
Chapter 7

QR-Decomposition for Arbitrary
Matrices

7.1 Orthogonal Reflections

Orthogonal symmetries are a very important example of
isometries. First let us review the definition of a (linear)
projection .

Given a vector space E, let F and G be subspaces of E
that form a direct sum E = F � G.

Since every u 2 E can be written uniquely as
u = v + w, where v 2 F and w 2 G, we can define the
two projections pF : E ! F and pG : E ! G, such that

pF (u) = v and pG(u) = w.
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It is immediately verified that pG and pF are linear maps,
and that p2

F = pF , p2
G = pG, pF � pG = pG � pF = 0, and

pF + pG = id.

Definition 7.1. Given a vector space E, for any two
subspaces F and G that form a direct sum E = F � G,
the symmetry with respect to F and parallel to G, or
reflection about F is the linear map s : E ! E, defined
such that

s(u) = 2pF (u) � u,

for every u 2 E.

Because pF + pG = id, note that we also have

s(u) = pF (u) � pG(u)

and
s(u) = u � 2pG(u),

s2 = id, s is the identity on F , and s = �id on G.
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We now assume that E is a Euclidean space of finite
dimension.

Definition 7.2. Let E be a Euclidean space of finite
dimension n. For any two subspaces F and G, if F and
G form a direct sum E = F � G and F and G are
orthogonal, i.e. F = G?, the orthogonal symmetry with
respect to F and parallel to G, or orthogonal reflection
about F is the linear map s : E ! E, defined such that

s(u) = 2pF (u) � u,

for every u 2 E.

When F is a hyperplane, we call s an hyperplane symme-
try with respect to F or reflection about F , and when
G is a plane, we call s a flip about F .

It is easy to show that s is an isometry.
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Using Proposition 6.7, it is possible to find an orthonor-
mal basis (e1, . . . , en) of E consisting of an orthonormal
basis of F and an orthonormal basis of G.

Assume that F has dimension p, so that G has dimension
n � p.

With respect to the orthonormal basis (e1, . . . , en), the
symmetry s has a matrix of the form

✓
Ip 0
0 �In�p

◆
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Thus, det(s) = (�1)n�p, and s is a rotation i↵ n � p is
even.

In particular, when F is a hyperplane H , we have
p = n � 1, and n � p = 1, so that s is an improper
orthogonal transformation.

When F = {0}, we have s = �id, which is called the
symmetry with respect to the origin. The symmetry
with respect to the origin is a rotation i↵ n is even, and
an improper orthogonal transformation i↵ n is odd.

When n is odd, we observe that every improper orthogo-
nal transformation is the composition of a rotation with
the symmetry with respect to the origin.
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When G is a plane, p = n � 2, and det(s) = (�1)2 = 1,
so that a flip about F is a rotation.

In particular, when n = 3, F is a line, and a flip about
the line F is indeed a rotation of measure ⇡.

When F = H is a hyperplane, we can give an explicit for-
mula for s(u) in terms of any nonnull vector w orthogonal
to H .

We get

s(u) = u � 2
(u · w)

kwk2 w.

Such reflections are represented by matrices calledHouse-
holder matrices , and they play an important role in nu-
merical matrix analysis. Householder matrices are sym-
metric and orthogonal.
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Over an orthonormal basis (e1, . . . , en), a hyperplane re-
flection about a hyperplane H orthogonal to a nonnull
vector w is represented by the matrix

H = In � 2
WW>

kWk2 = In � 2
WW>

W>W
,

where W is the column vector of the coordinates of w.

Since

pG(u) =
(u · w)

kwk2 w,

the matrix representing pG is

WW>

W>W
,

and since pH + pG = id, the matrix representing pH is

In � WW>

W>W
.
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The following fact is the key to the proof that every isom-
etry can be decomposed as a product of reflections.

Proposition 7.1. Let E be any nontrivial Euclidean
space. For any two vectors u, v 2 E, if kuk = kvk,
then there is an hyperplane H such that the reflec-
tion s about H maps u to v, and if u 6= v, then this
reflection is unique.

We now show that Hyperplane reflections can be used to
obtain another proof of the QR-decomposition.
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7.2 QR-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated
in terms of Householder matrices, we obtain the fact ad-
vertised earlier that every matrix (not necessarily invert-
ible) has a QR-decomposition.

Proposition 7.2. Let E be a nontrivial Euclidean
space of dimension n. Given any orthonormal basis
(e1, . . . , en), for any n-tuple of vectors (v1, . . . , vn), there
is a sequence of n isometries h1, . . . , hn, such that
hi is a hyperplane reflection or the identity, and if
(r1, . . . , rn) are the vectors given by

rj = hn � · · · � h2 � h1(vj),

then every rj is a linear combination of the vectors
(e1, . . . , ej), (1  j  n). Equivalently, the matrix
R whose columns are the components of the rj over
the basis (e1, . . . , en) is an upper triangular matrix.
Furthermore, the hi can be chosen so that the diagonal
entries of R are nonnegative.
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Remarks . (1) Since every hi is a hyperplane reflection or
the identity,

⇢ = hn � · · · � h2 � h1

is an isometry.

(2) If we allow negative diagonal entries in R, the last
isometry hn may be omitted.

(3) Instead of picking rk,k = ku00
kk, which means that

wk = rk,k ek � u00
k,

where 1  k  n, it might be preferable to pick
rk,k = � ku00

kk if this makes kwkk2 larger, in which case

wk = rk,k ek + u00
k.

Indeed, since the definition of hk involves division by
kwkk2, it is desirable to avoid division by very small num-
bers.

Proposition 7.2 immediately yields theQR-decomposition
in terms of Householder transformations.
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Theorem 7.3. For every real n ⇥ n-matrix A, there
is a sequence H1, . . . , Hn of matrices, where each Hi

is either a Householder matrix or the identity, and an
upper triangular matrix R, such that

R = Hn · · · H2H1A.

As a corollary, there is a pair of matrices Q, R, where
Q is orthogonal and R is upper triangular, such that
A = QR (a QR-decomposition of A). Furthermore,
R can be chosen so that its diagonal entries are non-
negative.

Remarks . (1) Letting

Ak+1 = Hk · · · H2H1A,

with A1 = A, 1  k  n, the proof of Proposition 7.2
can be interpreted in terms of the computation of the
sequence of matrices A1, . . . , An+1 = R.
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The matrix Ak+1 has the shape

Ak+1 =

0

BBBBBBBBBB@

⇥ ⇥ ⇥ uk+1
1 ⇥ ⇥ ⇥ ⇥

0 ⇥ ... ... ... ... ... ...
0 0 ⇥ uk+1

k ⇥ ⇥ ⇥ ⇥
0 0 0 uk+1

k+1 ⇥ ⇥ ⇥ ⇥
0 0 0 uk+1

k+2 ⇥ ⇥ ⇥ ⇥
... ... ... ... ... ... ... ...
0 0 0 uk+1

n�1 ⇥ ⇥ ⇥ ⇥
0 0 0 uk+1

n ⇥ ⇥ ⇥ ⇥

1

CCCCCCCCCCA

where the (k + 1)th column of the matrix is the vector

uk+1 = hk � · · · � h2 � h1(vk+1),

and thus
u0

k+1 = (uk+1
1 , . . . , uk+1

k ),

and
u00

k+1 = (uk+1
k+1, u

k+1
k+2, . . . , u

k+1
n ).

If the last n � k � 1 entries in column k + 1 are all zero,
there is nothing to do and we let Hk+1 = I .
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Otherwise, we kill these n � k � 1 entries by multiplying
Ak+1 on the left by the Householder matrix Hk+1 sending

(0, . . . , 0, uk+1
k+1, . . . , u

k+1
n ) to (0, . . . , 0, rk+1,k+1, 0, . . . , 0),

where
rk+1,k+1 =

��(uk+1
k+1, . . . , u

k+1
n )

�� .

(2) If we allow negative diagonal entries in R, the matrix
Hn may be omitted (Hn = I).

(3) If A is invertible and the diagonal entries of R are
positive, it can be shown that Q and R are unique.
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(4) The method allows the computation of the determi-
nant of A. We have

det(A) = (�1)mr1,1 · · · rn,n,

where m is the number of Householder matrices (not the
identity) among the Hi.

(5) The condition number of the matrix A is preserved.
This is very good for numerical stability.


