Chapter 9

Eigenvalues and Eigenvectors

9.1 Eigenvectors and Eigenvalues of a Linear Map

Given a finite-dimensional vector space E, let $f : E \to E$ be any linear map. If, by luck, there is a basis (e_1, \ldots, e_n) of E with respect to which f is represented by a diagonal matrix

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix},$$

then the action of f on E is very simple; in every “direction” e_i, we have

$$f(e_i) = \lambda_i e_i.$$
We can think of f as a transformation that *stretches or shrinks* space along the direction e_1, \ldots, e_n (at least if E is a real vector space).

In terms of matrices, the above property translates into the fact that there is an invertible matrix P and a diagonal matrix D such that a matrix A can be factored as

$$A = PDP^{-1}.$$

When this happens, we say that f (or A) is *diagonalizable*, the λ_is are called the *eigenvalues* of f, and the e_is are *eigenvectors* of f.

For example, we will see that *every symmetric matrix can be diagonalized*.
Unfortunately, not every matrix can be diagonalized.

For example, the matrix

\[
A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

can’t be diagonalized.

Sometimes, a matrix fails to be diagonalizable because its eigenvalues do not belong to the field of coefficients, such as

\[
A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},
\]

whose eigenvalues are \(\pm i \).

This is not a serious problem because \(A_2 \) can be diagonalized over the complex numbers.

However, \(A_1 \) is a “fatal” case! Indeed, its eigenvalues are both 1 and the problem is that \(A_1 \) does not have enough eigenvectors to span \(E \).
The next best thing is that there is a basis with respect to which f is represented by an upper triangular matrix.

In this case we say that f can be triangularized.

As we will see in Section 9.2, if all the eigenvalues of f belong to the field of coefficients K, then f can be triangularized. In particular, this is the case if $K = \mathbb{C}$.

Now, an alternative to triangularization is to consider the representation of f with respect to two bases (e_1, \ldots, e_n) and (f_1, \ldots, f_n), rather than a single basis.

In this case, if $K = \mathbb{R}$ or $K = \mathbb{C}$, it turns out that we can even pick these bases to be orthonormal, and we get a diagonal matrix Σ with nonnegative entries, such that

$$f(e_i) = \sigma_i f_i, \quad 1 \leq i \leq n.$$

The nonzero σ_is are the singular values of f, and the corresponding representation is the singular value decomposition, or SVD.
Definition 9.1. Given any vector space E and any linear map $f: E \to E$, a scalar $\lambda \in K$ is called an eigenvalue, or proper value, or characteristic value of f if there is some nonzero vector $u \in E$ such that

$$f(u) = \lambda u.$$

Equivalently, λ is an eigenvalue of f if $\ker(\lambda I - f)$ is nontrivial (i.e., $\ker(\lambda I - f) \neq \{0\}$).

A vector $u \in E$ is called an eigenvector, or proper vector, or characteristic vector of f if $u \neq 0$ and if there is some $\lambda \in K$ such that

$$f(u) = \lambda u;$$

the scalar λ is then an eigenvalue, and we say that u is an eigenvector associated with λ.

Given any eigenvalue $\lambda \in K$, the nontrivial subspace $\ker(\lambda I - f)$ consists of all the eigenvectors associated with λ together with the zero vector; this subspace is denoted by $E_{\lambda}(f)$, or $E(\lambda, f)$, or even by E_{λ}, and is called the eigenspace associated with λ, or proper subspace associated with λ.
Remark: As we emphasized in the remark following Definition 4.4, we require an eigenvector to be nonzero.

This requirement seems to have more benefits than inconveniences, even though it may considered somewhat inelegant because the set of all eigenvectors associated with an eigenvalue is not a subspace since the zero vector is excluded.

Note that distinct eigenvectors may correspond to the same eigenvalue, but distinct eigenvalues correspond to disjoint sets of eigenvectors.

Let us now assume that E is of finite dimension n.

Proposition 9.1. Let E be any vector space of finite dimension n and let f be any linear map $f: E \to E$. The eigenvalues of f are the roots (in K) of the polynomial

$$\det(\lambda I - f).$$
Definition 9.2. Given any vector space E of dimension n, for any linear map $f : E \to E$, the polynomial $P_f(X) = \chi_f(X) = \det(XI - f)$ is called the characteristic polynomial of f. For any square matrix A, the polynomial $P_A(X) = \chi_A(X) = \det(XI - A)$ is called the characteristic polynomial of A.

Note that we already encountered the characteristic polynomial in Section 3.7; see Definition 3.9.

Given any basis (e_1, \ldots, e_n), if $A = M(f)$ is the matrix of f w.r.t. (e_1, \ldots, e_n), we can compute the characteristic polynomial $\chi_f(X) = \det(XI - f)$ of f by expanding the following determinant:

$$\det(XI - A) = \begin{vmatrix} X - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & X - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & X - a_{nn} \end{vmatrix}.$$

If we expand this determinant, we find that

$$\chi_A(X) = \det(XI - A) = X^n - (a_{11} + \cdots + a_{nn})X^{n-1} + \cdots + (-1)^n \det(A).$$
The sum $\text{tr}(A) = a_{11} + \cdots + a_{nn}$ of the diagonal elements of A is called the *trace of A*.

Since the characteristic polynomial depends only on f, $\text{tr}(A)$ has the same value for all matrices A representing f. We let $\text{tr}(f) = \text{tr}(A)$ be the *trace* of f.

Remark: The characteristic polynomial of a linear map is sometimes defined as $\det(f - XI)$. Since

$$\det(f - XI) = (-1)^n \det(XI - f),$$

this makes essentially no difference but the version $\det(XI - f)$ has the small advantage that the coefficient of X^n is $+1$.

If we write

$$\chi_A(X) = \det(XI - A) = X^n - \tau_1(A)X^{n-1} + \cdots + (-1)^k\tau_k(A)X^{n-k} + \cdots + (-1)^n\tau_n(A),$$

then we just proved that

$$\tau_1(A) = \text{tr}(A) \quad \text{and} \quad \tau_n(A) = \det(A).$$
If all the roots, $\lambda_1, \ldots, \lambda_n$, of the polynomial $\det(XI - A)$ belong to the field K, then we can write

$$\det(XI - A) = (X - \lambda_1) \cdots (X - \lambda_n),$$

where some of the λ_is may appear more than once. Consequently,

$$\chi_A(X) = \det(XI - A) = X^n - \sigma_1(\lambda)X^{n-1} + \cdots + (-1)^k\sigma_k(\lambda)X^{n-k} + \cdots + (-1)^n\sigma_n(\lambda),$$

where

$$\sigma_k(\lambda) = \sum_{I \subseteq \{1, \ldots, n\}} \prod_{i \in I} \lambda_i,$$

the kth symmetric function of the λ_i’s.

From this, it clear that

$$\sigma_k(\lambda) = \tau_k(A)$$

and, in particular, the product of the eigenvalues of f is equal to $\det(A) = \det(f)$ and the sum of the eigenvalues of f is equal to the trace, $\text{tr}(A) = \text{tr}(f)$, of f.

For the record,

\[\text{tr}(f) = \lambda_1 + \cdots + \lambda_n \]
\[\det(f) = \lambda_1 \cdots \lambda_n, \]

where \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(f \) (and \(A \)), where some of the \(\lambda_i \)s may appear more than once.

In particular, \(f \) is not invertible iff it admits 0 has an eigenvalue.

Remark: Depending on the field \(K \), the characteristic polynomial \(\chi_A(X) = \det(XI - A) \) may or may not have roots in \(K \).

This motivates considering *algebraically closed fields*. For example, over \(K = \mathbb{R} \), not every polynomial has real roots. For example, for the matrix

\[A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \]

the characteristic polynomial \(\det(XI - A) \) has no real roots unless \(\theta = k\pi \).
However, over the field \mathbb{C} of complex numbers, every polynomial has roots. For example, the matrix above has the roots $\cos \theta \pm i \sin \theta = e^{\pm i\theta}$.

Definition 9.3. Let A be an $n \times n$ matrix over a field, K. Assume that all the roots of the characteristic polynomial $\chi_A(X) = \det(X I - A)$ of A belong to K, which means that we can write

$$\det(X I - A) = (X - \lambda_1)^{k_1} \cdots (X - \lambda_m)^{k_m},$$

where $\lambda_1, \ldots, \lambda_m \in K$ are the distinct roots of $\det(X I - A)$ and $k_1 + \cdots + k_m = n$.

The integer, k_i, is called the *algebraic multiplicity* of the eigenvalue λ_i and the dimension of the eigenspace, $E_{\lambda_i} = \text{Ker}(\lambda_i I - A)$, is called the *geometric multiplicity* of λ_i. We denote the algebraic multiplicity of λ_i by $\text{alg}(\lambda_i)$ and its geometric multiplicity by $\text{geo}(\lambda_i)$.

By definition, the sum of the algebraic multiplicities is equal to n but the sum of the geometric multiplicities can be strictly smaller.
Proposition 9.2. Let A be an $n \times n$ matrix over a field K and assume that all the roots of the characteristic polynomial $\chi_A(X) = \det(XI - A)$ of A belong to K. For every eigenvalue λ_i of A, the geometric multiplicity of λ_i is always less than or equal to its algebraic multiplicity, that is,

$$\text{geo}(\lambda_i) \leq \text{alg}(\lambda_i).$$

Proposition 9.3. Let E be any vector space of finite dimension n and let f be any linear map. If u_1, \ldots, u_m are eigenvectors associated with pairwise distinct eigenvalues $\lambda_1, \ldots, \lambda_m$, then the family (u_1, \ldots, u_m) is linearly independent.

Thus, from Proposition 9.3, if $\lambda_1, \ldots, \lambda_m$ are all the pairwise distinct eigenvalues of f (where $m \leq n$), we have a direct sum

$$E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m}$$

of the eigenspaces E_{λ_i}.

Unfortunately, it is not always the case that

$$E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m}.$$
When

\[E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m}, \]

we say that \(f \) is \textit{diagonalizable} (and similarly for any matrix associated with \(f \)).

Indeed, picking a basis in each \(E_{\lambda_i} \), we obtain a matrix which is a diagonal matrix consisting of the eigenvalues, each \(\lambda_i \) occurring a number of times equal to the dimension of \(E_{\lambda_i} \).

This happens if the algebraic multiplicity and the geometric multiplicity of every eigenvalue are equal.

In particular, when the characteristic polynomial has \(n \) \textit{distinct roots, then} \(f \) \textit{is diagonalizable}.

It can also be shown that symmetric matrices have real eigenvalues and can be diagonalized.
For a negative example, we leave as exercise to show that the matrix

\[M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \]

cannot be diagonalized, even though 1 is an eigenvalue.

The problem is that the eigenspace of 1 only has dimension 1.

The matrix

\[A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \]

cannot be diagonalized either, because it has no real eigenvalues, unless \(\theta = k\pi \).

However, over the field of complex numbers, it can be diagonalized.
9.2 Reduction to Upper Triangular Form

Unfortunately, not every linear map on a complex vector space can be diagonalized.

The next best thing is to “triangularize,” which means to find a basis over which the matrix has zero entries below the main diagonal.

Fortunately, such a basis always exist.

We say that a square matrix A is an upper triangular matrix if it has the following shape,

$$
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n-1} & a_{1n} \\
 0 & a_{22} & a_{23} & \cdots & a_{2n-1} & a_{2n} \\
 0 & 0 & a_{33} & \cdots & a_{3n-1} & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & a_{n-1n-1} & a_{n-1n} \\
 0 & 0 & 0 & \cdots & 0 & a_{nn}
\end{pmatrix},
$$

i.e., $a_{ij} = 0$ whenever $j < i$, $1 \leq i, j \leq n$.
Theorem 9.4. Given any finite dimensional vector space over a field K, for any linear map $f : E \to E$, there is a basis (u_1, \ldots, u_n) with respect to which f is represented by an upper triangular matrix (in $M_n(K)$) iff all the eigenvalues of f belong to K. Equivalently, for every $n \times n$ matrix $A \in M_n(K)$, there is an invertible matrix P and an upper triangular matrix T (both in $M_n(K)$) such that

$$A = PTP^{-1}$$

iff all the eigenvalues of A belong to K.

If $A = PTP^{-1}$ where T is upper triangular, note that the diagonal entries of T are the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A.

Also, if A is a real matrix whose eigenvalues are all real, then P can be chosen to real, and if A is a rational matrix whose eigenvalues are all rational, then P can be chosen rational.
Since any polynomial over \(\mathbb{C} \) has all its roots in \(\mathbb{C} \), Theorem 9.4 implies that \textit{every complex \(n \times n \) matrix can be triangularized.}

If \(E \) is a Hermitian space, the proof of Theorem 9.4 can be easily adapted to prove that there is an \textit{orthonormal} basis \((u_1, \ldots, u_n)\) with respect to which the matrix of \(f \) is upper triangular. This is usually known as \textit{Schur’s lemma.}

\textbf{Theorem 9.5. (Schur decomposition)} Given any linear map \(f: E \to E \) over a complex Hermitian space \(E \), there is an orthonormal basis \((u_1, \ldots, u_n)\) with respect to which \(f \) is represented by an upper triangular matrix. Equivalently, for every \(n \times n \) matrix \(A \in M_n(\mathbb{C}) \), there is a unitary matrix \(U \) and an upper triangular matrix \(T \) such that

\[A = UTU^*. \]

If \(A \) is real and if all its eigenvalues are real, then there is an orthogonal matrix \(Q \) and a real upper triangular matrix \(T \) such that

\[A = QTQ^T. \]
Using the above result, we can derive the fact that if A is a Hermitian matrix, then there is a unitary matrix U and a real diagonal matrix D such that $A = UDU^*$.

In fact, applying this result to a (real) symmetric matrix A, we obtain the fact that all the eigenvalues of a symmetric matrix are real, and by applying Theorem 9.5 again, we conclude that $A = QDQ^T$, where Q is orthogonal and D is a real diagonal matrix.

We will also prove this in Chapter 10.

When A has complex eigenvalues, there is a version of Theorem 9.5 involving only real matrices provided that we allow T to be block upper-triangular (the diagonal entries may be 2×2 matrices or real entries).

Theorem 9.5 is not a very practical result but it is a useful theoretical result to cope with matrices that cannot be diagonalized.

For example, it can be used to prove that every complex matrix is the limit of a sequence of diagonalizable matrices that have distinct eigenvalues!
9.3 Location of Eigenvalues

If A is an $n \times n$ complex (or real) matrix A, it would be useful to know, even roughly, where the eigenvalues of A are located in the complex plane \mathbb{C}.

The Gershgorin discs provide some precise information about this.

Definition 9.4. For any complex $n \times n$ matrix A, for $i = 1, \ldots, n$, let

$$R'_i(A) = \sum_{\substack{j=1 \atop j \neq i}}^{n} |a_{i,j}|$$

and let

$$G(A) = \bigcup_{i=1}^{n} \{ z \in \mathbb{C} \mid |z - a_{i,i}| \leq R'_i(A) \}.$$

Each disc $\{ z \in \mathbb{C} \mid |z - a_{i,i}| \leq R'_i(A) \}$ is called a *Gershgorin disc* and their union $G(A)$ is called the *Gershgorin domain*.
Theorem 9.6. (Gershgorin’s disc theorem) For any complex $n \times n$ matrix A, all the eigenvalues of A belong to the Gershgorin domain $G(A)$. Furthermore the following properties hold:

(1) If A is strictly row diagonally dominant, that is

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad \text{for } i = 1, \ldots, n,$$

then A is invertible.

(2) If A is strictly row diagonally dominant, and if $a_{ii} > 0$ for $i = 1, \ldots, n$, then every eigenvalue of A has a strictly positive real part.

In particular, Theorem 9.6 implies that if a symmetric matrix is strictly row diagonally dominant and has strictly positive diagonal entries, then it is positive definite.

Theorem 9.6 is sometimes called the Gershgorin–Hadamard theorem.
Since A and A^\top have the same eigenvalues (even for complex matrices) we also have a version of Theorem 9.6 for the discs of radius

$$C_j'(A) = \sum_{\substack{i=1\atop i \neq j}}^n |a_{i,j}|,$$

whose domain is denoted by $G(A^\top)$.

Theorem 9.7. For any complex $n \times n$ matrix A, all the eigenvalues of A belong to the intersection of the Gershgorin discs, $G(A) \cap G(A^\top)$. Furthermore the following properties hold:

1. If A is strictly column diagonally dominant, that is
 $$|a_{ii}| > \sum_{i=1, i \neq j}^n |a_{i,j}|, \quad \text{for } j = 1, \ldots, n,$$
 then A is invertible.

2. If A is strictly column diagonally dominant, and if $a_{ii} > 0$ for $i = 1, \ldots, n$, then every eigenvalue of A has a strictly positive real part.
There are refinements of Gershgorin’s theorem and eigenvalue location results involving other domains besides discs; for more on this subject, see Horn and Johnson [18], Sections 6.1 and 6.2.

Remark: Neither strict row diagonal dominance nor strict column diagonal dominance are necessary for invertibility. Also, if we relax all strict inequalities to inequalities, then row diagonal dominance (or column diagonal dominance) is not a sufficient condition for invertibility.