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Image Compression

Greg Ames

Dec 07, 2002

Abstract

Digital images require large amounts of memory to store and, when retrieved
from the internet, can take a considerable amount of time to download. The Haar
wavelet transform provides a method of compressing image data so that it takes
up less memory. This paper will discuss the implementation of the Haar wavelet
transform and some of its applications.

1. Introduction

In recent years there has been an astronomical increase in the usage of computers for a
variety of tasks. With the advent of digital cameras, one of the most common uses has
been the storage, manipulation, and transfer of digital images. The files that comprise
these images, however, can be quite large and can quickly take up precious memory
space on the computer’s hard drive. A gray scale image that is 256 x 256 pixels has
65, 536 elements to store, and a a typical 640 x 480 color image has nearly a million!
The size of these files can also make downloading from the internet a lengthy process.
The Haar wavelet transform provides a means by which we can compress the image so
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that it takes up much less storage space, and therefore electronically transmits faster
and in progressive levels of detail.

2. How Images are Stored

Before we can understand how to manipulate an image, it is important to understand
exactly how the computer stores the image. For a 256 x 256 pixel gray scale image, the
image is stored as a 256 x 256 matrix, with each element of the matrix being a number
ranging from zero (for black) to some positive whole number (for white). We can use
this matrix, and some linear algebra to maximize compression while maintaining a
suitable level of detail.

3. How the Wavelet Transform Works

In order to transform a matrix representing an image using the Haar wavelet transform,
we will first discuss the method of transforming vectors called averaging and differenc-
ing. First, we start out with an arbitrary vector representing one row of an 8 x 8 image
matrix:

y =
(

448 768 704 640 1280 1408 1600 1600
)

Because the data string has length 8 = 23 there will be three steps to the transform
process. If the string were 2k long, there would be k steps in the process. For the first
step our data string becomes:

y1 =
(

608 672 1344 1600 −160 32 −64 0
)

We get this be first thinking of our original data as being four pairs of numbers (448
& 768, 704 & 640, etc...). We average each of these pairs, and the results become the
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first four entries of our modified string y1. These numbers are known as approximation
coefficients. Next we subtract these averages from the first member of each pair. These
answers become the last four entries of y1 and are known as detail coefficients, which are
shown in bold. The detail coefficients are repeated in each subsequent transformation
of this data string. The visual interpretation of approximation and detail coefficients
will be discussed in Section 5. For now we will proceed with the second step which
changes our data string to:

y2 =
(

640 1472 −32 −128 −160 32 −64 0
)

We get this by treating approximation coefficients from the first step as pairs (608 &
672, 1344 & 1600). Once again we average the pairs and the results become the first
two entries of y2, and are our new approximation coefficients. We then subtract the
averages from the first element of each pair. The results become the third and fourth
elements of y2(These are also detail coefficients and are repeated in the next step). The
last four elements in y2 are identical to y1. For the last step our data string becomes:

y3 =
(

1056 −416 −32 −128 −160 32 −64 0
)

This time we obtain the first entry of y3 by averaging the two approximation coefficients
of y2 (640 & 1472). We obtain the second element by subtracting the average from the
first element of the pair. This is the final detail coefficient and is followed by the detail
coefficients from y2.

The Haar wavelet does this transformation to each row of the image matrix, and
then again to every column in the matrix. The resulting matrix is known as the Haar
wavelet transform of the original matrix. It is important to note at this point that
this process is entirely reversible. It is this fact that makes it possible to retrieve the
original image from the Haar wavelet transform of the matrix.



Introduction

How Images are Stored

How the Wavelet . . .

The Power of Linear . . .

Approximation and . . .

Applications of . . .

Examples

Analysis

The Compressomatic

Home Page

Title Page

JJ II

J I

Page 4 of 27

Go Back

Full Screen

Close

Quit

4. The Power of Linear Algebra

The averaging and differencing method that we just discussed is very effective, but, as
you can imagine, the calculations can quickly become quite tedious. We can, however,
use matrix multiplication to do the grunt work for us. In our previous example, we can
describe the transformation of y to y1 as:

y1 = y A1

Where A1 is the matrix

A1 =



1/2 0 0 0 1/2 0 0 0
1/2 0 0 0 −1/2 0 0 0
0 1/2 0 0 0 1/2 0 0
0 1/2 0 0 0 −1/2 0 0
0 0 1/2 0 0 0 1/2 0
0 0 1/2 0 0 0 −1/2 0
0 0 0 1/2 0 0 0 1/2
0 0 0 1/2 0 0 0 −1/2



It can next be shown that the transformation from y1 to y2 can be written as y2 =
y1 A2. Where A2 is the matrix



Introduction

How Images are Stored

How the Wavelet . . .

The Power of Linear . . .

Approximation and . . .

Applications of . . .

Examples

Analysis

The Compressomatic

Home Page

Title Page

JJ II

J I

Page 5 of 27

Go Back

Full Screen

Close

Quit

A2 =



1/2 0 1/2 0 0 0 0 0
1/2 0 −1/2 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0
0 1/2 0 −1/2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



And lastly we can show that y3 = y2 A3, where A3 is the matrix

A3 =



1/2 1/2 0 0 0 0 0 0
1/2 −1/2 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



This whole transformation can be done in one step and stated by the equation y3 =
y W , where the transformation matrix W = A1 A2 A3.
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W =



1/8 1/8 1/4 0 1/2 0 0 0
1/8 1/8 1/4 0 −1/2 0 0 0
1/8 1/8 −1/4 0 0 1/2 0 0
1/8 1/8 −1/4 0 0 −1/2 0 0
1/8 −1/8 0 1/4 0 0 1/2 0
1/8 −1/8 0 1/4 0 0 −1/2 0
1/8 −1/8 0 −1/4 0 0 0 1/2
1/8 −1/8 0 −1/4 0 0 0 −1/2



It is also important to note that since every column of the individual matrices that
comprise W is orthogonal to every other column, the matrices are invertible. Thus:

W−1 = A−1
3 A−1

2 A−1
1

This is what allows us to reconstitute our image from the compressed form. To re-
turn to our original data we use the equation

y = y3 W−1

In general we can say that Q = I W , where Q is the row transformed matrix and I is
the original image matrix. But, as stated before, the Haar wavelet transformation does
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these transformations to each column of the image matrix, and then repeats them on
each column of the matrix. This is done by multiplying I on the left by the transpose
of W . This gives us our final equation for the row-and-column transformed matrix T :

T = ((I W )T W )T = WT I W (1)

And from this we can easily derive the equation to return our row-and-column trans-
formed matrix to the original image matrix:

I = ((TT W−1)T W−1 = (W−1)T T W−1 (2)

4.1. An Example

In order to help the reader visualize this process I will provide an example. Suppose
we start with an 8 x 8 image represented by matrix P:

P =



576 704 1152 1280 1344 1472 1536 1536
704 640 1156 1088 1344 1408 1536 1600
768 832 1216 1472 1472 1536 1600 1600
832 832 960 1344 1536 1536 1600 1536
832 832 960 1216 1536 1600 1536 1536
960 896 896 1088 1600 1600 1600 1536
768 768 832 832 1280 1472 1600 1600
448 768 704 640 1280 1408 1600 1600


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Notice that the last row is our vector y from the section on averaging and differencing.
First we want to average and difference the rows of matrix P . In order to get the row
averaged matrix Q we simply multiply P on the right by matrix W , our transformation
matrix. This yields:

Q =



1200 −272 −288 −64 −64 −64 −64 0
1185 −288 −225 −96 32 34 −32 −32
1312 −240 −272 −48 −32 −128 −32 0
1272 −280 −160 −16 0 −192 0 32
1256 −296 −128 16 0 −128 −32 0
1272 −312 −32 16 32 −96 0 32
1144 −344 −32 −112 0 0 −96 0
1056 −416 −32 −128 −160 32 −64 0



Notice that the last row in the matrix is identical to y3. We can now average and
difference the columns of Q to get our row-and-column transformed matrix T by mul-
tiplying Q on the left by WT . This yields:

T =



1212 −306 −146 −54 −24 −68 −40 4
30 36 −90 −2 8 −20 8 −4
−50 −10 −20 −24 0 72 −16 −16
82 38 −24 68 48 −64 32 8
8 8 −32 16 −48 −48 −16 16
20 20 −56 −16 −16 32 −16 −16
−8 8 −48 0 −16 −16 −16 −16
44 36 0 8 80 −16 −16 0


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Now matrix T is ready to be compressed. Compression will be discussed in Section 6.1.

4.2. Even More Power!

Another way to make these transformation matrices more powerful is to normalize the
Ai matrices that comprise our transformation matrix W . By this I mean that we divide
each column of each of the Ai matrices by its length. This results in Ai matrices that
are orthogonal, meaning that each column of the matrix is length one, and orthogonal
to each other column of the matrix. This also results in the transformation matrix M
being orthogonal as well. This is called a normalized wavelet transform. Having an
orthogonal transformation matrix has two main benefits. First, because the inverse of
an orthogonal matrix is equal to its transpose, this greatly increases the speed at which
we can perform the calculations that reconstitute our image matrix. Second, as you
can see from Figure 1 normalized transformations tend be closer to the original image.
This is due to some powerful properties of orthogonal matrices. If Q is an orthogonal
matrix, and x and y are two arbitrary vectors, then

‖Qx‖2 = (Qx)T (Qx)

= xT QT Qx

= xT I x

= xT x

= ‖x‖2,

which, in turn, implies that
‖Qx‖ = ‖x‖.

Essentially, when a vector is multiplied by an orthogonal matrix, magnitude is preserved.
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(a) Normalized transformation matrix (b) Non-Normalized transformation matrix

Figure 1: Both images compresses to 5.5 : 1 compression ratio.
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Also recall that
(Qx) · (Qy) = (Qx)T (Qy)

= xT QT Qy

= xT I y

= xT y

= x · y,

which means that the dot product of two vectors is unchanged when they are multiplied
by an orthogonal matrix. These two facts, along with the fact that

cos θ =
x · y

‖x‖‖y‖
,

implies that when vectors are multiplied by an orthogonal matrix, angle is preserved as
well. Since both magnitude and angle are preserved there is significantly less distortion
produced in the rebuilt image when an orthogonal transformation matrix is used.

5. Approximation and Detail Coefficients

At this point it also worth further discussing approximation and detail coefficients.
Once again I will use matrix P as an example. If we were to average and difference
each row and column only once (T1 = AT

1 P A1), we would essentially divide our 8 x
8 matrix into four 4 x 4 sub-matrices:
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Figure 2: Figure 5 averaged and differenced once.
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T1 =



656 1169 1392 1552 −16 −15 −48 −16
816 1248 1520 1584 −16 −160 −16 16
880 1040 1584 1552 16 −112 −16 16
688 752 1360 1600 −80 16 −80 0
−16 47 16 −16 −48 −49 −16 16
−16 96 −16 16 −16 32 −16 −16
−48 48 −16 −16 −16 −16 −16 −16
80 80 16 0 80 −16 −16 0



The 4 x 4 matrix in the upper left-hand corner is comprised of approximation coef-
ficients, and the other three are made of the detail coefficients. For a good visual
example we take Figure 5, and average and difference it one time. We then display the
image described by the resulting matrix (Figure 2). The image has been brightened in
order to bring out the detail. The image in the upper left-hand corner is comprised
of the approximation coefficient matrix. The images in the other three corners come
from the detail coefficients. The white outline of the cat in these images correspond to
large numbers in the detail coefficients. These occur at areas of the image where there
is high contrast, and therefore a large difference between neighboring elements in the
image matrix. When they are averaged and differenced the resulting detail coefficients
are relatively large, and therefore show up as white pixels when we display the matrix
as an image.

If we take our original matrix P and perform two rounds of averaging and differ-
encing on it (T2 = AT

2 AT
1 P A1 A2), we end up with the following matrix:
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T2 =



972 1512 −236 −56 −16 −88 −32 0
840 1524 −56 −52 −32 −48 −48 8
−60 −40 −20 −24 0 73 −16 −16
120 44 −24 68 48 −64 32 8
16 0 −32 16 −48 −49 −16 16
40 0 −56 −16 −16 32 −16 −16
0 −16 −48 0 −16 −16 −16 −16
80 8 0 8 80 −16 −16 0



Only the 2 x 2 that makes the upper left corner of T2 is now approximation coefficients.
The remaining 2 x 2 matrices that make up the 4 x 4 matrix in the upper left corner,
along with the 4 x 4’s that comprise the rest of the matrix are the all detail coefficients.
This can be seen clearly if we take the image in Figure 5 and perform two rounds
of averaging and differencing to the rows and columns. This results in the image in
Figure 3. Again the image has been brightened in order to bring out the detail.

Finally, if we do one more round of averaging and differencing the rows and columns,
we end up with with the row-and-column transformed matrix T from the last section
(See Section 4.1). Only the element T1,1 is now a approximation coefficient. When
we reach the fully row-and-column transformed matrix, this approximation coefficient
is known as the overall approximation coefficient. We can get a feeling for what this
means visually if we perform three rounds of averaging and differencing to Figure 5,
and display the image in Figure 4. Once again the image has been brightened in order
to bring out the detail.

Figures 2, 3, and 4 clearly visually illustrate the meaning of the detail coefficients.
Note that all of these figures, along with Figure 5, are actually 256 x 256. Since
256 = 28, there would actually be eight rounds of averaging and differencing to reach
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Figure 3: Figure 5 averaged and differenced twice.
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Figure 4: Figure 5 averaged and differenced three times.
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the row-and-columned transformed matrix. But I think the reader can see the visual
pattern that each round of averaging and differencing would produce.

6. Applications of Wavelet Transforms

Wavelets have broad applications in fields such as signal processing and medical imag-
ing. Due to time and space constraints, I will only be discussing two in this paper. The
two applications most applicable to this paper are wavelet image compression and the
progressive transmission of image files over the internet.

6.1. Wavelet Compression

So what is the point to all of this? The point of doing the Haar wavelet transform is
that areas of the original matrix that contain little variation will end up as small or
zero elements in the Haar transform matrix. A matrix is considered sparse if it has
a high proportion of zero entries. Matrices that are sparse take much less memory to
store. Because we cannot expect the transformed matrices always to be sparse, we must
consider wavelet compression

To perform wavelet compression we first decide on a non-negative threshold value
known as ε. We next let any value in the Haar wavelet transformed matrix whose
magnitude is less than ε be reset to zero. Our hope is that this will leave us with a
relatively sparse matrix. If ε is equal to zero we will not modify any of the elements and
therefore we will not lose any information. This is known as lossless compression. Lossy
compression occurs when ε is greater than zero. Because some of the elements are reset
to zero, some of our original data is lost. In the case of lossless compression we are able
to reverse our operations and get our original image back. With lossy compression we
are only able to build an approximation of our original image.
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6.2. Progressive Transmission

Many people frequently download images from the internet, a few of which are not
even pornographic. Wavelet transforms speed up this process considerably. When a
person clicks on an image to download it, the source computer recalls the wave trans-
formed matrix from memory. It first sends the overall approximation coefficient and
larger detail coefficients, and then the progressively smaller detail coefficients. As your
computer receives this information it begins to reconstruct the image in progressively
greater detail until the original image is fully reconstructed. This process can be inter-
rupted at any time if the user decides that s/he does not want the image. Otherwise
an user would only be able to see an image after the entire image file had been down-
loaded. Because a compressed image file is significantly smaller it takes far less time to
download.

6.3. Summary of Compression

Image compression using the Haar wavelet transform can be summed up in a few simple
steps.

1. Convert the image into a matrix format(I).

2. Calculate the row-and-column transformed matrix (T ) using Equation 1. The
transformed matrix should be relatively sparse.

3. Select a threshold value ε, and replace any entry in T whose magnitude is less
than ε with a zero. This will result in a sparse matrix denoted as S.

4. To get our reconstructed matrix R from matrix S, we use an equation similar
to equation 2, but, because the inverse of an orthogonal matrix is equal to its



Introduction

How Images are Stored

How the Wavelet . . .

The Power of Linear . . .

Approximation and . . .

Applications of . . .

Examples

Analysis

The Compressomatic

Home Page

Title Page

JJ II

J I

Page 19 of 27

Go Back

Full Screen

Close

Quit

transpose, we modify the equation as follows:

R = W S W−1 (3)

If you choose ε equal to zero, then S = T and therefore R = I. This is what we
referred to previously as lossless compression. Because ε is equal to zero, no element of
T is changed, and therefore no data is lost.

If you choose ε greater than 0, then elements of T are reset to zero, and therefore
some original data is lost. The reconstituted image will contain distortions. This is
what we referred to as lossy compression. The secret of compression is to choose your
ε value so that compression is maximized while distortions in the reconstituted image
are minimized.

We measure the level of compression by the compression ratio. The compression
ratio is the ratio of nonzero entries in the transformed matrix T to the number of
nonzero entries in the compressed matrix S. According to Dr. Colm Mulcahy of
Spelman University, a compression ratio of 10 : 1 or greater means that S is sparse
enough to have a significant savings in terms of storage and transmission time[4].

7. Examples

The image in Figure 5 is represented by a 256 by 256 matrix. For the sake of simplicity
I will use the 8 by 8 matrix that comprises the upper left hand corner of the image. It
is described by the following matrix:
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Figure 5: The Original Image
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I =



100 103 99 97 93 94 78 73
102 97 100 111 113 104 96 82
99 109 104 95 93 92 88 76
114 104 99 102 93 82 74 74
96 91 91 87 79 78 77 76
90 88 83 78 77 74 76 76
92 81 73 72 69 65 66 62
75 70 69 65 60 55 61 65



We can see the image represented by matrix I in figure 6a. I should also note that
the colors in the blown up versions may not exactly correspond to the original image
because the color scale is adjusted to the max and min values of each matrix.

If we perform the normalized wavelet transformation on I and choose ε so as to
achieve a compression ratio of approximately 5 : 1, we get the following compressed
matrix:

S =



255 52 15 21 0 0 0 0
78 0 0 22 0 0 0 0
0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0
0 11 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0


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(a) Original Image (b) Rebuilt Compressed Image

Figure 6: It is easy to see the distortions present in the rebuilt image.
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As you can see, the matrix is comprised mainly of zeros. This takes up much less
memory to store. Instead of remembering each and every value in a matrix, the com-
puter need only remember that the matrix is all zeros except in a few specific spots.
This is significant when dealing with a 256 x 256 gray scale image that has 65, 536
elements, and even more so with a typical 640 x 480 color image that has 921, 600
elements.

When we restore the matrix using Equation 3, we end up with the following matrix:

R =



100 100 95 95 92 92 76 76
103 103 98 98 106 106 90 90
99 109 99 99 96 96 81 81
114 104 104 104 91 91 76 76
91 91 86 86 76 76 76 76
91 91 86 86 76 76 76 76
82 82 76 76 66 66 66 66
74 74 69 69 58 58 59 59



If you compare matrix R with matrix I, it is easy to see that although they are similar,
there are small variations. These variations show up as distortions in the reconstructed
image. These can be easily seen in figure 6b.

Other figures are included in order for the reader to be able to visualize the distor-
tions that can occur with compression. Figure 7 shows the original image along with
the reconstructed image after being compressed at a 10.3 : 1 ratio. Figure 8 shows the
original image along with the reconstructed image after being compressed at a 10.2 : 1
ratio. In both of these examples it is easy to see that although the images are still clear,
they do contain distortions due to the fact that ε is greater than zero.
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(a) Original Image (b) Rebuilt Compressed Image

Figure 7: Image with 10.3 : 1 compression ratio.
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(a) Original Image (b) Rebuilt Compressed Image

Figure 8: Image with 10.2 : 1 compression ratio.
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8. Analysis

I think that it is clear to see that the wavelets have their advantages.They greatly
increase the speed at which image files are transferred electronically and drastically
decrease the amount of valuable memory needed to store them. According to Dr. Mulc-
ahy, the Haar wavelet transform is the simplest, crudest wavelet transform[4]. It does,
however, illustrate the power and potential of wavelet transforms. They have broad
applications in fields such as signal processing, computer graphics, medical imaging,
seismology, as well as the imaging applications previously discussed. After witnessing
the power Of the Haar wavelet transform I can only image what is possible with a more
powerful transform.

A. The Compressomatic

In order to produce the compressed images used in this paper it was necessary to
use Matlab. The file I produced is based on the three Matlab m-files written by Dr.
Colm Mulcahy of Spelman University. They are indmat.m,wavmat.m, and compresn.m.
These files were subsequently modified and merged into a single m-file named project1.m
by LiHong Huang, a fellow student at College of the Redwoods. LiHong’s chief contri-
bution was to the effort was to combine the three into a single m-file, and modifying
the original program to allow it to read images directly. Dr. Mulcahy’s original pro-
gram required the user to enter the matrix that described an image. LiHong’s changes
allowed the powerful advantage of allowing the user to reference a image file (JPEG,
GIF, etc...) directly. The program, after importing the image in an unsigned 8-bit
integer format, converts each element to double precision so that matrix arithmetic is
possible in Matlab. This was a huge improvement on the original program.

My main contribution to m-file was to remove unnecessary code, make minor for-
matting changes, and to comment the code so as to be more user friendly to other users.
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I also modified the code so that any size square image could be used. Dr. Mulcahy’s
original and LiHong Huang’s modification required a 256 x 256 pixel image.

You may view my Matlab m-file by clicking on this link.

Dr. Mulcahy’s original paper and m-files can be seen on his web site
http://www.spelman.edu/ colm/wav.html.
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