix Wn, the method
using Hn being identical (except that H�1

n = H>
n , but

this does not hold for W�1
n ).

Given a 2m ⇥ 2n matrix A, we can first convert the
rows of A to their Haar coe�cients using the Haar trans-
form W�1

n , obtaining a matrix B, and then convert the
columns of B to their Haar coe�cients, using the matrix
W�1

m .

Because columns and rows are exchanged in the first step,

B = A(W�1
n )>,

and in the second step C = W�1
m B, thus, we have

C = W�1
m A(W�1

n )> = DmW>
mAWn Dn.
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In the other direction, given a matrix C of Haar coe�-
cients, we reconstruct the matrix A (the image) by first
applying Wm to the columns of C, obtaining B, and then
W>

n to the rows of B. Therefore

A = WmCW>
n .

Of course, we dont actually have to invert Wm and Wn

and perform matrix multiplications. We just have to use
our algorithms using averaging and di↵erencing.

Here is an example. If the data matrix (the image) is the
8 ⇥ 8 matrix

A =

0

BBBBBBBBBB@

64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1

1

CCCCCCCCCCA

,

then applying our algorithms, we find that
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C =

0

BBBBBBBBBB@

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 �4 4 �4
0 0 0 0 4 �4 4 �4
0 0 0.5 0.5 27 �25 23 �21
0 0 �0.5 �0.5 �11 9 �7 5
0 0 0.5 0.5 �5 7 �9 11
0 0 �0.5 �0.5 21 �23 25 �27

1

CCCCCCCCCCA

.

As we can see, C has a more zero entries than A; it is
a compressed version of A. We can further compress C
by setting to 0 all entries of absolute value at most 0.5.
Then, we get

C2 =

0

BBBBBBBBBB@

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 �4 4 �4
0 0 0 0 4 �4 4 �4
0 0 0 0 27 �25 23 �21
0 0 0 0 �11 9 �7 5
0 0 0 0 �5 7 �9 11
0 0 0 0 21 �23 25 �27

1

CCCCCCCCCCA

.
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We find that the reconstructed image is

A2 =

0

BBBBBBBBBB@

63.5 1.5 3.5 61.5 59.5 5.5 7.5 57.5
9.5 55.5 53.5 11.5 13.5 51.5 49.5 15.5
17.5 47.5 45.5 19.5 21.5 43.5 41.5 23.5
39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5
31.5 33.5 35.5 29.5 27.5 37.5 39.5 25.5
41.5 23.5 21.5 43.5 45.5 19.5 17.5 47.5
49.5 15.5 13.5 51.5 53.5 11.5 9.5 55.5
7.5 57.5 59.5 5.5 3.5 61.5 63.5 1.5

1

CCCCCCCCCCA

,

which is pretty close to the original image matrix A.

It turns out that Matlab has a wonderful command,
image(X), which displays the matrix X has an image.

The images corresponding to A and C are shown in Fig-
ure 2.10. The compressed images corresponding to A2

and C2 are shown in Figure 2.11.

The compressed versions appear to be indistinguishable
from the originals!
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Figure 2.10: An image and its Haar transform

Figure 2.11: Compressed image and its Haar transform
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If we use the normalized matrices Hm and Hn, then the
equations relating the image matrix A and its normalized
Haar transform C are

C = H>
mAHn

A = HmCH>
n .

The Haar transform can also be used to send large images
progressively over the internet.

Observe that instead of performing all rounds of averaging
and di↵erencing on each row and each column, we can
perform partial encoding (and decoding).

For example, we can perform a single round of averaging
and di↵erencing for each row and each column.

The result is an image consisting of four subimages, where
the top left quarter is a coarser version of the original,
and the rest (consisting of three pieces) contain the finest
detail coe�cients.
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We can also perform two rounds of averaging and di↵er-
encing, or three rounds, etc. This process is illustrated on
the image shown in Figure 2.12. The result of performing

Figure 2.12: Original drawing by Durer

one round, two rounds, three rounds, and nine rounds of
averaging is shown in Figure 2.13.
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Since our images have size 512 ⇥ 512, nine rounds of av-
eraging yields the Haar transform, displayed as the image
on the bottom right. The original image has completely
disappeared!

Figure 2.13: Haar tranforms after one, two, three, and nine rounds of averaging
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We can find easily a basis of 2n ⇥ 2n = 22n vectors wij

(2n ⇥ 2n matrices) for the linear map that reconstructs
an image from its Haar coe�cients, in the sense that for
any matrix C of Haar coe�cients, the image matrix A is
given by

A =
2nX

i=1

2nX

j=1

cijwij.

Indeed, the matrix wij is given by the so-called outer
product

wij = wi(wj)
>.

Similarly, there is a basis of 2n ⇥ 2n = 22n vectors hij

(2n⇥2n matrices) for the 2D Haar transform, in the sense
that for any matrix A, its matrix C of Haar coe�cients
is given by

C =
2nX

i=1

2nX

j=1

aijhij.

If the columns of W�1 are w0
1, . . . , w

0
2n, then

hij = w0
i(w

0
j)

>.
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2.3 The E↵ect of a Change of Bases on Matrices

The e↵ect of a change of bases on the representation of a
linear map is described in the following proposition.

Proposition 2.4. Let E and F be vector spaces, let
U = (u1, . . . , un) and U 0 = (u0

1, . . . , u
0
n) be two bases

of E, and let V = (v1, . . . , vm) and V 0 = (v0
1, . . . , v

0
m)

be two bases of F . Let P = PU 0,U be the change of
basis matrix from U to U 0, and let Q = PV 0,V be the
change of basis matrix from V to V 0. For any lin-
ear map f : E ! F , let M(f ) = MU ,V(f ) be the ma-
trix associated to f w.r.t. the bases U and V, and let
M 0(f ) = MU 0,V 0(f ) be the matrix associated to f w.r.t.
the bases U 0 and V 0. We have

M 0(f ) = Q�1M(f )P,

or more explicitly

MU 0,V 0(f ) = P�1
V 0,VMU ,V(f )PU 0,U = PV ,V 0MU ,V(f )PU 0,U .
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As a corollary, we get the following result.

Corollary 2.5. Let E be a vector space, and let
U = (u1, . . . , un) and U 0 = (u0

1, . . . , u
0
n) be two bases

of E. Let P = PU 0,U be the change of basis matrix
from U to U 0. For any linear map f : E ! E, let
M(f ) = MU(f ) be the matrix associated to f w.r.t.
the basis U , and let M 0(f ) = MU 0(f ) be the matrix
associated to f w.r.t. the basis U 0. We have

M 0(f ) = P�1M(f )P,

or more explicitly,

MU 0(f ) = P�1
U 0,UMU(f )PU 0,U = PU ,U 0MU(f )PU 0,U .



2.3. THE EFFECT OF A CHANGE OF BASES ON MATRICES 141

Example 2.4. Let E = R2, U = (e1, e2) where e1 =
(1, 0) and e2 = (0, 1) are the canonical basis vectors, let
V = (v1, v2) = (e1, e1 � e2), and let

A =

✓
2 1
0 1

◆
.

The change of basis matrix P = PV ,U from U to V is

P =

✓
1 1
0 �1

◆
,

and we check that P�1 = P .

Therefore, in the basis V , the matrix representing the
linear map f defined by A is

A0 = P�1AP = PAP =

✓
1 1
0 �1

◆✓
2 1
0 1

◆✓
1 1
0 �1

◆

=

✓
2 0
0 1

◆
= D,

a diagonal matrix.
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Therefore, in the basis V , it is clear what the action of f
is: it is a stretch by a factor of 2 in the v1 direction and
it is the identity in the v2 direction.

Observe that v1 and v2 are not orthogonal.

What happened is that we diagonalized the matrix A.

The diagonal entries 2 and 1 are the eigenvalues of A
(and f ) and v1 and v2 are corresponding eigenvectors .

The above example showed that the same linear map can
be represented by di↵erent matrices. This suggests mak-
ing the following definition:

Definition 2.5. Two n ⇥ n matrices A and B are said
to be similar i↵ there is some invertible matrix P such
that

B = P�1AP.

It is easily checked that similarity is an equivalence rela-
tion.
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From our previous considerations, two n ⇥ n matrices A
and B are similar i↵ they represent the same linear map
with respect to two di↵erent bases.

The following surprising fact can be shown: Every square
matrix A is similar to its transpose A>.

The proof requires advanced concepts than we will not
discuss in these notes (the Jordan form, or similarity in-
variants).
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If U = (u1, . . . , un) and V = (v1, . . . , vn) are two bases
of E, the change of basis matrix

P = PV ,U =

0

BB@

a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann

1

CCA

from (u1, . . . , un) to (v1, . . . , vn) is the matrix whose jth
column consists of the coordinates of vj over the basis
(u1, . . . , un), which means that

vj =
nX

i=1

aijui.
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It is natural to extend the matrix notation and to express
the vector (v1, . . . , vn) in En as the product of a matrix
times the vector (u1, . . . , un) in En, namely as

0

BB@

v1

v2
...
vn

1

CCA =

0

BB@

a11 a21 · · · an1

a12 a22 · · · an2
... ... . . . ...

a1n a2n · · · ann

1

CCA

0

BB@

u1

u2
...

un

1

CCA ,

but notice that the matrix involved is not P , but its
transpose P>.

This observation has the following consequence: if
U = (u1, . . . , un) and V = (v1, . . . , vn) are two bases of
E and if

0

@
v1
...
vn

1

A = A

0

@
u1
...

un

1

A ,

that is,

vi =
nX

j=1

aijuj,
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for any vector w 2 E, if

w =
nX

i=1

xiui =
nX

k=1

ykvk,

then
0

@
x1
...

xn

1

A = A>

0

@
y1
...
yn

1

A ,

and so
0

@
y1
...
yn

1

A = (A>)�1

0

@
x1
...

xn

1

A .

It is easy to see that (A>)�1 = (A�1)>.
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Also, if U = (u1, . . . , un), V = (v1, . . . , vn), and
W = (w1, . . . , wn) are three bases of E, and if the change
of basis matrix from U to V is P = PV ,U and the change
of basis matrix from V to W is Q = PW ,V , then

0

@
v1
...
vn

1

A = P>

0

@
u1
...

un

1

A ,

0

@
w1
...

wn

1

A = Q>

0

@
v1
...
vn

1

A ,

so
0

@
w1
...

wn

1

A = Q>P>

0

@
u1
...

un

1

A = (PQ)>

0

@
u1
...

un

1

A ,

which means that the change of basis matrix PW ,U from
U to W is PQ.

This proves that

PW ,U = PV ,UPW ,V .
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Even though matrices are indispensable since they are the
major tool in applications of linear algebra, one should
not lose track of the fact that

linear maps are more fundamental, because they are
intrinsic objects that do not depend on the choice of
bases. Consequently, we advise the reader to try to
think in terms of linear maps rather than reduce

everthing to matrices.

In our experience, this is particularly e↵ective when it
comes to proving results about linear maps and matri-
ces, where proofs involving linear maps are often more
“conceptual.”
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Also, instead of thinking of a matrix decomposition, as a
purely algebraic operation, it is often illuminating to view
it as a geometric decomposition .

After all, a

a matrix is a representation of a linear map

and most decompositions of a matrix reflect the fact that
with a suitable choice of a basis (or bases), the linear
map is a represented by a matrix having a special shape.

The problem is then to find such bases.

Also, always try to keep in mind that

linear maps are geometric in nature; they act on
space.
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