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Abstract. In this paper we develop new Newton and conjugate gradient algorithms on the
Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such
areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures
computations, and signal processing. In addition to the new algorithms, we show how the geometrical
framework gives penetrating new insights allowing us to create, understand, and compare algorithms.
The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide
a top level mathematical view of previously unrelated algorithms. It is our hope that developers of
new algorithms and perturbation theories will benefit from the theory, methods, and examples in
this paper.
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1. Introduction. Problems on the Stiefel and Grassmann manifolds arise with
su�cient frequency that a unifying investigation of algorithms designed to solve these
problems is warranted. Understanding these manifolds, which represent orthogonality
constraints (as in the symmetric eigenvalue problem), yields penetrating insight into
many numerical algorithms and unifies seemingly unrelated ideas from di↵erent areas.

The optimization community has long recognized that linear and quadratic con-
straints have special structure that can be exploited. The Stiefel and Grassmann
manifolds also represent special constraints. The main contribution of this paper is
a framework for algorithms involving these constraints, which draws upon ideas from
numerical linear algebra, optimization, di↵erential geometry, and has been inspired by
certain problems posed in engineering, physics, and chemistry. Though we do review
the necessary background for our intended audience, this is not a survey paper. This
paper uses mathematics as a tool so that we can understand the deeper geometrical
structure underlying algorithms.

In our first concrete problem we minimize a function F (Y ), where Y is constrained
to the set of n-by-p matrices such that Y TY = I (we call such matrices orthonormal),
and we make the further homogeneity assumption that F (Y ) = F (Y Q), where Q is
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any p-by-p orthogonal matrix. In other words, the objective function depends only on
the subspace spanned by the columns of Y ; it is invariant to any choice of basis. The
set of p-dimensional subspaces in Rn is called the Grassmann manifold. (Grassmann
originally developed the idea in 1848, but his writing style was considered so obscure
[1] that it was appreciated only many years later. One can find something of the
original definition in his later work [48, Chap. 3, Sec. 1, Article 65].) To the best
of our knowledge, the geometry of the Grassmann manifold has never been explored
in the context of optimization algorithms, invariant subspace computations, physics
computations, or subspace tracking. Useful ideas from these areas, however, may be
put into the geometrical framework developed in this paper.

In our second problem we minimize F (Y ) without the homogeneity condition
F (Y ) = F (Y Q) mentioned above, i.e., the optimization problem is defined on the
set of n-by-p orthonormal matrices. This constraint surface is known as the Stiefel
manifold, which is named for Eduard Stiefel, who considered its topology in the 1930s
[82]. This is the same Stiefel who in collaboration with Magnus Hestenes in 1952
originated the conjugate gradient algorithm [49]. Both Stiefel’s manifold and his
conjugate gradient algorithm play an important role in this paper. The geometry of
the Stiefel manifold in the context of optimization problems and subspace tracking
was explored by Smith [75]. In this paper we use numerical linear algebra techniques
to simplify the ideas and algorithms presented there so that the di↵erential geometric
ideas seem natural and illuminating to the numerical linear algebra and optimization
communities.

The first author’s original motivation for studying this problem came from a re-
sponse to a linear algebra survey [30], which claimed to be using conjugate gradient to
solve large dense eigenvalue problems. The second and third authors were motivated
by two distinct engineering and physics applications. The salient question became:
What does it mean to use conjugate gradient to solve eigenvalue problems? Is this the
Lanczos method? As we shall describe, there are dozens of proposed variations on the
conjugate gradient and Newton methods for eigenvalue and related problems, none of
which are Lanczos. These algorithms are not all obviously related. The connections
among these algorithms have apparently not been appreciated in the literature while
in some cases numerical experiments have been the only basis for comparison when
no theoretical understanding was available. The existence of so many variations in so
many applications compelled us to ask for the big picture: What is the mathemat-
ics that unifies all of these apparently distinct algorithms? This paper contains our
proposed unification.

We summarize by itemizing what is new in this paper.
1. Algorithms for Newton and conjugate gradient methods on the Grassmann

and Stiefel manifolds that naturally use the geometry of these manifolds. In the
special cases that we are aware of, our general algorithms are competitive up to small
constant factors with the best known special algorithms. Conjugate gradient and
Newton on the Grassmann manifold have never been explicitly studied before. Stiefel
algorithms have been studied before [75], but the ideas here represent considerable
simplifications.

2. A geometrical framework with the right mix of abstraction and concreteness
to serve as a foundation for any numerical computation or algorithmic formulation
involving orthogonality constraints, including the symmetric eigenvalue problem. We
believe that this is a useful framework because it connects apparently unrelated ideas;
it is simple and mathematically natural. The framework provides new insights into
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existing algorithms in numerical linear algebra, optimization, signal processing, and
electronic structures computations, and it suggests new algorithms. For example, we
connect the ideas of geodesics and the cubic convergence of the Rayleigh quotient
iteration, the CS decomposition, and sequential quadratic programming. We also
interpret the ill-conditioning of eigenvectors of a symmetric matrix with multiple
eigenvalues as the singularity of Stiefel and Grassmann coordinates.

3. Though geometrical descriptions of the Grassmann and Stiefel manifolds are
available in many references, ours is the first to use methods from numerical linear al-
gebra emphasizing computational e�ciency of algorithms rather than abstract general
settings.

The remainder of this paper is organized into three sections. The geometrical
ideas are developed in section 2. This section provides a self-contained introduction
to geometry, which may not be familiar to some readers, while deriving the new
geometrical formulas necessary for the algorithms of section 3, and the insights of
section 3 provide descriptions of new algorithms for optimization on the Grassmann
and Stiefel manifolds. Concrete examples of the new insights gained from this point
of view are presented in section 4. Because we wish to discuss related literature in
the context developed in sections 2 and 3, we defer discussion of the literature to
section 4, where specific applications of our theory are organized.

2. Di↵erential geometric foundation for numerical linear algebra. A
geometrical treatment of the Stiefel and Grassmann manifolds appropriate for nu-
merical linear algebra cannot be found in standard di↵erential geometry references.
For example, what is typically required for practical conjugate gradient computations
involving n-by-p orthonormal matrices are algorithms with complexity of order np2.
In this section we derive new formulas that may be used in algorithms of this com-
plexity in terms of standard operations from numerical linear algebra. These formulas
will be used in the algorithms presented in the following section. Because we focus on
computations, our approach di↵ers from the more general (and powerful) coordinate-
free methods used by modern geometers [18, 47, 54, 62, 79, 87]. Boothby [8] provides
an undergraduate level introduction to the coordinate-free approach.

For readers with a background in di↵erential geometry, we wish to point out how
we use extrinsic coordinates in a somewhat unusual way. Typically, one uses a pa-
rameterization of the manifold (e.g., x = cosu sin v, y = sinu sin v, z = cos v for the
sphere) to derive metric coe�cients and Christo↵el symbols in terms of the parame-
ters (u and v). Instead, we only use extrinsic coordinates subject to constraints (e.g.,
(x, y, z) such that x2 + y2 + z2 = 1). This represents points with more parameters
than are intrinsically necessary, but we have found that the simplest (hence compu-
tationally most useful) formulas for the metric and Christo↵el symbol are obtained in
this manner. The choice of coordinates does not matter abstractly, but on a computer
the correct choice is essential.

We now outline this section. After defining the manifolds of interest to us in
section 2.1, we take a close look at the Stiefel manifold as a submanifold of Euclidean
space in section 2.2. This introduces elementary ideas from di↵erential geometry
and provides the geometric structure of the orthogonal group (a special case of the
Stiefel manifold), which will be used throughout the rest of the paper. However, the
Euclidean metric is not natural for the Stiefel manifold, which inherits a canonical
metric from its definition as a quotient space. Therefore, we introduce the quotient
space point of view in section 2.3. With this viewpoint, we then derive our formu-
las for geodesics and parallel translation for the Stiefel and Grassmann manifold in
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Table 2.1
Representations of subspace manifolds.

Space Symbol Matrix rep. Quotient rep.

Orthogonal group On Q –

Stiefel manifold Vn, p Y On/On�p

Grassmann manifold Gn, p None

(
Vn, p/Op

or
On/ (Op ⇥On�p)

)

sections 2.4 and 2.5. Finally, we describe how to incorporate these formulae into
conjugate gradient and Newton methods in section 2.6.

2.1. Manifolds arising in numerical linear algebra. For simplicity of expo-
sition, but for no fundamental reason, we will concentrate on real matrices. All ideas
carry over naturally to complex matrices. Spaces of interest are as follows:

1. The orthogonal group On consisting of n-by-n orthogonal matrices;
2. The Stiefel manifold Vn, p consisting of n-by-p “tall-skinny” orthonormal ma-

trices;
3. The Grassmann manifold Gn, p obtained by identifying those matrices in Vn, p

whose columns span the same subspace (a quotient manifold).
Table 2.1 summarizes the definitions of these spaces. Our description of Gn, p is

necessarily more abstract than On or Vn, p. Gn, p may be defined as the set of all
p-dimensional subspaces of an n-dimensional space.

We shall benefit from two di↵erent yet equivalent modes of describing our spaces:
concrete representations and quotient space representations. Table 2.2 illustrates how
we store elements of Vn, p and Gn, p in a computer. A point in the Stiefel manifold
Vn, p is represented by an n-by-p matrix. A point on the Grassmann manifold Gn, p is
a linear subspace, which may be specified by an arbitrary orthogonal basis stored as
an n-by-p matrix. An important di↵erence here is that, unlike points on the Stiefel
manifold, the choice of matrix is not unique for points on the Grassmann manifold.

The second mode of representation, the more mathematical, is useful for ob-
taining closed-form expressions for the geometrical objects of interest. It is also the
“proper” theoretical setting for these manifolds. Here, we represent the manifolds as
quotient spaces. Points in the Grassmann manifold are equivalence classes of n-by-p
orthogonal matrices, where two matrices are equivalent if their columns span the same
p-dimensional subspace. Equivalently, two matrices are equivalent if they are related
by right multiplication of an orthogonal p-by-p matrix. Therefore, Gn, p = Vn, p/Op.
On the computer, by necessity, we must pick a representative of the equivalence class
to specify a point.
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Table 2.2
Computational representation of subspace manifolds.

Space Data structure represents Tangents �

Stiefel manifold Y one point Y T� = skew-symmetric

Grassmann manifold Y entire equivalence class Y T� = 0

The Stiefel manifold may also be defined as a quotient space but arising from the
orthogonal group. Here, we identify two orthogonal matrices if their first p columns
are identical or, equivalently, if they are related by right multiplication of a matrix
of the form ( I

0

0

Q ), where Q is an orthogonal (n � p)-by-(n � p) block. Therefore,

Vn, p = On/On�p. With the Stiefel manifold so represented, one has yet another
representation of the Grassmann manifold, Gn, p = On/(Op ⇥On�p).

2.2. The Stiefel manifold in Euclidean space. The Stiefel manifold Vn, p
may be embedded in the np-dimensional Euclidean space of n-by-p matrices. When
p = 1, we simply have the sphere, while when p = n, we have the group of orthogonal
matrices known as On. These two special cases are the easiest and arise in numerical
linear algebra the most often.

Much of this section, which consists of three subsections, is designed to be a
painless and intuitive introduction to di↵erential geometry in Euclidean space. Sec-
tion 2.2.1 is elementary. It derives formulas for projections onto the tangent and
normal spaces. In section 2.2.2, we derive formulas for geodesics on the Stiefel mani-
fold in Euclidean space. We then discuss parallel translation in section 2.2.3.

In the two special cases when p = 1 and p = n, the Euclidean metric and the
canonical metric to be discussed in section 2.4 are the same. Otherwise they di↵er.

2.2.1. Tangent and normal space. Intuitively, the tangent space at a point
is the plane tangent to the submanifold at that point, as shown in Figure 2.1. For
d-dimensional manifolds, this plane is a d-dimensional vector space with origin at the
point of tangency. The normal space is the orthogonal complement. On the sphere,
tangents are perpendicular to radii, and the normal space is radial. In this subsection,
we will derive the equations for the tangent and normal spaces on the Stiefel manifold.
We also compute the projection operators onto these spaces.

An equation defining tangents to the Stiefel manifold at a point Y is easily ob-
tained by di↵erentiating Y TY = I, yielding Y T� + �TY = 0, i.e., Y T� is skew-
symmetric. This condition imposes p(p+ 1)/2 constraints on �, or, equivalently, the
vector space of all tangent vectors � has dimension

np� p(p+ 1)

2
=
p(p� 1)

2
+ p(n� p).(2.1)

Both sides of (2.1) are useful for the dimension counting arguments that will be
employed.
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Manifold

Normal

Tangent

Fig. 2.1. The tangent and normal spaces of an embedded or constraint manifold.

The normal space is defined to be the orthogonal complement of the tangent
space. Orthogonality depends upon the definition of an inner product, and because
in this subsection we view the Stiefel manifold as an embedded manifold in Euclidean
space, we choose the standard inner product

ge(�1

,�
2

) = tr �T
1

�
2

(2.2)

in np-dimensional Euclidean space (hence the subscript e), which is also the Frobenius
inner product for n-by-p matrices. We shall also write h�

1

,�
2

i for the inner product,
which may or may not be the Euclidean one. The normal space at a point Y consists
of all matrices N which satisfy

tr �TN = 0

for all � in the tangent space. It follows that the normal space is p(p+ 1)/2 dimen-
sional. It is easily verified that if N = Y S, where S is p-by-p symmetric, then N is in
the normal space. Since the dimension of the space of such matrices is p(p+ 1)/2, we
see that the normal space is exactly the set of matrices {Y S }, where S is any p-by-p
symmetric matrix.

Let Z be any n-by-p matrix. Letting sym(A) denote (A+AT )/2 and skew(A) =
(A�AT )/2, it is easily verified that at Y

⇡N (Z) = Y sym(Y TZ)(2.3)

defines a projection of Z onto the normal space. Similarly, at Y ,

⇡T (Z) = Y skew(Y TZ) + (I � Y Y T )Z(2.4)

is a projection of Z onto the tangent space at Y (this is also true of the canonical
metric to be discussed in section 2.4). Equation (2.4) suggests a form for the tangent
space of Vn, p at Y that will prove to be particularly useful. Tangent directions �
at Y then have the general form

� = Y A+ Y?B(2.5)

= Y A+ (I � Y Y T )C,(2.6)
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where A is p-by-p skew-symmetric, B is (n� p)-by-p, C is n-by-p, B and C are both
arbitrary, and Y? is any n-by-(n� p) matrix such that Y Y T + Y?Y?

T = I; note that
B = Y?

TC. The entries in the matrices A and B parameterize the tangent space
at Y with p(p� 1)/2 degrees of freedom in A and p(n� p) degrees of freedom in B,
resulting in p(p� 1)/2 + p(n� p) degrees of freedom as seen in (2.1).

In the special case Y = In, p ⌘ ( Ip
0

) (the first p columns of the n-by-n identity
matrix), called the origin, the tangent space at Y consists of those matrices

X =

✓
A

B

◆

for which A is p-by-p skew-symmetric and B is (n� p)-by-p arbitrary.

2.2.2. Embedded geodesics. A geodesic is the curve of shortest length be-
tween two points on a manifold. A straightforward exercise from the calculus of
variations reveals that for the case of manifolds embedded in Euclidean space the ac-
celeration vector at each point along a geodesic is normal to the submanifold so long
as the curve is traced with uniform speed. This condition is necessary and su�cient.
In the case of the sphere, acceleration for uniform motion on a great circle is directed
radially and therefore normal to the surface; therefore, great circles are geodesics on
the sphere. One may consider embedding manifolds in spaces with arbitrary metrics.
See Spivak [79, Vol. 3, p. 4] for the appropriate generalization.

Through (2.3) for the normal space to the Stiefel manifold, it is easily shown
that the geodesic equation for a curve Y (t) on the Stiefel manifold is defined by the
di↵erential equation

Ÿ + Y (Ẏ T Ẏ ) = 0.(2.7)

To see this, we begin with the condition that Y (t) remains on the Stiefel manifold

Y TY = Ip.(2.8)

Taking two derivatives,

Y T Ÿ + 2Ẏ T Ẏ + Ÿ TY = 0.(2.9)

To be a geodesic, Ÿ (t) must be in the normal space at Y (t) so that

Ÿ (t) + Y (t)S = 0(2.10)

for some symmetric matrix S. Substitute (2.10) into (2.9) to obtain the geodesic equa-
tion (2.7). Alternatively, (2.7) could be obtained from the Euler–Lagrange equation
for the calculus of variations problem

d(Y
1

, Y
2

) = min
Y (t)

Z t2

t1

(tr Ẏ T Ẏ )1/2 dt such that Y (t
1

) = Y
1

, Y (t
2

) = Y
2

.(2.11)

We identify three integrals of motion of the geodesic equation (2.7). Define

C = Y TY, A = Y T Ẏ , S = Ẏ T Ẏ .(2.12)

Directly from the geodesic equation (2.7),

Ċ = A+AT ,

Ȧ = �CS + S,

Ṡ = [A,S],



310 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

where

[A,S] = AS � SA(2.13)

is the Lie bracket of two matrices. Under the initial conditions that Y is on the Stiefel
manifold (C = I) and Ẏ is a tangent (A is skew-symmetric), then the integrals of the
motion have the values

C(t) = I,

A(t) = A(0),

S(t) = eAtS(0)e�At.

These integrals therefore identify a constant speed curve on the Stiefel manifold. In
most di↵erential geometry books, the equation of motion for geodesics is written in
intrinsic coordinates in terms of so-called Christo↵el symbols which specify a quadratic
form of the tangent vectors. In our formulation, the form �e(Ẏ , Ẏ ) = Y Ẏ T Ẏ is written
compactly in extrinsic coordinates.

With these constants of the motion, we can write an integrable equation for the
final geodesic,1

d

dt

⇣
Y eAt, Ẏ eAt

⌘
=
⇣
Y eAt, Ẏ eAt

⌘✓A �S(0)
I A

◆
,

with integral

Y (t) =
⇣
Y (0), Ẏ (0)

⌘
exp t

✓
A �S(0)
I A

◆
I
2p,pe

�At.

This is an exact closed form expression for the geodesic on the Stiefel manifold,
but we will not use this expression in our computation. Instead we will consider the
non-Euclidean canonical metric on the Stiefel manifold in section 2.4.

We mention in the case of the orthogonal group (p = n), the geodesic equation is
obtained simply from A = QT Q̇ = constant, yielding the simple solution

Q(t) = Q(0)eAt.(2.14)

From (2.14) it is straightforward to show that on connected components of On,

d(Q
1

, Q
2

) =

✓ nX

k=1

✓2k

◆
1/2

,(2.15)

where {ei✓k} are the eigenvalues of the matrix QT
1

Q
2

(cf. (2.67) and section 4.3).

2.2.3. Parallel translation. In Euclidean space, we move vectors parallel to
themselves simply by moving the base of the arrow. On an embedded manifold, if
we move a tangent vector to another point on the manifold by this technique, it is
generally not a tangent vector. One can, however, transport tangents along paths on
the manifold by infinitesimally removing the component of the transported vector in
the normal space.

1We thank Ross Lippert [56] for this observation.
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Δ

Y(0)

Y(0) + εY
.

Δ

τΔ
Δ
.

Y(t )

Fig. 2.2. Parallel transport in a submanifold of Euclidean space (infinitesimal construction).

Figure 2.2 illustrates the following idea: Imagine moving a tangent vector � along
the curve Y (t) in such a manner that every infinitesimal step consists of a parallel
displacement of � in the Euclidean np-dimensional space, which is then followed by
the removal of the normal component. If we move from Y (0) = Y to Y (✏) then to
first order, our new location is Y + ✏Ẏ . The equation for infinitesimally removing the
component generated in the normal space as we move in the direction Ẏ is obtained
by di↵erentiating (2.3) as follows:

�̇ = �Y (Ẏ T� + �T Ẏ )/2.(2.16)

We are unaware of any closed form solution to this system of di↵erential equations
along geodesics.

By di↵erentiation, we see that parallel transported vectors preserve the inner
product. In particular, the square length of � (tr �T�) is preserved. Additionally,
inserting Ẏ into the parallel transport equation, one quickly sees that a geodesic
always parallel transports its own tangent vector. This condition may be taken as the
definition of a geodesic.

Observing that tr �T� is the sum of the squares of the singular values of �,
we conjectured that the individual singular values of � might also be preserved by
parallel transport. Numerical experiments show that this is not the case.

In the case of the orthogonal group (p = n), however, parallel translation of �
along the geodesic Q(t) = Q(0)eAt is straightforward. Let �(t) = Q(t)B(t) be the
solution of the parallel translation equation

�̇ = �Q(Q̇T� + �T Q̇)/2,

where B(t) is a skew-symmetric matrix. Substituting �̇ = Q̇B + QḂ and Q̇ = QA,
we obtain

Ḃ = �1

2
[A,B],(2.17)

whose solution is B(t) = e�At/2B(0)eAt/2; therefore,

�(t) = Q(0)eAt/2B(0)eAt/2.(2.18)

These formulas may be generalized to arbitrary connected Lie groups [47, Chap. 2,
Ex. A.6].



ORTHOGONALITY CONSTRAINTS 313

to the set [Q]. The horizontal space is defined as the tangent vectors at Q orthogonal
to the vertical space. At a point Q, the vertical space is the set of vectors of the form

� = Q

✓
0 0
0 C

◆
,(2.20)

where C is (n�p)-by-(n�p) skew-symmetric, and we have hidden postmultiplication
by the isotropy subgroup ( Ip On�p

). Such vectors are clearly tangent to the set [Q]
defined in (2.19). It follows that the horizontal space at Q is the set of tangents of
the form

� = Q

✓
A �BT

B 0

◆
(2.21)

(also hiding the isotropy subgroup), where A is p-by-p skew-symmetric. Vectors of
this form are clearly orthogonal to vertical vectors with respect to the Euclidean inner
product. The matrices A and B of (2.21) are equivalent to those of (2.5).

The significance of the horizontal space is that it provides a representation of
tangents to the quotient space. Intuitively, movements in the vertical direction make
no change in the quotient space. Therefore, the metric, geodesics, and parallel trans-
lation must all be restricted to the horizontal space. A rigorous treatment of these
intuitive concepts is given by Kobayashi and Nomizu [54] and Chavel [18].

The canonical metric on the Stiefel manifold is then simply the restriction of the
orthogonal group metric to the horizontal space (multiplied by 1/2 to avoid factors
of 2 later on). That is, for �

1

and �
2

of the form in (2.21),

gc(�1

,�
2

) =
1

2
tr

✓
Q

✓
A

1

�BT
1

B
1

0

◆◆T

Q

✓
A

2

�BT
2

B
2

0

◆

= 1

2

trAT
1

A
2

+ trBT
1

B
2

,(2.22)

which we shall also write as h�
1

,�
2

i. It is important to realize that this is not equal
to the Euclidean metric ge defined in section 2.2 (except for p = 1 or n), even though
we use the Euclidean metric for the orthogonal group in its definition. The di↵erence
arises because the Euclidean metric counts the independent coordinates of the skew-
symmetric A matrix twice and those of B only once, whereas the canonical metric
counts all independent coordinates in A and B equally. This point is discussed in
detail in section 2.4.

Notice that the orthogonal group geodesic

Q(t) = Q(0) exp t

✓
A �BT

B 0

◆
(2.23)

has horizontal tangent

Q̇(t) = Q(t)

✓
A �BT

B 0

◆
(2.24)

at every point along the curve Q(t). Therefore, they are curves of shortest length in
the quotient space as well, i.e., geodesics in the Grassmann manifold are given by the
simple formula

Stiefel geodesics = [Q(t)],(2.25)
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So as to arrive at the general notion of parallel transport, let us formalize what
we did here. We saw that the geodesic equation may be written

Ÿ + �e(Ẏ , Ẏ ) = 0,

where in the Euclidean case

�e(�1

,�
2

) = Y (�T
1

�
2

+ �T
2

�
1

)/2.

Anticipating the generalization, we interpret � as containing the information of the
normal component that needs to be removed. Knowing the quadratic function �(�,�)
is su�cient for obtaining the bilinear function �(�

1

,�
2

); the process is called polar-
ization. We assume that � is a symmetric function of its arguments (this is the
so-called torsion-free condition), and we obtain

4�(�
1

,�
2

) = �(�
1

+ �
2

,�
1

+ �
2

)� �(�
1

��
2

,�
1

��
2

).

For the cases we study in this paper, it is easy in practice to guess a symmetric form
for �(�

1

,�
2

) given �(�,�).
We will give a specific example of why this formalism is needed in section 2.4.

Let us mention here that the parallel transport defined in this manner is known to
di↵erential geometers as the Levi–Civita connection. We also remark that the function
� when written in terms of components defines the Christo↵el symbols. Switching
to vector notation, in di↵erential geometry texts the ith component of the function
�(v, w) would normally be written as

P
jk �ijkvjwk, where the constants �ijk are called

Christo↵el symbols. We prefer the matrix notation over the scalar notation.

2.3. Geometry of quotient spaces. Given a manifold whose geometry is well
understood (where there are closed form expressions for the geodesics and, perhaps
also, parallel transport), there is a very natural, e�cient, and convenient way to
generate closed form formulas on quotient spaces of that manifold. This is precisely
the situation with the Stiefel and Grassmann manifolds, which are quotient spaces
within the orthogonal group. As just seen in the previous section, geodesics and
parallel translation on the orthogonal group are simple. We now show how the Stiefel
and Grassmann manifolds inherit this simple geometry.

2.3.1. The quotient geometry of the Stiefel manifold. The important ideas
here are the notions of the horizontal and vertical spaces, the metric, and their rela-
tionship to geodesics and parallel translation. We use brackets to denote equivalence
classes. We will define these concepts using the Stiefel manifold Vn, p = On/On�p as
an example. The equivalence class [Q] is the set of all n-by-n orthogonal matrices
with the same first p columns as Q. A point in the Stiefel manifold is the equivalence
class

[Q] =

⇢
Q

✓
Ip 0
0 Qn�p

◆
: Qn�p 2 On�p

�
;(2.19)

that is, a point in the Stiefel manifold is a particular subset of the orthogonal matrices.
Notice that in this section we are working with equivalence classes rather than n-by-p
matrices Y = QIn, p.

The vertical and horizontal spaces at a point Q are complementary linear sub-
spaces of the tangent space at Q. The vertical space is defined to be vectors tangent
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where [Q(t)] is given by (2.19) and (2.23). This formula will be essential for deriving
an expression for geodesics on the Stiefel manifold using n-by-p matrices in section 2.4.

In a quotient space, parallel translation works in a way similar to the embedded
parallel translation discussed in section 2.2.3. Parallel translation along a curve (with
everywhere horizontal tangent) is accomplished by infinitesimally removing the verti-
cal component of the tangent vector. The equation for parallel translation along the
geodesics in the Stiefel manifold is obtained by applying this idea to (2.17), which
provides translation along geodesics for the orthogonal group. Let

A =

✓
A

1

�BT
1

B
1

0

◆
and B =

✓
A

2

�BT
2

B
2

0

◆
(2.26)

be two horizontal vectors t Q = I. The parallel translation of B along the geodesic
eAt is given by the di↵erential equation

Ḃ = �1

2
[A,B]H ,(2.27)

where the subscript H denotes the horizontal component (lower right block set to
zero). Note that the Lie bracket of two horizontal vectors is not horizontal and that
the solution to (2.27) is not given by the formula (e�At/2B(0)eAt/2)H . This is a special
case of the general formula for reductive homogeneous spaces [18, 75]. This first order
linear di↵erential equation with constant coe�cients is integrable in closed form, but
it is an open question whether this can be accomplished with O(np2) operations.

2.3.2. The quotient geometry of the Grassmann manifold. We quickly
repeat this approach for the Grassmann manifold Gn, p = On/(Op ⇥ On�p). The
equivalence class [Q] is the set of all orthogonal matrices whose first p columns span
the same subspace as those ofQ. A point in the Grassmann manifold is the equivalence
class

[Q] =

⇢
Q

✓
Qp 0
0 Qn�p

◆
: Qp 2 Op, Qn�p 2 On�p

�
,(2.28)

i.e., a point in the Grassmann manifold is a particular subset of the orthogonal ma-
trices, and the Grassmann manifold itself is the collection of all these subsets.

The vertical space at a point Q is the set of vectors of the form

� = Q

✓
A 0
0 C

◆
,(2.29)

where A is p-by-p skew-symmetric and C is (n� p)-by-(n� p) skew-symmetric. The
horizontal space at Q is the set of matrices of the form

� = Q

✓
0 �BT

B 0

◆
.(2.30)

Note that we have hidden postmultiplication by the isotropy subgroup (Op On�p
) in

(2.29) and (2.30).
The canonical metric on the Grassmann manifold is the restriction of the orthog-

onal group metric to the horizontal space (multiplied by 1/2). Let �
1

and �
2

be of
the form in (2.30). Then

gc(�1

,�
2

) = trBT
1

B
2

.(2.31)
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As opposed to the canonical metric for the Stiefel manifold, this metric is in fact
equivalent to the Euclidean metric (up to multiplication by 1/2) defined in (2.2).

The orthogonal group geodesic

Q(t) = Q(0) exp t

✓
0 �BT

B 0

◆
(2.32)

has horizontal tangent

Q̇(t) = Q(t)

✓
0 �BT

B 0

◆
(2.33)

at every point along the curve Q(t); therefore,

Grassmann geodesics = [Q(t)],(2.34)

where [Q(t)] is given by (2.28) and (2.32). This formula gives us an easy method for
computing geodesics on the Grassmann manifold using n-by-p matrices, as will be
seen in section 2.5.

The method for parallel translation along geodesics in the Grassmann manifold
is the same as for the Stiefel manifold, although it turns out the Grassmann manifold
has additional structure that makes this task easier. Let

A =

✓
0 �AT

A 0

◆
and B =

✓
0 �BT

B 0

◆
(2.35)

be two horizontal vectors at Q = I. It is easily verified that [A,B] is in fact a vertical
vector of the form of (2.29). If the vertical component of (2.17) is infinitesimally
removed, we are left with the trivial di↵erential equation

Ḃ = 0.(2.36)

Therefore, the parallel translation of the tangent vector Q(0)B along the geodesic
Q(t) = Q(0)eAt is simply given by the expression

⌧B(t) = Q(0)eAtB,(2.37)

which is of course horizontal at Q(t). Here, we introduce the notation ⌧ to indicate
the transport of a vector; it is not a scalar multiple of the vector. It will be seen in
section 2.5 how this formula may be computed using O(np2) operations.

As an aside, if H and V represent the horizontal and vertical spaces, respectively,
it may be verified that

[V, V ] ⇢ V, [V,H] ⇢ H, [H,H] ⇢ V.(2.38)

The first relationship follows from the fact that V is a Lie algebra, the second follows
from the reductive homogeneous space structure [54] of the Grassmann manifold, also
possessed by the Stiefel manifold, and the third follows the symmetric space structure
[47, 54] of the Grassmann manifold, which the Stiefel manifold does not possess.

2.4. The Stiefel manifold with its canonical metric.
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2.4.1. The canonical metric (Stiefel). The Euclidean metric

ge(�,�) = tr �T�

used in section 2.2 may seem natural, but one reasonable objection to its use is that
it weighs the independent degrees of freedom of the tangent vector unequally. Using
the representation of tangent vectors � = Y A+ Y?B given in (2.5), it is seen that

ge(�,�) = trATA+ trBTB

= 2
X

i<j

a2

ij +
X

ij

b2ij .

The Euclidean metric counts the p(p + 1)/2 independent coordinates of A twice. At
the origin In, p, a more equitable metric would be gc(�,�) = tr �T (I� 1

2

In, pITn, p)� =
1

2

trATA + trBTB. To be equitable at all points in the manifold, the metric must
vary with Y according to

gc(�,�) = tr �T (I � 1

2

Y Y T )�.(2.39)

This is called the canonical metric on the Stiefel manifold. This is precisely the metric
derived from the quotient space structure of Vn, p in (2.22); therefore, the formulas
for geodesics and parallel translation for the Stiefel manifold given in section 2.3.1
are correct if we view the Stiefel manifold as the set of orthonormal n-by-p matrices
with the metric of (2.39). Note that if � = Y A + Y?B is a tangent vector, then
gc(�,�) = 1

2

trATA+ trBTB, as seen previously.

2.4.2. Geodesics (Stiefel). The path length

L =

Z
gc(Ẏ , Ẏ )1/2 dt(2.40)

may be minimized with the calculus of variations. Doing so is tedious but yields the
new geodesic equation

Ÿ + Ẏ Ẏ TY + Y
�
(Y T Ẏ )2 + Ẏ T Ẏ

�
= 0.(2.41)

Direct substitution into (2.41) using the fact that

(I � In, pI
T
n, p)X(I � In, pI

T
n, p) = 0,

if X is a skew-symmetric matrix of the form

X =

✓
A �BT

B 0

◆
,

verifies that the paths of the form

Y (t) = QeXtIn, p(2.42)

are closed form solutions to the geodesic equation for the canonical metric.
We now turn to the problem of computing geodesics with algorithms of complexity

O(np2). Our current formula Y (t) = Q exp t(AB
�BT

0

)In, p for a geodesic is not useful.
Rather we want to express the geodesic Y (t) in terms of the current position Y (0) = Y
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and a direction Ẏ (0) = H. For example, A = Y TH and we have C := BTB =
HT(I �Y Y T )H. In fact the geodesic only depends on BTB rather than B itself. The

trick is to find a di↵erential equation for M(t) = ITn, p exp t(AB
�BT

0

)In, p.
The following theorem makes clear that the computational di�culty inherent in

computing the geodesic is the solution of a constant coe�cient second order di↵erential
equation for M(t). The answer is obtained not by a di↵erential equation solver but
rather by solving the corresponding quadratic eigenvalue problem.

Theorem 2.1. If Y (t) = Qet(
A
B
�BT

0 )In, p, with Y (0) = Y and Ẏ (0) = H, then

Y (t) = YM(t) + (I � Y Y T )H

Z t

0

M(t) dt,(2.43)

where M(t) is the solution to the second order di↵erential equation with constant

coe�cients

M̈ �AṀ + CM = 0; M(0) = Ip, Ṁ(0) = A,(2.44)

A = Y TH is skew-symmetric, and C = HT(I � Y Y T )H is nonnegative definite.

Proof . A direct computation verifies that M(t) satisfies (2.44). By separately
considering Y TY (t) and (I � Y Y T )Y (t), we may derive (2.43).

The solution of the di↵erential equation (2.44) may be obtained [25, 88] by solving
the quadratic eigenvalue problem

(�2I �A�+ C)x = 0.

Such problems are typically solved in one of three ways: (1) by solving the generalized
eigenvalue problem

✓
C 0
0 I

◆✓
x
�x

◆
= �

✓
A �I
I 0

◆✓
x
�x

◆
,

(2) by solving the eigenvalue problem
✓

0 I
�C A

◆✓
x
�x

◆
= �

✓
x
�x

◆
,

or (3) any equivalent problem obtained by factoring C = KTK and then solving the
eigenvalue problem

✓
A �KT

K 0

◆✓
x
y

◆
= �

✓
x
y

◆
.

Problems of this form arise frequently in mechanics, usually with A symmetric.
Some discussion of physical interpretations for skew-symmetric matrices may be found
in the context of rotating machinery [21]. If X is the p-by-2p matrix of eigenvectors
and ⇤ denotes the eigenvalues, then M(t) = Xe⇤tZ, and its integral is

R
M(t) dt =

Xe⇤t⇤�1Z, where Z is chosen so that XZ = I and X⇤Z = A.
Alternatively, the third method along with the matrix exponential may be em-

ployed.
Corollary 2.2. Let Y and H be n-by-p matrices such that Y TY = Ip and

A = Y TH is skew-symmetric. Then the geodesic on the Stiefel manifold emanating

from Y in direction H is given by the curve

Y (t) = YM(t) +QN(t),(2.45)
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where

QR := K = (I � Y Y T )H(2.46)

is the compact QR-decomposition of K (Q n-by-p, R p-by-p) and M(t) and N(t) are

p-by-p matrices given by the matrix exponential

✓
M(t)
N(t)

◆
= exp t

✓
A �RT

R 0

◆✓
Ip
0

◆
.(2.47)

Note that (2.47) is easily computed by solving a 2p-by-2p skew-symmetric eigen-
value problem, which can be accomplished e�ciently using the SVD or algorithms
specially tailored for this problem [86].

2.4.3. Parallel translation (Stiefel). We now develop a notion of parallel
transport that is consistent with the canonical metric. The geodesic equation takes
the form Ÿ + �(Ẏ , Ẏ ) = 0, where, from (2.41), it is seen that the Christo↵el function
for the canonical metric is

�c(�,�) = ��TY + Y�T (I � Y Y T )�.(2.48)

By polarizing we obtain the result

�c(�1

,�
2

) = 1

2

(�
1

�T
2

+ �
2

�T
1

)Y + 1

2

Y
�
�T

2

(I � Y Y T )�
1

(2.49)

+�T
1

(I � Y Y T )�
2

�
.

Parallel transport is given by the di↵erential equation

�̇ + �c(�, Ẏ ) = 0,(2.50)

which is equivalent to (2.27). As stated after this equation, we do not have an O(np2)
method to compute �(t).

2.4.4. The gradient of a function (Stiefel). Both conjugate gradient and
Newton’s method require a computation of the gradient of a function, which depends
upon the choice of metric. For a function F (Y ) defined on the Stiefel manifold, the
gradient of F at Y is defined to be the tangent vector rF such that

trFT
Y� = gc(rF,�) ⌘ tr(rF )T (I � 1

2

Y Y T )�(2.51)

for all tangent vectors � at Y , where FY is the n-by-p matrix of partial derivatives
of F with respect to the elements of Y , i.e.,

(FY )ij =
@F

@Yij
.(2.52)

Solving (2.51) for rF such that Y T (rF ) = skew-symmetric yields

rF = FY � Y FT
Y Y.(2.53)

Equation (2.53) may also be derived by di↵erentiating F (Y (t)), where Y (t) is the
Stiefel geodesic given by (2.45).
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2.4.5. The Hessian of a function (Stiefel). Newton’s method requires the
Hessian of a function, which depends upon the choice of metric. The Hessian of a
function F (Y ) defined on the Stiefel manifold is defined as the quadratic form

HessF (�,�) =
d2

dt2

����
t=0

F
�
Y (t)

�
,(2.54)

where Y (t) is a geodesic with tangent �, i.e., Ẏ (0) = �. Applying this definition to
F (Y ) and (2.45) yields the formula

HessF (�
1

,�
2

) = FY Y (�
1

,�
2

) + 1

2

tr
�
(FT

Y�
1

Y T + Y T�
1

FT
Y )�

2

�
(2.55)

� 1

2

tr
�
(Y TFY + FT

Y Y )�T
1

⇧�
2

�
,

where ⇧ = I � Y Y T , FY is defined in (2.52), and the notation FY Y (�
1

,�
2

) denotes
the scalar

P
ij, kl(FY Y )ij, kl(�1

)ij(�2

)kl, where

(FY Y )ij, kl =
@2F

@Yij@Ykl
.(2.56)

This formula may also readily be obtained by using (2.50) and the formula

HessF (�
1

,�
2

) = FY Y (�
1

,�
2

)� trFT
Y �c(�1

,�
2

).(2.57)

For Newton’s method, we must determine the tangent vector � such that

HessF (�, X) = h�G,Xi for all tangent vectors X,(2.58)

where G = rF . Recall that h , i ⌘ gc( , ) in this context. We shall express the solution
to this linear equation as � = �Hess�1G, which may be expressed as the solution to
the linear problem

FY Y (�)� Y skew(FT
Y�)� skew(�FT

Y )Y � 1

2
⇧�Y TFY = �G,(2.59)

Y T� = skew-symmetric, where skew(X) = (X � XT )/2 and the notation FY Y (�)
means the unique tangent vector satisfying the equation

FY Y (�, X) = hFY Y (�), Xi for all tangent vectors X.(2.60)

Example problems are considered in section 3.

2.5. The Grassmann manifold with its canonical metric. A quotient space
representation of the Grassmann manifold was given in section 2.3.2; however, for
computations we prefer to work with n-by-p orthonormal matrices Y . When per-
forming computations on the Grassmann manifold, we will use the n-by-p matrix Y
to represent an entire equivalence class

[Y ] = {Y Qp : Qp 2 Op },(2.61)

i.e., the subspace spanned by the columns of Y . Any representative of the equivalence
class will do.

We remark that an alternative strategy is to represent points on the Grassmann
manifold with projection matrices Y Y T . There is one such unique matrix correspond-
ing to each point on the Grassmann manifold. On first thought it may seem foolish
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to use n2 parameters to represent a point on the Grassmann manifold (which has
dimension p(n�p)), but in certain ab initio physics computations [43], the projection
matrices Y Y T that arise in practice tend to require only O(n) parameters for their
representation.

Returning to the n-by-p representation of points on the Grassmann manifold, the
tangent space is easily computed by viewing the Grassmann manifold as the quotient
space Gn, p = Vn, p/Op. At a point Y on the Stiefel manifold then, as seen in (2.5),
tangent vectors take the form � = Y A + Y?B, where A is p-by-p skew-symmetric,
B is (n � p)-by-p, and Y? is any n-by-(n � p) matrix such that (Y, Y?) is orthogo-
nal. From (2.61) it is clear that the vertical space at Y is the set of vectors of the
form

� = Y A;(2.62)

therefore, the horizontal space at Y is the set of vectors of the form

� = Y?B.(2.63)

Because the horizontal space is equivalent to the tangent space of the quotient, the
tangent space of the Grassmann manifold at [Y ] is given by all n-by-p matrices � of
the form in (2.63) or, equivalently, all n-by-p matrices � such that

Y T� = 0.(2.64)

Physically, this corresponds to directions free of rotations mixing the basis given by
the columns of Y .

We already saw in section 2.3.2 that the Euclidean metric is in fact equivalent to
the canonical metric for the Grassmann manifold. That is, for n-by-p matrices �

1

and �
2

such that Y T�i = 0 (i = 1, 2),

gc(�1

,�
2

) = tr �T
1

(I � 1

2

Y Y T )�
2

,

= tr �T
1

�
2

,

= ge(�1

,�
2

).

2.5.1. Geodesics (Grassmann). A formula for geodesics on the Grassmann
manifold was given via (2.32); the following theorem provides a useful method for
computing this formula using n-by-p matrices.

Theorem 2.3. If Y (t) = Qet(
0
B
�BT

0 )In, p, with Y (0) = Y and Ẏ (0) = H, then

Y (t) = (Y V U )

✓
cos ⌃t
sin ⌃t

◆
V T ,(2.65)

where U⌃V T
is the compact singular value decomposition of H.

Proof 1. It is easy to check that either formulation for the geodesic satisfies the
geodesic equation Ÿ + Y (Ẏ T Ẏ ) = 0, with the same initial conditions.

Proof 2. Let B = (U
1

, U
2

)(⌃

0

)V T be the singular value decomposition of B (U
1

n-by-p, U
2

p-by-(n � p), ⌃ and V p-by-p). A straightforward computation involving
the partitioned matrix

✓
0 �BT

B 0

◆
=

✓
V 0 0
0 U

1

U
2

◆0

@
0 �⌃ 0
⌃ 0 0
0 0 0

1

A

0

@
V T 0
0 UT

1

0 UT
2

1

A(2.66)
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verifies the theorem.
A subtle point in (2.65) is that if the rightmost V T is omitted, then we still have a

representative of the same equivalence class as Y (t); however, due to consistency con-
ditions along the equivalent class [Y (t)], the tangent (horizontal) vectors that we use
for computations must be altered in the same way. This amounts to postmultiplying
everything by V , or, for that matter, any p-by-p orthogonal matrix.

The path length between Y
0

and Y (t) (distance between subspaces) is given by [89]

d
�
Y (t), Y

0

�
= tkHkF = t

✓ pX

i=1

�2

i

◆
1/2

,(2.67)

where �i are the diagonal elements of ⌃. (Actually, this is only true for t small enough
to avoid the issue of conjugate points, e.g., long great circle routes on the sphere.) An
interpretation of this formula in terms of the CS decomposition and principal angles
between subspaces is given in section 4.3.

2.5.2. Parallel translation (Grassmann). A formula for parallel translation
along geodesics of complexity O(np2) can also be derived as follows.

Theorem 2.4. Let H and � be tangent vectors to the Grassmann manifold at Y .

Then the parallel translation of � along the geodesic in the direction Ẏ (0) = H (see
(2.65)) is

⌧�(t) =

✓
(Y V U )

✓
� sin ⌃t
cos ⌃t

◆
UT + (I � UUT )

◆
�.(2.68)

Proof 1. A simple computation verifies that (2.68) and (2.65) satisfy (2.16).
Proof 2. Parallel translation of � is given by the expression

⌧�(t) = Q exp t

✓
0 �AT

A 0

◆✓
0
B

◆

(which follows from (2.37)), where Q = (Y, Y?), H = Y?A, and � = Y?B. Decom-
posing ( 0

A
�AT

0

) as in (2.66) (note well that A has replaced B), a straightforward
computation verifies the theorem.

2.5.3. The gradient of a function (Grassmann). We must compute the
gradient of a function F (Y ) defined on the Grassmann manifold. Similarly to sec-
tion 2.4.4, the gradient of F at [Y ] is defined to be the tangent vector rF such
that

trFT
Y� = gc(rF,�) ⌘ tr(rF )T�(2.69)

for all tangent vectors � at Y , where FY is defined by (2.52). Solving (2.69) for rF
such that Y T (rF ) = 0 yields

rF = FY � Y Y TFY .(2.70)

Equation (2.70) may also be derived by di↵erentiating F (Y (t)), where Y (t) is the
Grassmann geodesic given by (2.65).
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2.5.4. The Hessian of a function (Grassmann). Applying the definition for
the Hessian of F (Y ) given by (2.54) in the context of the Grassmann manifold yields
the formula

HessF (�
1

,�
2

) = FY Y (�
1

,�
2

)� tr(�T
1

�
2

Y TFY ),(2.71)

where FY and FY Y are defined in section 2.4.5. For Newton’s method, we must
determine � = �Hess�1G satisfying (2.58), which for the Grassmann manifold is
expressed as the linear problem

FY Y (�)��(Y TFY ) = �G,(2.72)

Y T� = 0, where FY Y (�) denotes the unique tangent vector satisfying (2.60) for the
Grassmann manifold’s canonical metric.

Example problems are considered in section 3.

2.6. Conjugate gradient on Riemannian manifolds. As demonstrated by
Smith [75, 76], the benefits of using the conjugate gradient algorithm for uncon-
strained minimization can be carried over to minimization problems constrained to
Riemannian manifolds by a covariant translation of the familiar operations of com-
puting gradients, performing line searches, the computation of Hessians, and carry-
ing vector information from step to step in the minimization process. In this sec-
tion we will review the ideas in [75, 76], and then in the next section we formu-
late concrete algorithms for conjugate gradient on the Stiefel and Grassmann man-
ifolds. Here one can see how the geometry provides insight into the true di↵erence
among the various formulas that are used in linear and nonlinear conjugate gradient
algorithms.

Figure 2.3 sketches the conjugate gradient algorithm in flat space and Figure 2.4
illustrates the algorithm on a curved space. An outline for the iterative part of the
algorithm (in either flat or curved space) goes as follows: at the (k�1)st iterate xk�1

,
step to xk, the minimum of f along the geodesic in the direction Hk�1

, compute
the gradient Gk = rf(xk) at this point, choose the new search direction to be a
combination of the old search direction and the new gradient

Hk = Gk + �k⌧Hk�1

,(2.73)

and iterate until convergence. Note that ⌧Hk�1

in (2.73) is the parallel translation of
the vector Hk�1

defined in section 2.2.3, which in this case is simply the direction of
the geodesic (line) at the point xk (see Figure 2.4). Also note the important condition
that xk is a minimum point along the geodesic

hGk, ⌧Hk�1

i = 0.(2.74)

Let us begin our examination of the choice of �k in flat space before proceeding
to arbitrary manifolds. Here, parallel transport is trivial so that

Hk = Gk + �kHk�1

.
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Fig. 2.3. Conjugate gradient in flat space.
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Fig. 2.4. Conjugate gradient in curved space.

In both linear and an idealized version of nonlinear conjugate gradient, �k may
be determined by the exact conjugacy condition for the new search direction

fxx(Hk, Hk�1

) = 0,

i.e., the old and new search direction must be conjugate with respect to the Hessian
of f . (With fxx = A, the common notation [45, p. 523] for the conjugacy condition
is pTk�1

Apk = 0.) The formula for �k is then

Exact Conjugacy: �k = �fxx(Gk, Hk�1

)/fxx(Hk�1

, Hk�1

).(2.75)

The standard trick to improve the computational e�ciency of linear conjugate
gradient is to use a formula relating a finite di↵erence of gradients to the Hessian
times the direction (rk � rk�1

= �↵kApk as in [45]). In our notation,
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hGk �Gk�1

, ·i ⇡ ↵fxx(·, Hk�1

),(2.76)

where ↵ = kxk � xk�1

k/kHk�1

k.
The formula is exact for linear conjugate gradient on flat space, otherwise it has

the usual error in finite di↵erence approximations. By applying the finite di↵erence
formula (2.76) in both the numerator and denominator of (2.75), and also applying
(2.74) twice (once with k and once with k � 1), one obtains the formula

Polak–Ribière: �k = hGk �Gk�1

, Gki/hGk�1

, Gk�1

i.(2.77)

Therefore, the Polak–Ribiére formula is the exact formula for conjugacy through the
Hessian, where one uses a di↵erence of gradients as a finite di↵erence approximation
to the second derivative. If f(x) is well approximated by a quadratic function, then
hGk�1

, Gki ⇡ 0, and we obtain

Fletcher–Reeves: �k = hGk, Gki/hGk�1

, Gk�1

i.(2.78)

For arbitrary manifolds, the Hessian is the second derivative along geodesics. In
di↵erential geometry it is the second covariant di↵erential of f . Here are the formulas

Exact Conjugacy: �k = �Hess f(Gk, ⌧Hk�1

)/Hess f(⌧Hk�1

, ⌧Hk�1

),(2.79)

Polak–Ribière: �k = hGk � ⌧Gk�1

, Gki/hGk�1

, Gk�1

i,(2.80)

Fletcher–Reeves: �k = hGk, Gki/hGk�1

, Gk�1

i(2.81)

which may be derived from the finite di↵erence approximation to the Hessian,

hGk � ⌧Gk�1

, ·i ⇡ ↵Hessf(·, ⌧Hk�1

), ↵ = d(xk, xk�1

)/kHk�1

k.

Asymptotic analyses appear in section 3.6.

3. Geometric optimization algorithms. The algorithms presented here are
our answer to the question: What does it mean to perform the Newton and conjugate
gradient methods on the Stiefel and Grassmann manifolds? Though these algorithms
are idealized, they are of identical complexity up to small constant factors with the
best known algorithms. In particular, no di↵erential equation routines are used.
It is our hope that in the geometrical algorithms presented here, the reader will
recognize elements of any algorithm that accounts for orthogonality constraints. These
algorithms are special cases of the Newton and conjugate gradient methods on general
Riemannian manifolds. If the objective function is nondegenerate, then the algorithms
are guaranteed to converge quadratically [75, 76].

3.1. Newton’s method on the Grassmann manifold. In flat space, New-
ton’s method simply updates a vector by subtracting the gradient vector premultiplied
by the inverse of the Hessian. The same is true on the Grassmann manifold (or any
Riemannian manifold for that matter) of p-planes in n-dimensions with interesting
modifications. Subtraction is replaced by following a geodesic path. The gradient
is the usual one (which must be tangent to the constraint surface), and the Hessian
is obtained by twice di↵erentiating the function along a geodesic. We show in sec-
tion 4.9 that this Hessian is related to the Hessian of the Lagrangian; the two Hessians
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arise from the di↵erence between the intrinsic and extrinsic viewpoints. It may be
suspected that following geodesics may not be computationally feasible, but because
we exploit the structure of the constraint surface, this operation costs O(np2), which
is required even for traditional algorithms for the eigenvalue problem—our simplest
example.

Let F (Y ) be a smooth function on the Grassmann manifold, i.e., F (Y ) = F (Y Q)
for any p-by-p orthogonal matrix Q, where Y is an n-by-p matrix such that Y TY =
Ip. We compute formulas for FY and FY Y (�) using the definitions given in sec-
tion 2.5.4. Newton’s method for minimizing F (Y ) on the Grassmann manifold is as
follows.

Newton’s Method for Minimizing F (Y ) on the Grassmann Manifold

• Given Y such that Y TY = Ip,

� Compute G = FY � Y Y TFY .

� Compute � = �Hess�1G such that Y T� = 0 and

FY Y (�)��(Y TFY ) = �G.

• Move from Y in direction � to Y (1) using the geodesic formula

Y (t) = Y V cos(⌃t)V T + U sin(⌃t)V T ,

where U⌃V T is the compact singular value decomposition of � (meaning U
is n-by-p and both ⌃ and V are p-by-p).

• Repeat.

The special case of minimizing F (Y ) = 1

2

trY TAY (A n-by-n symmetric) gives
the geometrically correct Newton method for the symmetric eigenvalue problem. In
this case FY = AY and FY Y (�) = (I � Y Y T )A�. The resulting algorithm requires
the solution of a Sylvester equation. It is the idealized algorithm whose approxima-
tions include various forms of Rayleigh quotient iteration, inverse iteration, a number
of Newton style methods for invariant subspace computation, and the many vari-
ations of Davidson’s eigenvalue method. These ideas are discussed in sections 4.1
and 4.8.

3.2. Newton’s method on the Stiefel manifold. Newton’s method on the
Stiefel manifold is conceptually equivalent to the Grassmann manifold case. Let Y be
an n-by-p matrix such that Y TY = Ip, and let F (Y ) be a smooth function of Y with-
out the homogeneity condition imposed for the Grassmann manifold case. Compute
formulas for FY and FY Y (�) using the definitions given in section 2.4.5. Newton’s
method for minimizing F (Y ) on the Stiefel manifold is as follows.
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Newton’s Method for Minimizing F (Y ) on the Stiefel Manifold

• Given Y such that Y TY = Ip,

� Compute G = FY � Y FT
Y Y .

� Compute � = �Hess�1G such that Y T� = skew-symmetric and

FY Y (�)� Y skew(FT
Y�)� skew(�FT

Y )Y � 1

2

⇧�Y TFY = �G,

where skew(X) = (X �XT )/2 and ⇧ = I � Y Y T .

• Move from Y in direction � to Y (1) using the geodesic formula

Y (t) = YM(t) +QN(t),

where QR is the compact QR decomposition of (I � Y Y T )� (meaning Q is
n-by-p and R is p-by-p), A = Y T�, and M(t) and N(t) are p-by-p matrices
given by the 2p-by-2p matrix exponential

✓
M(t)
N(t)

◆
= exp t

✓
A �RT

R 0

◆✓
Ip
0

◆
.

• Repeat.

For the special case of minimizing F (Y ) = 1

2

trY TAY N (A n-by-n symmetric, N
p-by-p symmetric) [75], FY = AY N and FY Y (�) = A�N � Y N�TAY . Note that if
N is not a multiple of the identity, then F (Y ) does not have the homogeneity condition
required for a problem on the Grassmann manifold. If N = diag(p, p� 1, . . . , 1), then
the optimum solution to maximizing F over the Stiefel manifold yields the eigenvectors
corresponding to the p largest eigenvalues.

For the orthogonal Procrustes problem [32], F (Y ) = 1

2

kAY �Bk2F (A m-by-n, B
m-by-p, both arbitrary), FY = ATAY � ATB and FY Y (�) = ATA� � Y�TATAY .
Note that Y TFY Y (�) = skew-symmetric.

3.3. Conjugate gradient method on the Grassmann manifold. Conju-
gate gradient techniques are considered because they are easy to implement, have low
storage requirements, and provide superlinear convergence in the limit. The New-
ton equations may be solved with finitely many steps of linear conjugate gradient;
each nonlinear conjugate gradient step, then, approximates a Newton step. In flat
space, the nonlinear conjugate gradient method performs a line search by following
a direction determined by conjugacy with respect to the Hessian. On Riemannian
manifolds, conjugate gradient performs minimization along geodesics with search di-
rections defined using the Hessian described above [75, 76]. Both algorithms approxi-
mate Hessian conjugacy with a subtle formula involving only the gradient directions,
resulting in an algorithm that captures second derivative information by computing
only first derivatives. To “communicate” information from one iteration to the next,
tangent vectors must parallel transport along geodesics. Conceptually, this is neces-
sary because, unlike flat space, the definition of tangent vectors changes from point
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to point.
Using these ideas and formulas developed in section 3.1, the conjugate gradient

method on the Grassmann manifold is as follows.

Conjugate Gradient for Minimizing F (Y ) on the Grassmann Mani-
fold

• Given Y
0

such that Y T
0

Y
0

= I, compute G
0

= FY0 � Y
0

Y T
0

FY0 and set
H

0

= �G
0

.

• For k = 0, 1, . . . ,

� Minimize F (Yk(t)) over t where

Y (t) = Y V cos(⌃t)V T + U sin(⌃t)V T

and U⌃V T is the compact singular value decomposition of Hk.

� Set tk = t
min

and Yk+1

= Yk(tk).

� Compute Gk+1

= FYk+1 � Yk+1

Y T
k+1

FYk+1 .

� Parallel transport tangent vectors Hk and Gk to the point Yk+1

:

⌧Hk = (�YkV sin ⌃tk + U cos ⌃tk)⌃V
T ,(3.1)

⌧Gk = Gk �
�
YkV sin ⌃tk + U(I � cos ⌃tk)

�
UTGk.(3.2)

� Compute the new search direction

Hk+1

= �Gk+1

+ �k⌧Hk, where �k =
hGk+1

� ⌧Gk, Gk+1

i
hGk, Gki

and h�
1

,�
2

i = tr �T
1

�
2

.

� Reset Hk+1

= �Gk+1

if k + 1 ⌘ 0 mod p(n� p).

3.4. Conjugate gradient method on the Stiefel manifold. As with New-
ton’s method, conjugate gradient on the two manifolds is very similar. One need only
replace the definitions of tangent vectors, inner products, geodesics, gradients, and
parallel translation. Geodesics, gradients, and inner products on the Stiefel mani-
fold are given in section 2.4. For parallel translation along geodesics on the Stiefel
manifold, we have no simple, general formula comparable to (3.2). Fortunately, a
geodesic’s tangent direction is parallel, so a simple formula for ⌧Hk comparable to
(3.1) is available, but a formula for ⌧Gk is not. In practice, we recommend setting
⌧Gk := Gk and ignoring the fact that ⌧Gk will not be tangent at the point Yk+1

.
Alternatively, setting ⌧Gk := 0 (also not parallel) results in a Fletcher–Reeves con-
jugate gradient formulation. As discussed in the next section, neither approximation
a↵ects the superlinear convergence property of the conjugate gradient method.

The conjugate gradient method on the Stiefel manifold is as follows.
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Conjugate Gradient for Minimizing F (Y ) on the Stiefel Manifold

• Given Y
0

such that Y T
0

Y
0

= I, compute G
0

= FY0 � Y
0

FT
Y0
Y

0

and set H
0

=
�G

0

.

• For k = 0, 1, . . . ,

� Minimize F (Yk(t)) over t where

Yk(t) = YkM(t) +QN(t),

QR is the compact QR decomposition of (I � YkY T
k )Hk, A = Y T

k Hk,
and M(t) and N(t) are p-by-p matrices given by the 2p-by-2p matrix
exponential appearing in Newton’s method on the Stiefel manifold in
section 3.2.

� Set tk = t
min

and Yk+1

= Yk(tk).

� Compute Gk+1

= FYk+1 � Yk+1

FT
Yk+1

Yk+1

.

� Parallel transport tangent vector Hk to the point Yk+1

:

⌧Hk = HkM(tk)� YkR
TN(tk).(3.3)

As discussed above, set ⌧Gk := Gk or 0, which is not parallel.

� Compute the new search direction

Hk+1

= �Gk+1

+ �k⌧Hk, where �k =
hGk+1

� ⌧Gk, Gk+1

i
hGk, Gki

and h�
1

,�
2

i = tr �T
1

(I � 1

2

Y Y T )�
2

.

� Reset Hk+1

= �Gk+1

if k + 1 ⌘ 0 mod p(n� p) + p(p� 1)/2.

3.5. Numerical results and asymptotic behavior.

3.5.1. Trace maximization on the Grassmann manifold. The convergence
properties of the conjugate gradient and Newton’s methods applied to the trace maxi-
mization problem F (Y ) = trY TAY are shown in Figure 3.1, as well as the convergence
of an approximate conjugate gradient method and the Rayleigh quotient iteration for
comparison. This example shows trace maximization on G

5, 3, i.e., three-dimensional
subspaces in five dimensions. The distance between the subspace and the known op-
timum subspace is plotted versus the iteration number, where the distance in radians
is simply the square root of the sum of squares of the principal angles between the
subspaces. The dimension of this space equals 3(5 � 3) = 6; therefore, a conjugate
gradient algorithm with resets should at least double in accuracy every six iterations.
Newton’s method, which is cubically convergent for this example (this point is dis-
cussed in section 4.1), should triple in accuracy every iteration. Variable precision
numerical software is used to demonstrate the asymptotic convergence properties of
these algorithms.

The thick black curve (CG-1) shows the convergence of the conjugate gradient
algorithm using the Polak–Ribière formula. The accuracy of this algorithm is at
least doubled between the first and sixth and the seventh and twelfth iterations,
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Fig. 3.1. Convergence of the conjugate gradient and Newton’s method for trace maximization on
the Grassmann manifold G

5, 3. The error (in radians) is the arc length distance between the solution
and the subspace at the ith iterate ((2.67) and section 4.3). Quadratic convergence of conjugate
gradient is evident, as is cubic convergence of Newton’s method, which is a special property of this
example.

demonstrating this method’s superlinear convergence. Newton’s method is applied
to the twelfth conjugate gradient iterate, which results in a tripling of the accuracy
and demonstrates cubic convergence of Newton’s method, shown by the dashed thick
black curve (NT-1).

The thin black curve (CG-2) shows conjugate gradient convergence using the
Fletcher–Reeves formula

�k = hGk+1

, Gk+1

i/hGk, Gki.(3.4)

As discussed below, this formula di↵ers from the Polak–Ribière formula by second
order and higher terms, so it must also have superlinear convergence. The accuracy
of this algorithm more than doubles between the first and sixth, seventh and twelfth,
and thirteenth and eighteenth iterations, demonstrating this fact.

The algorithms discussed above are actually performed on the constraint surface,
but extrinsic approximations to these algorithms are certainly possible. By perturba-
tion analysis of the metric given below, it can be shown that the conjugate gradient
method di↵ers from its flat space counterpart only by cubic and higher terms close to
the solution; therefore, a flat space conjugate gradient method modified by projecting
search directions to the constraint’s tangent space will converge superlinearly. This
is basically the method proposed by Bradbury and Fletcher [9] and others for the
single eigenvector case. For the Grassmann (invariant subspace) case, we have per-
formed line searches of the function �(t) = trQ(t)TAQ(t), where Q(t)R(t) := Y + t�
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is the compact QR decomposition and Y T� = 0. The QR decomposition projects
the solution back to the constraint surface at every iteration. Tangency of the search
direction at the new point is imposed via the projection I � Y Y T .

The thick gray curve (CG-3) illustrates the superlinear convergence of this method
when the Polak–Ribière formula is used. The Fletcher–Reeves formula yields similar
results. In contrast, the thin gray curve (CG-4) shows convergence when conjugacy
through the matrix A is used, i.e., �k = �(HT

kAGk+1

)/(HT
kAHk), which has been

proposed by several authors [67, Eq. (5)], [19, Eq. (32)], [36, Eq. (20)]. This method
cannot be expected to converge superlinearly because the matrix A is in fact quite
di↵erent from the true Hessian on the constraint surface. This issue is discussed
further in section 4.4.

To compare the performance of Newton’s method to the Rayleigh quotient itera-
tion (RQI), which approximates Newton’s method to high order (or vice versa), RQI
is applied to the approximate conjugate gradient method’s twelfth iterate, shown by
the dashed thick gray curve (NT-2).

3.5.2. Orthogonal procrustes problem on the Stiefel manifold. The or-
thogonal Procrustes problem [32]

min
Y 2Vn, p

kAY �BkF A, B given matrices,(3.5)

is a minimization problem defined on the Stiefel manifold that has no known analytical
solution for p di↵erent from 1 or n. To ensure that the objective function is smooth
at optimum points, we shall consider the equivalent problem

min
Y 2Vn, p

1

2
kAY �Bk2F .(3.6)

Derivatives of this function appear at the end of section 3.2. MATLAB code
for Newton’s method applied to this problem appears below. Convergence of this
algorithm for the case V

5, 3 and test matrices A and B is illustrated in Figure 3.2 and
Table 3.1. The quadratic convergence of Newton’s method and the conjugate gradient
algorithm is evident. The dimension of V

5,3 equals 3(3� 1)/2 + 6 = 9; therefore, the
accuracy of the conjugate gradient should double every nine iterations, as it is seen
to do in Figure 3.2. Note that the matrix B is chosen such that a trivial solution
Ŷ = In, p to this test optimization problem is known.

MATLAB Code for Procrustes Problem on the Stiefel Manifold

n = 5; p = 3;

A = randn(n);

B = A*eye(n,p);

Y0 = eye(n,p); % Known solution Y0

H = 0.1*randn(n,p); H = H - Y0*(H’*Y0); % small tangent vector H at Y0

Y = stiefgeod(Y0,H); % Initial guess Y (close to know solution Y0)

% Newton iteration (demonstrate quadratic convergence)

d = norm(Y-Y0,’fro’)

while d > sqrt(eps)

Y = stiefgeod(Y,procrnt(Y,A,B));

d = norm(Y-Y0,’fro’)

end
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Fig. 3.2. Convergence of the conjugate gradient and Newton’s method for the orthogonal Pro-
crustes problem on the Stiefel manifold V

5, 3. The error is the Frobenius norm between the ith iterate
and the known solution. Quadratic convergence of the conjugate gradient and Newton methods is
evident. The Newton iterates correspond to those of Table 3.1.

function stiefgeod

function [Yt,Ht] = stiefgeod(Y,H,t)

%STIEFGEOD Geodesic on the Stiefel manifold.

% STIEFGEOD(Y,H) is the geodesic on the Stiefel manifold

% emanating from Y in direction H, where Y’*Y = eye(p), Y’*H =

% skew-hermitian, and Y and H are n-by-p matrices.

%

% STIEFGEOD(Y,H,t) produces the geodesic step in direction H scaled

% by t. [Yt,Ht] = STIEFGEOD(Y,H,t) produces the geodesic step and the

% geodesic direction.

[n,p] = size(Y);

if nargin < 3, t = 1; end

A = Y’*H; A = (A - A’)/2; % Ensure skew-symmetry

[Q,R] = qr(H - Y*A,0);

MN = expm(t*[A,-R’;R,zeros(p)]); MN = MN(:,1:p);

Yt = Y*MN(1:p,:) + Q*MN(p+1:2*p,:); % Geodesic from (2.45)

if nargout > 1, Ht = H*MN(1:p,:) - Y*(R’*MN(p+1:2*p,:)); end

% Geodesic direction from (3.3)
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Table 3.1
Newton’s method applied to the orthogonal Procrustes problem on the Stiefel manifold using

the MATLAB code given in this section. The matrix A is given below the numerical results, and
B = AI

5, 3. The quadratic convergence of Newton’s method, shown by the Frobenius norm of the

di↵erence between Yi and Ŷ = I
5,3, is evident. This convergence is illustrated in Figure 3.2. It is

clear from this example that the di↵erence Yi � Ŷ approaches a tangent vector at Ŷ = In, p, i.e.,

Ŷ T (Yi � Ŷ ) ! skew-symmetric.

Iterate i kYi � Ŷ kF Yi

0 2.68⇥ 10�01

0

@
0.98341252163956 �0.09749309852408 �0.06630579165572
0.08482117605077 0.99248149019173 �0.02619408666845
0.08655810575052 0.02896396566088 0.98816425471159
0.01388126419090 0.00902267322408 0.00728525462855
0.13423928340551 0.06749272129685 �0.13563090573981

1

A

1 6.71⇥ 10�02

0

@
0.99954707914921 0.01554828497046 0.00423211303447
�0.01656743168179 0.99905154070826 0.01216605832969
�0.00306529752246 �0.01070234416262 0.99915251911577
�0.00910501510207 �0.01286811040265 0.00924631200657
�0.02321334579158 �0.03706941336228 0.03798454294671

1

A

2 1.49⇥ 10�02

0

@
0.99993878247585 0.00296823825310 0.00486487784745
�0.00301651579786 0.99998521441661 0.00192519989544
�0.00479673956404 �0.00191288709538 0.99996440819180
�0.00311307788732 �0.00157358730922 0.00121316839587
�0.00897953054292 �0.00382429023234 0.00650669969719

1

A

3 9.77⇥ 10�05

0

@
0.99999999888990 0.00000730457866 �0.00003211124313
�0.00000730341460 0.99999999951242 0.00000603747062

0.00003210887572 �0.00000603508216 0.99999999682824
0.00000457898008 �0.00001136276061 0.00002209393458
0.00003339025497 �0.00002750041840 0.00006919392999

1

A

4 4.81⇥ 10�08

0

@
1.00000000000000 0.00000000813187 0.00000001705718
�0.00000000813187 1.00000000000000 0.00000000613007
�0.00000001705718 �0.00000000613007 1.00000000000000
�0.00000001001345 �0.00000000397730 0.00000000429327
�0.00000002903373 �0.00000000827864 0.00000002197399

1

A

5 2.07⇥ 10�15

0

@
1.00000000000000 0.00000000000000 0.00000000000000
0.00000000000000 1.00000000000000 0.00000000000000
0.00000000000000 0.00000000000000 1.00000000000000
0.00000000000000 0.00000000000000 0.00000000000000
0.00000000000000 0.00000000000000 0.00000000000000

1

A

A =
0

@
0.59792470347241 �1.60148995048070 1.29611959631725 0.00742708895676 �0.09653196026400
�0.34991267564713 1.03005546700300 0.38145454055699 0.14195063498923 �0.16309797180034

0.16783050038338 0.51739189509778 �0.42204935150912 1.75394028742695 �0.63865179066515
0.24927536521443 �1.34694675520019 0.92362255783368 0.62648865033822 �0.31561702752866
�0.24846337483192 �0.44239067350975 �1.52598136000449 0.89515519875598 0.87362106204727

1

A

function procrnt

function H = procrnt(Y,A,B)

%PROCRNT Newton Step on Stiefel Manifold for 1/2*norm(A*Y-B,’fro’)^2.

% H = PROCRNT(Y,A,B) computes the Newton step on the Stiefel manifold

% for the function 1/2*norm(A*Y-B,’fro’)^2, where Y’*Y = eye(size(Y,2)).

[n,p] = size(Y);

AA = A’*A; FY = AA*Y - A’*B; YFY = Y’*FY; G = FY - Y*YFY’;

% Linear conjugate gradient to solve a Newton step

dimV = p*(p-1)/2 + p*(n-p); % == dim Stiefel manifold
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% This linear CG code is modified directly from Golub and Van Loan [45]

H = zeros(size(Y)); R1 = -G; P = R1; P0 = zeros(size(Y));

for k=1:dimV

normR1 = sqrt(stiefip(Y,R1,R1));

if normR1 < prod(size(Y))*eps, break; end

if k == 1, beta = 0; else, beta = (normR1/normR0)^2; end

P0 = P; P = R1 + beta*P; FYP = FY’*P; YP = Y’*P;

LP = AA*P - Y*(P’*AA*Y) ... % Linear operation on P

- Y*((FYP-FYP’)/2) - (P*YFY’-FY*YP’)/2 - (P-Y*YP)*(YFY/2);

alpha = normR1^2/stiefip(Y,P,LP); H = H + alpha*P;

R0 = R1; normR0 = normR1; R1 = R1 - alpha*LP;

end

function stiefip

function ip = stiefip(Y,A,B)

%STIEFIP Inner product (metric) for the Stiefel manifold.

% ip = STIEFIP(Y,A,B) returns trace(A’*(eye(n)-1/2*Y*Y’)*B),

% where Y’*Y = eye(p), Y’*A & Y’*B = skew-hermitian, and Y, A,

% and B are n-by-p matrices.

ip = sum(sum(conj(A).*(B - Y*((Y’*B)/2)))); % Canonical metric from (2.39)

3.6. Convergence rates of approximate methods. The algorithms pre-
sented in the previous sections are idealized in that geometrically natural ideas such
as geodesics and parallel translation are used in their definitions. However, approx-
imations can yield quadratic rates of convergence. In the limit, the Riemannian
algorithms approach their Euclidean counterparts in the tangent plane of the solution
point. A perturbation analysis shows which terms are necessary and which terms are
not necessary to achieve quadratic convergence. The following argument holds for
any Riemannian manifold and, therefore, applies to either the Grassmann or Stiefel
manifold case.

Consider the conjugate gradient method applied to a function F (Y ) starting at a
point Y within distance ✏ (small) of the solution Ŷ . For a manifold of dimension d, we
must perform a sequence of d steps that take us within distance O(✏2) of the solution
Ŷ . The Riemannian conjugate gradient method

H
new

= �G
new

+ �⌧H
old

, � =
hG

new

� ⌧G
old

, G
new

i
kG

old

k2 ;

Y
new

= Y (t
min

), Y (0) = Y
old

, Ẏ (0) = H
new

does this, but we wish to approximate this procedure. Within a ball of size O(✏)
around Ŷ , these quantities have sizes of the following orders:

Order Quantity

O(1) t
min

, �
O(✏) G, H (new or old)
O(✏2) kGk2, kHk2 (new or old)
O(✏3) h⌧G

old

, G
new

i

Also, by perturbation analysis of the Riemannian metric [18], [79, Vol. 2, Chap. 4,
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Props. 1 and 6], we have

Y (✏) = Y (0) + ✏� +O(✏3),

⌧G(✏) = G+O(✏2),

h , i = I +O(✏2),

where Y (✏) is a geodesic in direction �, ⌧G(✏) is parallel translation of G along Y (✏),
and the last approximation is valid for an orthonormal basis of the tangent plane
at Y (✏�) and I is the identity.

Inserting these asymptotics into the formulas for the conjugate gradient method
shows that near the solution, eliminating the Riemannian terms gives O(✏3) perturba-
tions of the conjugate gradient sequence and, therefore, does not a↵ect the quadratic
rate of convergence. Furthermore, it can also be seen that eliminating the Polak–
Ribière term �h⌧G

old

, G
new

i
�
kG

old

k2, yielding the Fletcher–Reeves algorithm, per-
turbs the conjugate gradient sequence by O(✏2) terms, which does not a↵ect the
quadratic rate of convergence. Thus the approximate conjugate gradient methods
discussed in section 3.5.1 converge quadratically.

4. Examples: Insights and applications. In this section, we consider ideas
from the literature as applications of the framework and methodology developed in
this paper. It is our hope that some readers who may be familiar with the algorithms
presented here will feel that they now really see them with a new deeper but ultimately
clearer understanding. It is our further hope that developers of algorithms that may
somehow seem new will actually find that they also already fit inside of our geometrical
framework. Finally, we hope that readers will see that the many algorithms that have
been proposed over the past several decades are not just vaguely connected to each
other, but are elements of a deeper mathematical structure. The reader who sees the
depth and simplicity of section 4.10, say, has understood our message.

4.1. Rayleigh quotient iteration. If A is a symmetric matrix, it is well known
that RQI is a cubically convergent algorithm. It is easy to derive formulas and show
that it is true; here, we will explain our view of why it is true. Let r(x) denote the
Rayleigh quotient xTAx, and, abusing notation, let r(✓) denote the Rayleigh quotient
on a geodesic with ✓ = 0 corresponding to an eigenvector of A.

Here is the intuition. Without writing down any formulas, it is obvious that r(✓)
is an even function of ✓; hence ✓ = 0 is an extreme point. Newton’s optimization
method, usually quadratically convergent, converges cubically on nondegenerate even
functions. Keeping in mind that A � r(x)I is the second covariant derivative of the
Rayleigh quotient, inverting it must amount to applying Newton’s method. Following
this intuition, RQI must converge cubically. The intuition is that simple.

Indeed, along a geodesic, r(✓) = � cos2 ✓+↵ sin2 ✓ (we ignore the degenerate case
↵ = �). The kth step of Newton’s method for the univariate function r(✓) is readily
verified to be

✓k+1

= ✓k � 1

2

tan(2✓k) = � 4

3

✓3k +O(✓5k).

We think of updating ✓ as moving along the circle. If we actually moved tangent to
the circle by the Newton update � 1

2

tan(2✓k) and then projected to the circle, we
would have the RQI

✓k+1

= ✓k � arctan
�

1

2

tan(2✓k)
�

= �✓3k +O(✓5k).
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θ
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−θ3

θ3−43−

Fig. 4.1. Cubic convergence of RQI and Newton’s method applied to Rayleigh’s quotient. The
vector ⇠ is an eigenvector.

This is the mechanism that underlies RQI. It “thinks” Newton along the geodesic,
but moves along the tangent. The angle from the eigenvector goes from ✓ to �✓3
almost always. (Readers comparing with Parlett [65, Eq. (4-7-3)] will note that only
positive angles are allowed in his formulation.)

When discussing the mechanism, we only need one variable: ✓. This is how the
mechanism should be viewed because it is independent of the matrix, eigenvalues, and
eigenvectors. The algorithm, however, takes place in x space. Since A� r(x)I is the
second covariant derivative of r(x) in the tangent space at x, the Newton update � is
obtained by solving ⇧(A � r(x)I)� = �⇧Ax = �(A � r(x)I)x, where ⇧ = I � xxT

is the projector. The solution is � = �x+ y/(xT y), where y = (A� r(x)I)�1x. The
Newton step along the tangent direction is then x ! x + � = y/(xT y), which we
project to the unit sphere. This is exactly an RQI step. These ideas are illustrated
in Figure 4.1.

One subtlety remains. The geodesic in the previous paragraph is determined by
x and the gradient rather than x and the eigenvector. The two geodesics converge to
each other by the inverse iteration process (almost always) allowing the underlying
mechanism to drive the algorithm.

One trivial example where these issues arise is the generalization and derivation of
Davidson’s method [74, 26, 22]. In this context there is some question as to the inter-
pretation of D��I as a preconditioner. One interpretation is that it preconditions the
eigenproblem by creating better eigenvalue spacings. We believe that there is a more
appropriate point of view. In linear conjugate gradient for Ax = b, preconditioners
are used to invert M which is an approximation to A (the Hessian of 1

2

xTAx� xT b)
against the gradient. This is an approximate Newton step. In nonlinear conjugate
gradient, there is no consensus as to whether inverting the Hessian (which is approx-
imated by D � �I!) would constitute the ideal preconditioner, but it is a Newton
step. Therefore, with the link between nonlinear conjugate gradient preconditioning
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and approximate Newton step, we see that Davidson’s method is deserving of being
called a preconditioner from the conjugate gradient point of view.

4.2. Coordinate singularities of symmetric matrices. An important open
problem in numerical linear algebra is the complete understanding of the influence of
singularities on computations [52, 17]. In this section we shall describe the singularity
associated with multiple eigenvalues of symmetric matrices in terms of coordinate
singularities, i.e., the breakdown of the coordinate representation. In section 4.10, we
will describe how understanding this coordinate singularity underlies a regularization
approach to eigenvalue optimization.

Matrix factorizations are nothing more than changes in variables or coordinate
changes. In the plane, Cartesian and polar coordinates both give orthogonal systems,
but polar coordinates have a coordinate singularity at the origin. A small perturbation
near the origin can violently change the angle coordinate. This is ill-conditioning. If
the r coordinate goes through the origin we have a singularity of the form |r|.

Consider traceless, symmetric, 2-by-2 matrices as follows:

A =

✓
x y
y �x

◆
.

The positive eigenvalue is r =
p
x2 + y2, and one of the orthogonal eigenvectors

is ( cos

1
2 ✓

sin

1
2 ✓

), where tan ✓ = y/x. The conversion between matrix elements and the

eigendecomposition is exactly the conversion from Cartesian to polar coordinates.
Whatever ill-conditioning one associates with a symmetric matrix with two close
eigenvalues, it is the same numerical di�culty associated with the origin in polar
coordinates. The larger eigenvalue behaves like |r| at the origin, and the eigenvector
behaves like ✓ changing violently when perturbed. If one wants to think about all
2-by-2 symmetric matrices, add z as the trace, and the resulting interpretation is
cylindrical coordinates.

We now generalize. Let Sn be the space of n-by-n symmetric matrices. Suppose
that the largest p eigenvalues �

1

, . . . ,�p coalesce. The corresponding eigenvectors are
not uniquely determined, but the invariant subspace is. Convenient parameterizations
are

Sn ⌘ Symmetric Matrices = Rp ⇥ Vn, p ⇥ Sn�p,
Sn, p ⌘ {Sn : �

1

has multiplicity p } = R⇥Gn, p ⇥ Sn�p.

That is, any symmetric matrix may be parameterized by its p largest eigenvalues,
the corresponding eigenvectors in order, and the (n � p)-by-(n � p) symmetric op-
erator on the space orthogonal to these eigenvectors. To parameterize a symmetric
matrix with eigenvalue � of multiplicity p, we must specify the invariant subspace
corresponding to this eigenvalue and, once again, the (n � p)-by-(n � p) symmetric
operator on the orthogonal subspace. It is worth mentioning that the parameters in
these decompositions give an orthonormal system (surfaces with constant parameters
intersect orthogonally). The codimension of Sn, p in Sn is p(p+ 1)/2� 1, obtained by
adding p� 1 (corresponding to �

2

, . . . , �p) to p(p� 1)/2 (the codimension of Gn, p in
Vn, p).

Another interpretation of the well-known fact that when eigenvalues coalesce,
eigenvectors, but not invariant subspaces, are ill-conditioned, is that the Stiefel man-
ifold collapses to the Grassmann manifold. As with polar coordinates we have a
coordinate singularity corresponding to ill-conditioning near Sn, p. Near this set, a
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small perturbation will violently move the Stiefel component. The singularity asso-
ciated with the coalescing of eigenvalues is very much the singularity of the function
f(x) = |x|.

4.3. The CS decomposition. The CS decomposition [45] should be recognized
as the geodesic between two points on the Grassmann manifold. Any n-by-n orthog-
onal matrix Q may be written as

Q =

✓
V 0
0 U

◆0

@
C �S 0
S C 0
0 0 I

1

A
✓
Ṽ 0
0 Ũ

◆T
(4.1)

for some p-by-p orthogonal matrices V and Ṽ and (n � p)-by-(n � p) orthogonal
matrices U and Ũ , and p angles ✓i where C = diag(cos ✓

1

, . . . , cos ✓p) and S =
diag(sin ✓

1

, . . . , sin ✓p). Comparing this with the geodesic formula (2.65) and letting
✓i = t�i (i = 1, . . . , p) where �i are the diagonal elements of ⌃, we see that the first p
columns of the CS decomposition traverse a geodesic emanating from Y (0) = ( I

0

) (the
origin). The next p columns give an orthogonal basis for the velocity vector along the
geodesic (in fact, they are the orthogonal component of its polar decomposition).

As is well known, the ✓i are the principal angles between the subspaces spanned
by the first p columns of Q and the origin. In general, let ✓i (i = 1, . . . , p) be
the principal angles between the two subspaces spanned by the columns of n-by-p
orthonormal matrices Y

1

and Y
2

, i.e., U(cos ⇥)V T is the singular value decomposition
of Y T

1

Y
2

, where ⇥ is the diagonal matrix of principal angles. Also let ✓ and sin ✓
represent the p-vectors formed by the ✓i and sin ✓i. These principal angles provide
several di↵erent definitions of the distance between two subspaces as follows:

1. arc length: d(Y
1

, Y
2

) = k✓k
2

,
2. Fubini-Study: d

FS

(Y
1

, Y
2

) = arccos |detY T
1

Y
2

| = arccos(
Q

i cos ✓i),
3. chordal 2-norm: dc2(Y1

, Y
2

) = kY
1

U � Y
2

V k
2

= k2 sin 1

2

✓k1,
4. chordal Frobenius-norm: dcF (Y

1

, Y
2

) = kY
1

U � Y
2

V kF = k2 sin 1

2

✓k
2

,
5. projection 2-norm [45]: dp2(Y1

, Y
2

) = kY
1

Y T
1

� Y
2

Y T
2

k
2

= k sin ✓k1,
6. projection F-norm: dpF (Y

1

, Y
2

) = 2�1/2kY
1

Y T
1

� Y
2

Y T
2

kF = k sin ✓k
2

.
The arc length distance is derived from the intrinsic geometry of the Grassmann

manifold. The chordal 2-norm and Frobenius-norm distances are derived by em-
bedding the Grassmann manifold in the vector space Rn⇥p, then using the 2- and
Frobenius-norms, respectively, in these spaces. Note that these distances may be
obtained from the minimization problems

dc2 or cF (Y
1

, Y
2

) = min
Q1, Q22Op

kY
1

Q
1

� Y
2

Q
2

k
2 or F .

The projection matrix 2-norm and Frobenius-norm distances are derived by embed-
ding the Grassmann manifold in the set of n-by-n projection matrices of rank p, then
using the 2- and Frobenius-norms, respectively. The Fubini-Study distance is derived
via the Plücker embedding of Gn, p into the projective space P(

Vp(Rn)) (by taking
wedge products between all columns of Y ), then using the Fubini-Study metric [54].2

Note that all metrics except the chordal and projection matrix 2-norm distances are
asymptotically equivalent for small principal angles, i.e., these embeddings are isome-
tries, and that for Y

1

6= Y
2

we have the strict inequalities

d(Y
1

, Y
2

) > d
FS

(Y
1

, Y
2

),(4.2)

2We thank Keith Forsythe for reminding us of this distance.
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d(Y
1

, Y
2

) > dcF (Y
1

, Y
2

) > dpF (Y
1

, Y
2

),(4.3)

d(Y
1

, Y
2

) > dcF (Y
1

, Y
2

) > dc2(Y1

, Y
2

),(4.4)

d(Y
1

, Y
2

) > dpF (Y
1

, Y
2

) > dp2(Y1

, Y
2

).(4.5)

These inequalities are intuitively appealing because by embedding the Grassmann
manifold in a higher dimensional space, we may “cut corners” in measuring the dis-
tance between any two points.

4.4. Conjugate gradient for the eigenvalue problem. Conjugate gradient
algorithms to minimize 1

2

yTAy (A symmetric) on the sphere (p = 1) is easy and
has been proposed in many sources. The correct model algorithm for p > 1 pre-
sented in this paper is new. We were at first bewildered by the number of variations
[2, 9, 33, 34, 3, 39, 35, 36, 69, 70, 38, 67, 19, 46, 93], most of which propose “new” algo-
rithms for conjugate gradient for the eigenvalue problem. Most of these algorithms are
for computing extreme eigenvalues and corresponding eigenvectors. It is important to
note that none of these methods are equivalent to Lanczos [31]. It seems that the cor-
rect approach to the conjugate gradient algorithm for invariant subspaces (p > 1) has
been more elusive. We are only aware of three papers [2, 70, 36] that directly consider
conjugate gradient style algorithms for invariant subspaces of dimension p > 1. None
of the proposed algorithms are quite as close to the new idealized algorithms as the
p = 1 algorithms are. Each is missing important features which are best understood
in the framework that we have developed. We discuss these algorithms below.

The simplest nontrivial objective function on the Grassmann manifold Gn, p is
the quadratic form

F (Y ) =
1

2
trY TAY,

where A is a symmetric n-by-n matrix. It is well known that the solution to the
minimization of F is the sum of the p smallest eigenvalues of A, with an optimal Y
providing a basis for the invariant subspace corresponding to the p smallest eigenval-
ues.

To solve the eigenvalue problem, one may use the template directly from sec-
tion 3.3 after deriving the gradient

rF (Y ) = AY � Y (Y TAY )

and the second covariant derivative of F (Y )

HessF (�
1

,�
2

) = tr
�
�T

1

A�
2

� (�T
1

�
2

)Y TAY
�
.

The line minimization problem may be solved as p separate two-by-two problems
in parallel, or it may be solved more completely by solving the 2p-by-2p eigenvalue
problem. This does not follow the geodesic directly, but captures the main idea of the
block Lanczos algorithm which in some sense is optimal [23, 24].

If one is really considering the pure linear symmetric eigenvalue problem, then
pure conjugate gradient style procedures must be inferior to Lanczos. Every step of
all proposed nonpreconditioned conjugate gradient algorithms builds vectors inside
the same Krylov space in which Lanczos gives an optimal solution. However, explor-
ing conjugate gradient is worthwhile. When the eigenvalue problem is nonlinear or
the matrix changes with time, the Lanczos procedure is problematic because it stub-
bornly remembers past information that perhaps it would do well to forget. (Linear
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conjugate gradient, by contrast, benefits from the memory of this past information.)
Applications towards nonlinear eigenvalue problems or problems that change in time
drive us to consider the conjugate gradient method. Even the eigenvalue problem still
plays a worthy role: it is the ideal model problem that allows us to understand the
procedure much the way the Poisson equation on the grid is the model problem for
many linear equation solvers.

Conjugate gradient on the sphere (p = 1) computes the smallest eigenvalue of a
symmetric matrix A. Two papers [67, 19] consider imposing conjugacy through A.
This is an unfortunate choice by itself because A is quite di↵erent from the Hessian
A � r(x)I, where r(x) is the Rayleigh quotient. A few authors directly consider
conjugacy through the unconstrained Hessian [39, 93]. Others attempt to approximate
conjugacy through the Hessian by using Polak–Ribiére or Fletcher–Reeves [9, 33, 34,
3, 35, 38, 46, 93, 69]. It is quite possible that most of these variations might well
be competitive with each other and also our idealized algorithm, but we have not
performed the numerical experiments because ultimately the p = 1 case is so trivial. A
comparison that may be of more interest is the comparison with restarted Lanczos. We
performed an informal numerical experiment that showed that the conjugate gradient
method is always superior to two step Lanczos with restarts (as it should be since
this is equivalent to the steepest descent method), but is typically slightly slower than
four step Lanczos. Further experimentation may be needed in practice.

Turning to the p > 1 case, the three papers that we are aware of are [2, 70,
36]. The algorithm proposed in Alsén [2], has a built-in extra feature not in the
idealized algorithm. Though this may not be obvious, it has one step of orthogonal
iteration built in. This may be viewed as a preconditioning procedure giving the
algorithm an advantage. The Sameh–Wisniewski [70] algorithm begins with many of
the ideas of an idealized Grassmann algorithm, including the recognition of the correct
tangent on the Grassmann manifold (though they only mention imposing the Stiefel
constraint). Informal experiments did not reveal this algorithm to be competitive,
but further experimentation might be appropriate. The more recent Fu and Dowling
algorithm [36] imposes conjugacy through A and, therefore, we do not expect it to be
competitive.

4.5. Conjugate gradient for the generalized eigenvalue problem. It is
well known that the generalized eigenvalue problem Ax = �Bx may also be posed as
a constrained optimization problem. Now we must find

min trY TAY

subject to the constraint that

Y TBY = Ip.

With the change of variables

Ȳ = B1/2Y,(4.6)

�̄ = B1/2�,(4.7)

Ā = B�1/2AB�1/2(4.8)

the problem becomes

min tr Ȳ TĀȲ subject to Ȳ T Ȳ = Ip.
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The numerical algorithm will be performed on the nonoverlined variables, but the
algorithm will be mathematically equivalent to one performed on the overlined vari-
ables.

Notice that the condition on tangents in this new coordinate system is that

�TBY = 0.

It is readily checked that the gradient of the trace minimization problem becomes

G = (B�1 � Y Y T )AY

(note that GTBY = 0).
Geodesics may be followed in any direction � for which �TBY = 0 by computing

a compact variation on the SVD of � as follows:

� = U⌃V T , where UTBU = I.

For simplicity, let us assume that � has full rank p. The V vectors are the
eigenvectors of the matrix �TB�, while the U vectors are the eigenvectors of the
matrix ��TB corresponding to the nonzero eigenvalues. There is also a version
involving the two matrices

0

@
0 0 �
B 0 0
0 �T 0

1

A and

0

@
0 0 B

�T 0 0
0 � 0

1

A .

This SVD may be expressed in terms of the quotient SVD [45, 27].
Given the SVD, we may follow geodesics by computing

Y (t) = (Y V U )

✓
C
S

◆
V T .

All the Y along this curve have the property that Y TBY = I. For the problem of
minimizing 1

2

trY TAY , line minimization decouples into p two-by-two problems just
as in the ordinary eigenvalue problem.

Parallel transport, conjugacy, and the second covariant derivative may all be
readily worked out.

4.6. Electronic structures computations. In this section, we briefly survey
a research area where conjugate gradient minimization of nonquadratic but smooth
functions on the Stiefel and Grassmann manifolds arise, the ab initio calculation of
electronic structure within the local density approximation. Such approaches use only
the charge and mass of electrons and atomic nuclei as input and have greatly furthered
understanding of the thermodynamic properties of bulk materials [12], the structure
and dynamics of surfaces [51, 61], the nature of point defects in crystals [60], and
the di↵usion and interaction of impurities in bulk materials [84]. Less than ten years
ago, Car and Parrinello [13] in a watershed paper proposed minimization through
simulated annealing. Teter and Gillan [42, 83] later introduced conjugate gradient
based schemes and demonstrated an order of magnitude increase in the convergence
rate. These initial approaches, however, ignored entirely the e↵ects of curvature on
the choice of conjugate search directions. Taking the curvature into partial account
using a generalization of the Riemannian projection led to a further improvement in
computation times by over a factor of three under certain conditions [5].
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Our ability to compute ab initio, using only the charge and mass of electrons
and atomic nuclei as input, the behavior of systems of everyday matter has advanced
greatly in recent years. However, the computational demands of the approach and
the attendant bounds on the size of systems which may be studied (several hundred
atoms) have limited the direct impact of the approach on materials and chemical
engineering. Several ab initio applications which will benefit technology tremendously
remain out of reach, requiring an order of magnitude increase in the size of addressable
systems. Problems requiring the simultaneous study of thousands of atoms include
defects in glasses (fiber optics communications), complexes of extended crystalline
defects (materials’ strength and processing), and large molecules (drug design).

The theoretical problem of interest is to find the smallest eigenvalue E
0

of the
Schrödinger equation in the space of 3N -dimensional skew-symmetric functions,

H = E
0

 ,

where the Hamiltonian operator H is defined by

H =
X

1nN

✓
�1

2
r2

n + Vion(rn)

◆
+

1

2

X

1<n⌧mN

1

krn � rmk2
.

Here, N is the number of electrons in the system under study, now typically on the
order of several hundred, ri is the position of the ith electron, Vion(r) is the potential
function due to the nuclei and inner electrons, and the second summation is recognized
as the usual Coulomb interactions. Directly discretizing this equation at M gridpoints
in space would lead to absurdly huge eigenvalue problems where the matrix would
be MN -by-MN . This is not just a question of dense versus sparse methods, a direct
approach is simply infeasible.

The fundamental theorems which make the ab initio approach tractable come
from the density functional theory of Hohenberg and Kohn [50] and Kohn and Sham
[55]. Density functional theory states that the ground states energy of a quantum
mechanical system of interacting electrons and ions is equal to the solution of the
problem of minimizing an energy function over all possible sets of N three-dimensional
functions (electronic orbitals) obeying the constraints of orthonormality. Practical
calculations generally use a finite basis to expand the orbitals, but for purposes of
discussion, we may discretize the problem onto a finite spatial grid consisting of M
points. The Kohn–Sham minimization then becomes

E
0

= min
XTX=IN

E(X)(4.9)

⌘ min
XTX=IN

tr(XTHX) + f
�
⇢(X)

�
,

where each column ofX is a di↵erent electronic orbital sampled on the spatial grid, ⇢ is
the vector ⇢i(X) ⌘

P
n |Xin|2, H is an M -by-M matrix (single-particle Hamiltonian),

and f is a function which we leave unspecified in this discussion. In full generality
the X are complex, but the real case applies for physical systems of large extent that
we envisage for this application [66], and we, accordingly, take X to be real.

Recent advances in computers have enabled such calculations on systems with
several hundreds of atoms [4, 11]. Further improvements in memory and performance
will soon make feasible computations with upwards of a thousand atoms. However,
with growing interest in calculations involving larger systems has come the awareness
that as the physical length of systems under study increases, the Hessian about the
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minimum of (4.9) becomes increasingly ill-conditioned and nonconjugate minimization
approaches exhibit a critical slowing down [83]. This observation prompted workers
[42, 83] to apply conjugate gradient concepts to the problem, and now dozens of
researchers have written papers using some form of the conjugate gradient method.
In particular, one has a Grassmann problem when the number of electrons in each
state is constant (i.e., two one spin up and one spin down). This is what happens in
calculations on semiconductors and “closed shell” atoms and molecules. Otherwise,
one has a Stiefel problem such as when one has metals or molecules with partially
filled degenerate states.

The framework laid out in this paper may be of practical use to the ab initio
density-functional community when the inner product computation through the Hes-
sian of E(X) is no more computationally complex to evaluate than calculating the
energy function E(X) or maintaining the orthonormality constraints XTX = IN . A
suitable form for this inner product computation is

1

2

X

in, jm

Yin
@2E

@Xin@Xjm
Zjm = tr

�
Y T (H + V )Z

�
+
X

ij

�i

✓
2
@2f

@⇢i@⇢j

◆
⌧j(4.10)

� tr
�
XT (H + V )(XY TZ)

�
,

where V is the diagonal matrix defined by Vij = (@f/@⇢i)�ij , �i ⌘
P

n YinXin,
⌧i ⌘

P
n ZinXin. Written this way, the first two terms of (4.10) have the same

form and may be evaluated in the same manner as the corresponding terms in (4.9),
with � and ⌧ playing roles similar to ⇢. The third term, coming from the curvature,
may be evaluated in the same way as the first term of (4.10) once given the object
XY TZ, which is no more computationally complex to obtain than the Gram–Schmidt
orthonormalization of an object like X.

4.7. Subspace tracking. The problem of computing the principal invariant
subspace of a symmetric or Hermitian matrix arises frequently in signal processing
applications, such as adaptive filtering and direction finding [64, 72, 6, 73, 68]. Fre-
quently, there is some time-varying aspect to the signal processing problem, and a
family of time-varying principal invariant subspaces must be tracked. The variations
may be due to either the addition of new information as in covariance matrix up-
dating, a changing signal environment, or both. For example, compute the principal
invariant subspace of either of the covariance matrices

Rk = Rk�1

+ xkx
T
k k = 1, 2, . . . , and xk is given,(4.11)

R(t) = a continuous function of t(4.12)

at every iteration or at discrete times. Equation (4.11) typically arises from updating
the sample covariance matrix estimate; (4.12), the more general case, arises from a
time-varying interference scenario, e.g., interference for airborne surveillance radar
[85, 77]. Solving this eigenvalue problem via the eigenvalue or singular value decom-
positions requires a large computational e↵ort. Furthermore, only the span of the
first few principal eigenvectors may be required, whereas decomposition techniques
compute all eigenvectors and eigenvalues, resulting in superfluous computations. Ap-
proaches to this problem may be classified as standard iterative methods [44], methods
exploiting rank 1 updates [64, 53, 73, 94, 58, 81, 14, 57], i.e., (4.11), Lanczos based
methods [20, 91, 90], gradient based methods [64, 92, 10], conjugate gradient based
methods [38, 19, 71, 93, 75, 36, 78], which are surveyed by Edelman and Smith [31],
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Rayleigh–Ritz based methods [37, 20], and methods that exploit covariance matrix or
array structure [68, 91, 90].

If the subspace does not change quickly over (discrete or continuous) time, then
the desired solution will be close to the previously computed solution, and an iterative
gradient-based algorithm such as the conjugate gradient algorithm may be compu-
tationally attractive for the subspace tracking problem. Thus the subspace tracking
problem is treated as a time-varying optimization problem. Other conjugate gradient
methods for computing principal invariant subspaces in a signal processing context
have appeared [19, 71, 93, 36]; however, these conjugate gradient techniques do not
exploit the structure of the subspace constraint (see section 4.4). Instead, we employ
the conjugate gradient method on the Grassmann manifold, or an approximation of
it discussed in section 3.5. Comon and Golub [20] describe and compare a wide vari-
ety of di↵erent algorithms for the problem of exponential covariance matrix updates,
with particular emphasis on Lanczos and gradient-based algorithms. Yang, Sarkar,
and Arvas [93] survey some conjugate gradient algorithms applied to computing the
principal invariant subspace of a fixed symmetric matrix. We adopt the general as-
sumption that the matrix may change arbitrarily over time, but that it must vary
“slowly enough” so that using a conjugate gradient based approach is computation-
ally e�cient. This last constraint is, of course, dependent upon the application. For
the example of space-time adaptive processing for airborne radar with a rotating
antenna, Smith [78] shows that this method is capable of tracking the principal in-
variant subspace of clutter interference; however, when the interference dimension p
is increased to account for new interference eigenvalues, one does better to compute
the eigendecomposition from scratch and use it to initiate a new subspace track.

4.8. Newton’s method for invariant subspace computations. Methods
for refining estimates for invariant subspace computations have been proposed by
Chatelin [15, 16], Dongarra, Moler, and Wilkinson [29], and Stewart [80]. Demmel
[28, Sect. 3] proposes a unified approach by showing that they are all solutions to a
Riccati equation.

These algorithms, when applied to symmetric matrices, are all variations on our
geometrical Newton algorithm and may be understood in this context. There is noth-
ing special about the eigenvalue problem; Newton’s method for any function on the
Grassmann manifold yields a Sylvester equation in the tangent space. The reason
a Riccati equation arises rather than a Sylvester equation is that the previous algo-
rithms formulate the problem in an a�ne space with arbitrary constraints. Previous
researchers knew the quadratic term in the Riccati equation belonged there and knew
that it somehow is related to the orthogonality constraints, but we now see that it is
an artifact of a flat space derivation.

Let us take a closer look. Previous researchers proposed algorithms for invariant
subspaces by asking for a solution to the matrix equation

AY � Y B = 0

made nondegenerate by imposing the a�ne constraint

ZTY = I

for some arbitrary choice of Z. In the Dongarra et al. case, Z may be obtained
by inverting and transposing an arbitrary p-by-p minor of the n-by-p matrix Y . In
Moler’s Matlab notation Z=zeros(n,p); Z(r,:)=inv(Y(r,:))’, where r denotes a
p-vector of row indices. For Stewart, Z = Y (Y TY )�1.
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A mathematically insightful approach would require no arbitrary choice for Z. We
would simply specify the problem by performing Newton’s method on the function
F (Y ) = 1

2

trY TAY on the Grassmann manifold. The stationary points of F (Y ) are
the invariant subspaces. There is no need to specify any further constraints, and there
are no degeneracies. (Notice that asking for the solution to AY = Y (Y TAY ) subject
to Y TY = I is a degenerate problem.)

Newton’s method requires the solution � to the Sylvester equation

⇧
�
A���(Y TAY )

�
= �⇧AY,

where ⇧ = (I�Y Y T ) denotes the projection onto the tangent space of the Grassmann
manifold and G = ⇧AY is the gradient. The solution is � = �Y +Z(Y TZ)�1, where
Z is the solution to the Sylvester equation AZ � Z(Y TAY ) = Y . Y may be chosen
so that Y TAY is diagonal, yielding simultaneous RQIs. If we move along the tangent
and project rather than the geodesic we have the iteration sending Y to the Q factor
in the QR decomposition of Z.

4.9. Reduced gradient methods, sequential quadratic programming,
and Lagrange multipliers. In this section, we generalize beyond the Stiefel and
Grassmann manifolds to show how the language and understanding of di↵erential ge-
ometry provides insight into well-known algorithms for general nonlinear constrained
optimization. We will show the role that geodesics play in these algorithms. In the
next subsection, we will then apply the geometrical intuition developed here to di-
rectly formulate regularized sequential quadratic programs as is needed in eigenvalue
optimization.

Here we study sequential quadratic programming (SQP) and reduced gradient
methods (RGM). By SQP we mean the algorithm denoted as Newton SQP by Boggs
and Tolle [7, p. 14], SQP by Nash and Sofer [59, p. 512], and QP-based projected
Lagrangian by Gill, Murray, and Wright [41, p. 238, Eq. (6.41)]. By RGM, we specif-
ically mean the method sometimes denoted as the reduced Hessian method [7, p. 25],
other times simply denoted RGM [59, p. 520], and yet other times considered an
example of an RGM [41, p. 221, Eq. (6.17)]. The di↵erence is that RGM is derived
based (roughly) on the assumption that one starts at a feasible point, whereas SQP
does not.

We begin by interpreting geometrically the Lagrangian function as it is used in
constrained optimization. Consider the optimization problem

min
x2Rn

f(x) given the constraint that h(x) = 0 2 Rp.(4.13)

For simplicity we consider the case where the level surfaces h(x) = c are manifolds
(@h/@x has full rank everywhere) and we work with the Euclidean metric. In the
Euclidean case, the formulations are routine in the optimization community, but we
have not seen the geometric intuition (particularly geometric interpretations away
from the optimization point and the role that geodesics play “behind-the-scenes”) in
the optimization references that we have consulted. Numerical Lagrange multiplier
issues are discussed in [40] and [41], for example. In this paper, we give the new
interpretation that the Hessian of the Lagrangian is the correct matrix for computing
second derivatives along geodesics at every point, not only as an approximation to
the result at the optimal point.

At every point x 2 Rn, it is possible to project the gradient of f onto the tangent
space of the level surface through x. This defines a sort of flattened vector field.
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In terms of formulas, projection onto the tangent space (known as computing least-
squares Lagrange multiplier estimates) means finding � that minimizes the norm of

Lx = fx � � · hx,(4.14)

i.e.,

� = fxh
T
x (hxh

T
x )�1.(4.15)

At every point x 2 Rn (not only the optimal point) Lagrange multipliers are the
coordinates of fx in the normal space to a level surface of the constraint, i.e., the row
space of hx. (Our convention is that fx is a 1-by-n row vector, and hx is a p-by-n
matrix whose rows are the linearizations of the constraints.)

If x(t) is any curve starting at x(0) = x that is constrained to the level surface at
x, then Lxẋ computes the derivative of f along the curve. (In other words, Lx is the
first covariant derivative.) The second derivative of f along the curve is

d2

dt2
f
�
x(t)

�
= ẋTLxxẋ+ Lxẍ.(4.16)

At the optimal point Lx is 0, and, therefore, Lxx is a second-order model for f on
the tangent space to the level surface. The vanishing of the term involving Lx at the
optimal point is well known.

The idea that we have not seen in the optimization literature and that we believe
to be new is the geometrical understanding of the quantity at a nonoptimal point:
at any point at all, Lx is tangent to the level surface while ẍ(t) is normal when x
is a geodesic. The second term in (4.16) conveniently vanishes here too because we
are di↵erentiating along a geodesic! Therefore, the Hessian of the Lagrangian has a
natural geometrical, meaning it is the second derivative of f along geodesics on the
level surface, i.e., it is the second covariant derivative in the Euclidean metric.

We now describe the RGM geometrically. Starting at a point x on (or near) the
constraint surface h(x) = 0, the quadratic function

Lxẋ+ 1

2

ẋTLxxẋ

models f (up to a constant) along geodesics emanating from x. The ẋ that minimizes
this function is the Newton step for the minimum for f . Intrinsic Newton would move
along the geodesic in the direction of ẋ a length equal to kẋk. Extrinsically, we can
move along the tangent directly from x to x + ẋ and then solve a set of nonlinear
equations to project back to the constraint surface. This is RGM. It is a static
constrained Newton method in that the algorithm models the problem by assuming
that the points satisfy the constraints rather than trying to dynamically move from
level surface to level surface as does the SQP.

In SQP, we start on some level surface. We now notice that the quadratic function

Lxẋ+ 1

2

ẋTLxxẋ(4.17)

can serve as a model not only for the first and second covariant derivative of f on the
level surface through x but also on level surfaces for points near x. The level surface
through x is specified by the equation hxẋ = 0. Other parallel level surfaces are
hxẋ+ c = 0. The right choice for c is h(x), which is a Newton step towards the level
surface h(x) = 0. Therefore, if the current position is x, and we form the problem
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of minimizing Lxẋ+ 1

2

ẋTLxxẋ subject to the constraint that hxẋ+ h(x) = 0, we are
minimizing our model of f along geodesics through a level surface that is our best
estimate for the constraint h(x) = 0. This is the SQP method.

Practicalities associated with implementing these algorithms are discussed in the
aforementioned texts. Generalizations to other metrics (non-Euclidean) are possible,
but we do not discuss this in detail. Instead we conclude by making clear the re-
lationship between Lagrange multipliers and the Christo↵el symbols of di↵erential
geometry.

To derive the geodesic equation, let f(x) = xk, the kth coordinate of x. From
(4.15), the Lagrange multipliers are hTxk(hxh

T
x )�1. Since fxx = 0 we then have

that the geodesic equations are ẍk = ẋTLk
xxẋ (k = 1, . . . , n), where Lk

xx denotes,
�hTxk(hxh

T
x )�1 · hxx, the Hessian of the Lagrangian function of xk. The matrix

�k = �Lk
xx is the Christo↵el symbol of di↵erential geometry.

4.10. Eigenvalue optimization. The geometric approach allows the formula-
tion of sequential quadratic programming problems when the Lagrange multiplier for-
malism breaks down due to coordinate singularities. Specifically, the geometric insight
from the previous subsection is that during the execution of a sequential quadratic
program there are three types of directions. The first direction is towards the con-
straint manifold. SQP performs a Newton step in that direction. The second family
of directions is parallel to the constraint manifold. SQP forms a quadratic approxima-
tion to the objective function in the parallel level surface obtained from the Newton
step. The remaining directions play no role in an SQP and should be ignored.

Consider the problem of minimizing the largest eigenvalue of A(x), an n-by-n real
symmetric matrix-valued function of x 2 Rm when it is known that at the minimum,
exactly p of the largest eigenvalues coalesce. Overton and Womersley [63] formulated
SQPs for this problem using Lagrange multipliers and sophisticated perturbation
theory. The constraint in their SQP was that the p largest eigenvalues were identical.
Here, we will consider the case of m > p(p + 1)/2. One interesting feature that
they observed was the nondi↵erentiability of the largest eigenvalue at the optimum.
Following the geometry of the previous section, a new algorithm without Lagrange
multipliers may be readily devised. There will be no Lagrange multipliers because
there will be no consideration of the third directions mentioned above.

We will write A for A(x). Let ⇤ = Y TAY , where the orthonormal columns of Y
span the invariant subspace for the p largest eigenvalues of A, �

1

, . . . ,�p. We let
F (A) = �

1

and L(A) = tr(⇤) = �
1

+ · · · + �p. Unlike the function F (A), L(A) is a
di↵erentiable function at the optimal point. One might have guessed that this L(A)
was the right L(A), but here is how one can logically deduce it.

The trick is to rely not on the Lagrange multiplier formalism of constraint func-
tions, but rather on the geometry. Geometry has the power to replace a long com-
plicated derivation with a short powerful one. Once the techniques are mastered,
geometry provides the more intuitive understanding. There is no convenient h(A) to
express the constraint of multiple eigenvalues; artificially creating one leads to unnec-
essary complications due to the coordinate singularity when one moves from the level
surface h(A) = 0 to another level surface. The right way to understand the coordinate
singularity was described in section 4.2. The direction of the Newton step must be
the first order constraint of the coallescing of the eigenvalues. Using the notation of
section 4.2, the parallel directions are the tangent vectors of Sn, p. All other directions
play no role. The natural level surfaces are thereby obtained by shifting the p largest
eigenvalues by a constant and developing the orthogonal eigenvector matrix Q(0) as
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in (2.32).
The message from section 4.9 is that whatever function we are interested in, we

are only interested in the component of the gradient in the direction parallel to Sn, p.
The very construction of a Lagrangian L then may be viewed as the construction of
an appropriate function with the property that Lx is parallel to the tangent vectors
of Sn, p. Of course the tangent space to Sn, p (see section 4.2) includes projection ma-
trices of the form

Pp
i=1

↵iyiyTi , where yi is the eigenvector corresponding to �i, only
when the ↵i are all equal. This corresponds to an identical shift of these eigenvalues.
Therefore, to form the correct gradient of the objective function F (A) = �

1

every-
where, we should replace the true gradient, which is well known to be the spectral
projector y

1

yT
1

, with its component in the direction Y Y T , which is an Sn, p tangent
vector. Integrating, we now see that the act of forming the Lagrangian, which we now
understand geometrically to mean replacing y

1

yT
1

with Y Y T (projecting the gradient
to the surface of uniform shifts), amounts to nothing more than changing the objective
function from F (x) to L(x) = tr(⇤) = trY TAY . While one might have guessed that
this was a convenient Langrangian, we deduced it by projecting the gradient of f(x)
on the tangent space of a level surface. The components of f(x) that we removed
implicitly would have contained the Lagrange multipliers, but since these components
are not well defined at the coordinate singularity, it is of little value to be concerned
with them.

Now we must explicitly consider the dependence of L on x. Our optimization step
is denoted �x, and Ȧ and Ä, respectively, denote [Ax�x] and [Axx�x�x] (notation
from [63]). It is easy to verify that

Lx = trY TȦY,(4.18)

Lxx = tr(Y TÄY + Y TȦẎ + Ẏ TȦY ),(4.19)

where Ẏ is the solution to

Ẏ ⇤� (I � Y Y T )AẎ = (I � Y Y T )ȦY(4.20)

that satisfies Y T Ẏ = 0. The resulting sequential quadratic program over �x is then

minLx +
1

2
Lxx,(4.21)

subject to the linear constraint (on �x) that

Y T ȦY + ⇤ = ↵I,(4.22)

where the scalar ↵ is arbitrary.
Let us explain all of these steps in more detail. The allowable Ẏ are Grassmann

directions, Y T Ẏ = 0. Otherwise, we are not parallel to the constraint surface. Equa-
tion (4.18) is the derivative of Y TAY . Noting that AY = Y ⇤ and Y T Ẏ = 0, two
terms disappear. Equation (4.19) is trivial but we note the problem that we do not
have an explicit expression for Ẏ , we only have A, Y and Ȧ. Fortunately, the pertur-
bation theory for the invariant subspace is available from (4.20). It may be derived
by di↵erentiating AY = Y ⇤ and substituting ⇤̇ = Y TȦY .3 The solution to (4.20) is
unique so long as no other eigenvalue of A is equal to any of �

1

, . . . ,�p.

3Alert readers may notice that this is really the operator used in the definition of “sep” in
numerical linear algebra texts. The reader really understands the theory that we have developed in
this paper if he or she can now picture the famous “sep” operator as a Lie bracket with a Grassmann
tangent and is convinced that this is the “right” way to understand “sep.”



348 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Block Rayleigh
Quotient

Newton Subspace
Improvement
Demmel 87
  Chatelin 84, 93
  Dongarra, Moler, Wilkinson 83
  Stewart 73

Newton on the
Grassmann
Manifold

RQI

PCG or
Approximate 
Newton on the
Grassmann
Manifold

Nonlinear PCG
Gillan 89
Arias 92
Payne, Teter, Allan 92

Blk Inv Iteration

Alsen 71
Block PCG

Inv Iteration

CG on the
Grassmann
Manifold

Nonlinear CG
Linear Eigenvalue
CG

Sameh, Wisniewski 82
Fu, Dowling 95

Hessian

PR or FR

Conjugate 
through A
Chen, Sarkar 86
Power 
Method

Gradient Flows
SD on the 
Grassmann

Perdon, Gamb. 89
PCG
Davidson

Manifold

Geradin 71

Bradbury, Flet. 66
Fox, Kapoor 69
Fried 69, 72
Anderson 71
Haimi-Cohen,
Cohen, 87
Ruhe, 74
Yang, Sarkar,
Arvas 89
Fuhrmann, Liu 84

p>1  p=1

Fig. 4.2. Taxonomy of algorithms defined from the Grassmann manifold.

The linear constraint on �x is the one that infinitesimally moves us to the con-
straint surface. It is the condition that moves us to a diagonal matrix. Therefore,
⇤̇ = Y TȦY when added to ⇤ must be a scalar multiple of the identity. This is a
linear condition on Ȧ and, therefore, on �x. The ↵ does not explicitly appear in the
constraint.
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5. Conclusions. This paper o↵ers a new approach to the algorithms in numeri-
cal analysis involving orthogonality constraints. We have found that these algorithms
should be understood as optimization algorithms in the correct geometrical setting;
however, they rarely are.

As a concluding example of the insight gained, we propose a Grassmann based
taxonomy for problems related to the symmetric eigenproblem. This taxonomy allows
us to view algorithms not as isolated entities, but as objects with a coherent mathe-
matical structure. It is our hope that developers of new algorithms and perturbation
theories will benefit from the analytical approach that lead to our taxonomy.

In this taxonomy, algorithms are viewed as either restrictions or approximations
of their parent. Ultimately, we have Newton’s method on arbitrary Riemannian man-
ifolds as the root. One can then restrict to a particular manifold such as the Stiefel
manifold or, as we illustrate in Figure 4.2, the Grassmann manifold. Along the vertical
axis in the left column we begin with Newton’s method which may be approximated
first with preconditioned conjugage gradient (PCG) or approximate Newton methods,
then pure conjugate gradient, and finally steepest descent. Moving from left to right
the idealized algorithms are replaced with more practical versions that specialize for
particular problems. The second column contains block algorithms, while the third
contains single eigenvector related algorithms. This abstraction would not be possible
without geometry.
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[25] B. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, Pacific Grove, CA, 1995.
[26] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding

eigenvectors of large real symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94.
[27] B. De Moor, The Riemannian singular value decomposition, in Proc. 3rd Internat. Workshop

on SVD and Signal Processing, Vol. 3, M. Moonen and B. D. Moor, eds., Elsevier Science,
1995, pp. 61–78.

[28] J. W. Demmel, Three methods for refining estimates of invariant subspaces, Computing, 38
(1987), pp. 43–57.

[29] J. J. Dongarra, C. B. Moler, and J. H. Wilkinson, Improving the accuracy of computed
eigenvalues and eigenvectors, SIAM J. Numer. Anal., 20 (1983), pp. 23–45.

[30] A. Edelman, Large dense numerical linear algebra in 1993: The parallel computing influence,
J. Supercomputing Applications, 7 (1993), pp. 113–128.

[31] A. Edelman and S. T. Smith, On conjugate gradient-like methods for eigen-like problems,
BIT, 36 (1996), pp. 494–508. See also Proc. Linear and Nonlinear Conjugate Gradient-



ORTHOGONALITY CONSTRAINTS 351

Related Methods, Loyce Adams and J. L. Nazareth, eds., SIAM, Philadelphia, PA, 1996.
[32] L. Eldén, Algorithms for the regularization of ill-conditioned least-squares problems, BIT, 17

(1977), pp. 134–145.
[33] R. L. Fox and M. P. Kapoor, A miminimization method for the solution of the eigenproblem

arising in structural dynamics, in Proc. 2nd Conf. Matrix Methods in Structural Mechanics,
L. Berke, R. M. Bader, W. J. Mykytow, J. S. Przemieniecki, and M. H. Shirk, eds., Wright-
Patterson Air Force Base, OH, 1969, pp. 271–306.

[34] I. Fried, Gradient methods for finite element eigenproblems, AIAA J., 7 (1969), pp. 739–741.
[35] I. Fried, Optimal gradient minimization scheme for finite element eigenproblems, J. Sound

Vibration, 20 (1972), pp. 333–342.
[36] Z. Fu and E. M. Dowling, Conjugate gradient eigenstructure tracking for adaptive spectral

estimation, IEEE Trans. Signal Processing, 43 (1995), pp. 1151–1160.
[37] D. R. Fuhrmann, An algorithm for subspace computation, with applications in signal process-

ing, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 213–220.
[38] D. R. Fuhrmann and B. Liu, An iterative algorithm for locating the minimal eigenvector of

a symmetric matrix, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1984,
pp. 45.8.1–4.

[39] M. Geradin, The computational e�ciency of a new minimization algorithm for eigenvalue
analysis, J. Sound Vibration, 19 (1971), pp. 319–331.

[40] P. E. Gill and W. Murray, The computation of Lagrange multipier estimates for constrained
minimization, Math. Programming, 17 (1979), pp. 32–60.

[41] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, 2nd ed., Academic
Press, New York, 1981.

[42] M. J. Gillan, Calculation of the vacancy formation energy in aluminium, J. Physics, Con-
densed Matter, 1 (1989), pp. 689–711.

[43] S. Goedecker and L. Colombo, E�cient linear scaling algorithm for tight-binding molecular
dynamics, Phys. Rev. Lett., 73 (1994), pp. 122–125.

[44] G. Golub and D. O’Leary, Some history of the conjugate gradient and Lanczos methods,
SIAM Rev., 31 (1989), pp. 50–102.

[45] G. H. Golub and C. F. V. Loan, Matrix Computations, 2nd ed., Johns Hopkins University
Press, Baltimore, MD, 1989.

[46] R. Haimi-Cohen and A. Cohen, Gradient-type algorithms for partial singular value decompo-
sition, IEEE Trans. Pattern. Anal. Machine Intell., PAMI-9 (1987), pp. 137–142.

[47] S. Helgason, Di↵erential Geometry, Lie Groups, and Symmetric Spaces, Academic Press,
New York, 1978.

[48] H. G. Grassmann, Die Ausdehnungslehre, Enslin, Berlin, 1862.
[49] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,

J. Res. National Bureau of Standards, 49 (1952), pp. 409–436.
[50] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp. B864–

B871.
[51] S. Ihara, S. L. Ho, T. Uda, and M. Hirao, Ab initio molecular-dynamics study of defects on

the reconstructed Si(001) surface, Phys. Rev. Lett., 65 (1990), pp. 1909–1912.
[52] W. Kahan and J. Demmel, Personal communication, 1994–96.
[53] J. Karhunen, Adaptive algorithms for estimating eigenvectors of correlation type matrices, in

Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1984, pp. 14.6.1–4.
[54] S. Kobayashi and K. Nomizu, Foundations of Di↵erential Geometry, Vols. 1 and 2, Wiley,

New York, 1969.
[55] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation e↵ects,

Phys. Rev., 140 (1965), pp. A1133–A1138.
[56] R. A. Lippert, Personal communication (see also http://www.mit.edu/people/ripper/grass/

grassmann.html), 1995.
[57] G. Mathew, V. U. Reddy, and S. Dasgupta, Adaptive estimation of eigensubspace, IEEE

Trans. Signal Processing, 43 (1995), pp. 401–411.
[58] M. Moonen, P. Van Dooren, and J. Vandewalle, A singular value decomposition updating

algorithm for subspace tracking, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1015–1038.
[59] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw–Hill, New York,

1995.
[60] M. Needels, J. D. Joannopoulos, Y. Bar-Yam, and S. T. Pantelides, Oxygen complexes

in silicon, Phys. Rev. B, 43 (1991), pp. 4208–4215.
[61] M. Needels, M. C. Payne, and J. D. Joannopoulos, High order reconstructions of the

Ge(100) surface, Phys. Rev. B, 38 (1988), pp. 5543–5546.
[62] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press,
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