Chapter 10

Spectral Theorems in Euclidean and Hermitian Spaces

10.1 Normal Linear Maps

Let E be a real Euclidean space (or a complex Hermitian space) with inner product $u, v \mapsto \langle u, v \rangle$.

In the real Euclidean case, recall that $\langle - , - \rangle$ is bilinear, symmetric and positive definite (i.e., $\langle u, u \rangle > 0$ for all $u \neq 0$).

In the complex Hermitian case, recall that $\langle - , - \rangle$ is sesquilinear, which means that it linear in the first argument, semilinear in the second argument (i.e., $\langle u, \mu v \rangle = \overline{\mu} \langle u, v \rangle$, $\langle v, u \rangle = \overline{\langle u, v \rangle}$, and positive definite (as above).
In both cases we let \(\|u\| = \sqrt{\langle u, u \rangle} \) and the map \(u \mapsto \|u\| \) is a *norm*.

Recall that every linear map, \(f : E \to E \), has an *adjoint* \(f^* \) which is a linear map, \(f^* : E \to E \), such that
\[
\langle f(u), v \rangle = \langle u, f^*(v) \rangle,
\]
for all \(u, v \in E \).

Since \(\langle -, - \rangle \) is symmetric, it is obvious that \(f^{**} = f \).

Definition 10.1. Given a Euclidean (or Hermitian) space, \(E \), a linear map \(f : E \to E \) is *normal* iff
\[
f \circ f^* = f^* \circ f.
\]

A linear map \(f : E \to E \) is *self-adjoint* if \(f = f^* \), *skew-self-adjoint* if \(f = -f^* \), and *orthogonal* if \(f \circ f^* = f^* \circ f = \text{id.} \)
Our first goal is to show that for every normal linear map $f : E \rightarrow E$ (where E is a Euclidean space), there is an orthonormal basis (w.r.t. $\langle -, - \rangle$) such that the matrix of f over this basis has an especially nice form:

It is a block diagonal matrix in which the blocks are either one-dimensional matrices (i.e., single entries) or two-dimensional matrices of the form

$$
\begin{pmatrix}
\lambda & \mu \\
-\mu & \lambda
\end{pmatrix}
$$

This normal form can be further refined if f is self-adjoint, skew-self-adjoint, or orthogonal.

As a first step, we show that f and f^* have the same kernel when f is normal.

Proposition 10.1. Given a Euclidean space E, if $f : E \rightarrow E$ is a normal linear map, then $\text{Ker } f = \text{Ker } f^*$.
The next step is to show that for every linear map \(f : E \to E \), there is some subspace \(W \) of dimension 1 or 2 such that \(f(W) \subseteq W \).

When \(\dim(W) = 1 \), \(W \) is actually an eigenspace for some real eigenvalue of \(f \).

Furthermore, when \(f \) is normal, there is a subspace \(W \) of dimension 1 or 2 such that \(f(W) \subseteq W \) and \(f^*(W) \subseteq W \).

The difficulty is that the eigenvalues of \(f \) are not necessarily real. One way to get around this problem is to complexify both the vector space \(E \) and the inner product \(\langle -, - \rangle \).

First, we need to embed a real vector space \(E \) into a complex vector space \(E_\mathbb{C} \).
10.1. NORMAL LINEAR MAPS

Definition 10.2. Given a real vector space \(E \), let \(E_\mathbb{C} \) be the structure \(E \times E \) under the addition operation

\[
(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2),
\]

and multiplication by a complex scalar \(z = x + iy \) defined such that

\[
(x + iy) \cdot (u, v) = (xu - yv, yu + xv).
\]

The space \(E_\mathbb{C} \) is called the *complexification* of \(E \).

It is easily shown that the structure \(E_\mathbb{C} \) is a complex vector space.

It is also immediate that

\[
(0, v) = i(v, 0),
\]

and thus, identifying \(E \) with the subspace of \(E_\mathbb{C} \) consisting of all vectors of the form \((u, 0)\), we can write

\[
(u, v) = u + iv.
\]

Given a vector \(w = u + iv \), its *conjugate* \(\overline{w} \) is the vector \(\overline{w} = u - iv \).
Observe that if \((e_1, \ldots, e_n)\) is a basis of \(E\) (a real vector space), then \((e_1, \ldots, e_n)\) is also a basis of \(E_{\mathbb{C}}\) (recall that \(e_i\) is an abbreviation for \((e_i, 0)\)).

Given a linear map \(f : E \to E\), the map \(f\) can be extended to a linear map \(f_{\mathbb{C}} : E_{\mathbb{C}} \to E_{\mathbb{C}}\) defined such that

\[
 f_{\mathbb{C}}(u + iv) = f(u) + if(v).
\]

For any basis \((e_1, \ldots, e_n)\) of \(E\), the matrix \(M(f)\) representing \(f\) over \((e_1, \ldots, e_n)\) is identical to the matrix \(M(f_{\mathbb{C}})\) representing \(f_{\mathbb{C}}\) over \((e_1, \ldots, e_n)\), where we view \((e_1, \ldots, e_n)\) as a basis of \(E_{\mathbb{C}}\).

As a consequence, \(\det(zI - M(f)) = \det(zI - M(f_{\mathbb{C}}))\), which means that \(f\) and \(f_{\mathbb{C}}\) have the same characteristic polynomial (which has real coefficients).

We know that every polynomial of degree \(n\) with real (or complex) coefficients always has \(n\) complex roots (counted with their multiplicity), and the roots of \(\det(zI - M(f_{\mathbb{C}}))\) that are real (if any) are the eigenvalues of \(f\).
Next, we need to extend the inner product on E to an inner product on $E_\mathbb{C}$.

The inner product $\langle -, - \rangle$ on a Euclidean space E is extended to the Hermitian positive definite form $\langle -, - \rangle_\mathbb{C}$ on $E_\mathbb{C}$ as follows:

$$\langle u_1 + iv_1, u_2 + iv_2 \rangle_\mathbb{C} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle + i(\langle u_2, v_1 \rangle - \langle u_1, v_2 \rangle).$$

Then, given any linear map $f : E \to E$, it is easily verified that the map $f^*_\mathbb{C}$ defined such that

$$f^*_\mathbb{C}(u + iv) = f^*(u) + if^*(v)$$

for all $u, v \in E$, is the adjoint of $f_\mathbb{C}$ w.r.t. $\langle -, - \rangle_\mathbb{C}$.
Assuming again that E is a Hermitian space, observe that Proposition 10.1 also holds.

Proposition 10.2. Given a Hermitian space E, for any normal linear map $f : E \to E$, a vector u is an eigenvector of f for the eigenvalue λ (in \mathbb{C}) iff u is an eigenvector of f^* for the eigenvalue $\overline{\lambda}$.

The next proposition shows a very important property of normal linear maps: eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proposition 10.3. Given a Hermitian space E, for any normal linear map $f : E \to E$, if u and v are eigenvectors of f associated with the eigenvalues λ and μ (in \mathbb{C}) where $\lambda \neq \mu$, then $\langle u, v \rangle = 0$.
We can also show easily that the eigenvalues of a self-adjoint linear map are real.

Proposition 10.4. Given a Hermitian space E, the eigenvalues of any self-adjoint linear map $f : E \to E$ are real.

There is also a version of Proposition 10.4 for a (real) Euclidean space E and a self-adjoint map $f : E \to E$.

Proposition 10.5. Given a Euclidean space E, if $f : E \to E$ is any self-adjoint linear map, then every eigenvalue λ of $f_\mathbb{C}$ is real and is actually an eigenvalue of f (which means that there is some real eigenvector $u \in E$ such that $f(u) = \lambda u$). Therefore, all the eigenvalues of f are real.

Given any subspace W of a Hermitian space E, recall that the *orthogonal* W^\perp of W is the subspace defined such that

$$W^\perp = \{ u \in E \mid \langle u, w \rangle = 0, \text{ for all } w \in W \}. $$
Recall that $E = W \oplus W^\perp$ (construct an orthonormal basis of E using the Gram–Schmidt orthonormalization procedure). The same result also holds for Euclidean spaces.

As a warm up for the proof of Theorem 10.9, let us prove that every self-adjoint map on a Euclidean space can be diagonalized with respect to an orthonormal basis of eigenvectors.

Theorem 10.6. Given a Euclidean space E of dimension n, for every self-adjoint linear map $f : E \to E$, there is an orthonormal basis (e_1, \ldots, e_n) of eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal matrix

$$
\begin{pmatrix}
\lambda_1 & \cdots \\
& \ddots & \ddots \\
& \ddots & \ddots & \ddots \\
& & & \ddots & \ddots \\
& & & & \lambda_n
\end{pmatrix},
$$

with $\lambda_i \in \mathbb{R}$.
One of the key points in the proof of Theorem 10.6 is that we found a subspace W with the property that $f(W) \subseteq W$ implies that $f(W^\perp) \subseteq W^\perp$.

In general, this does not happen, but normal maps satisfy a stronger property which ensures that such a subspace exists.

The following proposition provides a condition that will allow us to show that a normal linear map can be diagonalized. It actually holds for any linear map.

Proposition 10.7. Given a Hermitian space E, for any linear map $f: E \to E$ and any subspace W of E, if $f(W) \subseteq W$, then $f^*(W^\perp) \subseteq W^\perp$.

Consequently, if $f(W) \subseteq W$ and $f^*(W) \subseteq W$, then $f(W^\perp) \subseteq W^\perp$ and $f^*(W^\perp) \subseteq W^\perp$.

The above Proposition *also holds for Euclidean spaces*. Although we are ready to prove that for every normal linear map f (over a Hermitian space) there is an orthonormal basis of eigenvectors, we now return to real Euclidean spaces.
If $f: E \to E$ is a linear map and $w = u + iv$ is an eigenvector of $f_C: E_C \to E_C$ for the eigenvalue $z = \lambda + i\mu$, where $u, v \in E$ and $\lambda, \mu \in \mathbb{R}$, since
\[f_C(u + iv) = f(u) + if(v) \]
and
\[f_C(u + iv) = (\lambda + i\mu)(u + iv) = \lambda u - \mu v + i(\mu u + \lambda v), \]
we have
\[f(u) = \lambda u - \mu v \quad \text{and} \quad f(v) = \mu u + \lambda v, \]
from which we immediately obtain
\[f_C(u - iv) = (\lambda - i\mu)(u - iv), \]
which shows that $\overline{w} = u - iv$ is an eigenvector of f_C for $\overline{z} = \lambda - i\mu$. Using this fact, we can prove the following proposition:
Proposition 10.8. Given a Euclidean space E, for any normal linear map $f : E \to E$, if $w = u + iv$ is an eigenvector of $f_{\mathbb{C}}$ associated with the eigenvalue $z = \lambda + i\mu$ (where $u, v \in E$ and $\lambda, \mu \in \mathbb{R}$), if $\mu \neq 0$ (i.e., z is not real) then $\langle u, v \rangle = 0$ and $\langle u, u \rangle = \langle v, v \rangle$, which implies that u and v are linearly independent, and if W is the subspace spanned by u and v, then $f(W) = W$ and $f^*(W) = W$. Furthermore, with respect to the (orthogonal) basis (u, v), the restriction of f to W has the matrix

$$
\begin{pmatrix}
\lambda & \mu \\
-\mu & \lambda
\end{pmatrix}.
$$

If $\mu = 0$, then λ is a real eigenvalue of f and either u or v is an eigenvector of f for λ. If W is the subspace spanned by u if $u \neq 0$, or spanned by $v \neq 0$ if $u = 0$, then $f(W) \subseteq W$ and $f^*(W) \subseteq W$.
Theorem 10.9. (Main Spectral Theorem) Given a Euclidean space E of dimension n, for every normal linear map $f : E \rightarrow E$, there is an orthonormal basis (e_1, \ldots, e_n) such that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\begin{pmatrix}
A_1 & \cdots \\
& A_2 & \cdots \\
& & \ddots & \ddots \\
& & & \ddots & A_p
\end{pmatrix}
$$

such that each block A_j is either a one-dimensional matrix (i.e., a real scalar) or a two-dimensional matrix of the form

$$
A_j = \begin{pmatrix}
\lambda_j & -\mu_j \\
\mu_j & \lambda_j
\end{pmatrix}
$$

where $\lambda_j, \mu_j \in \mathbb{R}$, with $\mu_j > 0$.
After this relatively hard work, we can easily obtain some nice normal forms for the matrices of self-adjoint, skew-self-adjoint, and orthogonal, linear maps.

However, for the sake of completeness, we state the following theorem.

Theorem 10.10. Given a Hermitian space E of dimension n, for every normal linear map $f: E \to E$, there is an orthonormal basis (e_1, \ldots, e_n) of eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal matrix

$$
\begin{pmatrix}
\lambda_1 & \cdots \\
& \lambda_2 & \cdots \\
& & \ddots & \cdots \\
& & & \ddots & \cdots \\
& & & & \lambda_n
\end{pmatrix}
$$

where $\lambda_j \in \mathbb{C}$.

Remark: There is a *converse* to Theorem 10.10, namely, if there is an orthonormal basis (e_1, \ldots, e_n) of eigenvectors of f, then f is normal.
10.2 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal Linear Maps

Theorem 10.11. Given a Euclidean space E of dimension n, for every self-adjoint linear map $f : E \to E$, there is an orthonormal basis (e_1, \ldots, e_n) of eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal matrix

$$
\begin{pmatrix}
\lambda_1 & \cdots \\
& \lambda_2 & \cdots \\
& & \ddots & \ddots \\
& & & \lambda_n
\end{pmatrix}
$$

where $\lambda_i \in \mathbb{R}$.

Theorem 10.11 implies that if $\lambda_1, \ldots, \lambda_p$ are the distinct real eigenvalues of f and E_i is the eigenspace associated with λ_i, then

$$E = E_1 \oplus \cdots \oplus E_p,$$

where E_i and E_j are orthogonal for all $i \neq j$.
Theorem 10.12. Given a Euclidean space E of dimension n, for every skew-self-adjoint linear map $f : E \to E$, there is an orthonormal basis (e_1, \ldots, e_n) such that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\begin{pmatrix}
A_1 & \cdots \\
& A_2 & \cdots \\
& & \ddots & \cdots \\
& & & \cdots & A_p
\end{pmatrix}
$$

such that each block A_j is either 0 or a two-dimensional matrix of the form

$$
A_j = \begin{pmatrix}
0 & -\mu_j \\
\mu_j & 0
\end{pmatrix}
$$

where $\mu_j \in \mathbb{R}$, with $\mu_j > 0$. In particular, the eigenvalues of $f_{\mathbb{C}}$ are pure imaginary of the form $\pm i\mu_j$, or 0.
Theorem 10.13. Given a Euclidean space E of dimension n, for every orthogonal linear map $f : E \to E$, there is an orthonormal basis (e_1, \ldots, e_n) such that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\begin{pmatrix}
A_1 & \cdots \\
& A_2 \\
& & \ddots \\
& & & \ddots \\
& & & & \cdots \\
& & & & & \cdots A_p
\end{pmatrix}
$$

such that each block A_j is either 1, -1, or a two-dimensional matrix of the form

$$A_j = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}$$

where $0 < \theta_j < \pi$.

In particular, the eigenvalues of $f_{\mathbb{C}}$ are of the form $\cos \theta_j \pm i \sin \theta_j$, or 1, or -1.
It is obvious that we can reorder the orthonormal basis of eigenvectors given by Theorem 10.13, so that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\begin{pmatrix}
A_1 & \cdots & \\
\vdots & \ddots & \vdots \\
& \cdots & A_r \\
& & -I_q \\
& \cdots & I_p \\
\end{pmatrix}
$$

where each block A_j is a two-dimensional rotation matrix $A_j \neq \pm I_2$ of the form

$$
A_j = \begin{pmatrix}
\cos \theta_j & -\sin \theta_j \\
\sin \theta_j & \cos \theta_j \\
\end{pmatrix}
$$

with $0 < \theta_j < \pi$.

The linear map f has an eigenspace $E(1, f) = \text{Ker} (f - \text{id})$ of dimension p for the eigenvalue 1, and an eigenspace $E(-1, f) = \text{Ker} (f + \text{id})$ of dimension q for the eigenvalue -1.
If \(\det(f) = +1 \) (\(f \) is a rotation), the dimension \(q \) of \(E(-1, f) \) must be even, and the entries in \(-I_q\) can be paired to form two-dimensional blocks, if we wish.

Remark: Theorem 10.13 can be used to prove a sharper version of the Cartan-Dieudonné Theorem.

Theorem 10.14. Let \(E \) be a Euclidean space of dimension \(n \geq 2 \). For every isometry \(f \in O(E) \), if \(p = \dim(E(1, f)) = \dim(\text{Ker}(f - \text{id})) \), then \(f \) is the composition of \(n - p \) reflections and \(n - p \) is minimal.

The theorems of this section and of the previous section can be immediately applied to matrices.
10.3 Normal, Symmetric, Skew-Symmetric, Orthogonal, Hermitian, Skew-Hermitian, and Unitary Matrices

First, we consider real matrices.

Definition 10.3. Given a real \(m \times n \) matrix \(A \), the transpose \(A^\top \) of \(A \) is the \(n \times m \) matrix \(A^\top = (a_{ij}^\top) \) defined such that

\[
a_{ij}^\top = a_{ji}
\]

for all \(i, j, 1 \leq i \leq m, 1 \leq j \leq n \). A real \(n \times n \) matrix \(A \) is

1. **normal** iff
 \[
 AA^\top = A^\top A,
 \]
2. **symmetric** iff
 \[
 A^\top = A,
 \]
3. **skew-symmetric** iff
 \[
 A^\top = -A,
 \]
4. **orthogonal** iff
 \[
 AA^\top = A^\top A = I_n.
 \]
Theorem 10.15. For every normal matrix A, there is an orthogonal matrix P and a block diagonal matrix D such that $A = PDP^T$, where D is of the form

$$D = \begin{pmatrix} D_1 & & \\ & \ddots & \\ & & D_n \end{pmatrix}$$

such that each block D_j is either a one-dimensional matrix (i.e., a real scalar) or a two-dimensional matrix of the form

$$D_j = \begin{pmatrix} \lambda_j & -\mu_j \\ \mu_j & \lambda_j \end{pmatrix}$$

where $\lambda_j, \mu_j \in \mathbb{R}$, with $\mu_j > 0$.
Theorem 10.16. For every symmetric matrix A, there is an orthogonal matrix P and a diagonal matrix D such that $A = PD P^T$, where D is of the form

$$D = \begin{pmatrix}
\lambda_1 & \cdots \\
\lambda_2 & \cdots \\
\vdots & \ddots & \ddots \\
\cdots & \cdots & \lambda_n
\end{pmatrix}$$

where $\lambda_i \in \mathbb{R}$.
Theorem 10.17. For every skew-symmetric matrix A, there is an orthogonal matrix P and a block diagonal matrix D such that $A = PD P^T$, where D is of the form

$$D = \begin{pmatrix} D_1 & \cdots & & \\ & D_2 & \cdots & \\ & & \ddots & \vdots \\ & & & D_p \end{pmatrix}$$

such that each block D_j is either 0 or a two-dimensional matrix of the form

$$D_j = \begin{pmatrix} 0 & -\mu_j \\ \mu_j & 0 \end{pmatrix}$$

where $\mu_j \in \mathbb{R}$, with $\mu_j > 0$. In particular, the eigenvalues of A are pure imaginary of the form $\pm i\mu_j$, or 0.
Theorem 10.18. For every orthogonal matrix A, there is an orthogonal matrix P and a block diagonal matrix D such that $A = PD P^T$, where D is of the form

$$D = \begin{pmatrix}
D_1 & & \\
& D_2 & \\
& & \ddots \\
& & & \ddots \\
& & & & D_p
\end{pmatrix}$$

such that each block D_j is either 1, -1, or a two-dimensional matrix of the form

$$D_j = \begin{pmatrix}
\cos \theta_j & -\sin \theta_j \\
\sin \theta_j & \cos \theta_j
\end{pmatrix}$$

where $0 < \theta_j < \pi$.

In particular, the eigenvalues of A are of the form $\cos \theta_j \pm i \sin \theta_j$, or 1, or -1.

We now consider complex matrices.
Definition 10.4. Given a complex $m \times n$ matrix A, the transpose A^\top of A is the $n \times m$ matrix $A^\top = (a_{ij}^\top)$ defined such that
\[a_{ij}^\top = a_{ji} \]
for all $i, j, 1 \leq i \leq m, 1 \leq j \leq n$. The conjugate \bar{A} of A is the $m \times n$ matrix $\bar{A} = (b_{ij})$ defined such that
\[b_{ij} = \bar{a}_{ij} \]
for all $i, j, 1 \leq i \leq m, 1 \leq j \leq n$. Given an $n \times n$ complex matrix A, the adjoint A^* of A is the matrix defined such that
\[A^* = (\bar{A}^\top) = (\bar{A})^\top. \]
A complex $n \times n$ matrix A is
1. normal iff
\[AA^* = A^*A, \]
2. Hermitian iff
\[A^* = A, \]
3. skew-Hermitian iff
\[A^* = -A, \]
4. unitary iff
\[AA^* = A^*A = I_n. \]
Theorem 10.10 can be restated in terms of matrices as follows. We can also say a little more about eigenvalues (easy exercise left to the reader).

Theorem 10.19. For every complex normal matrix A, there is a unitary matrix U and a diagonal matrix D such that $A = UDU^*$. Furthermore, if A is Hermitian, D is a real matrix, if A is skew-Hermitian, then the entries in D are pure imaginary or null, and if A is unitary, then the entries in D have absolute value 1.
CHAPTER 10. SPECTRAL THEOREMS