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 Txz JomwAL OF Symmorc Locic
 Volume,2, Number 4, December 1937

 COMPUTABILITY AND X-DEFINABILITY

 A. M. TURING

 Several definitions have been given to express an exact meaning correspond-
 ing to the intuitive idea of 'effective calculability' as applied for instance to func-

 tions of positive integers. The purpose of the present paper is to show that the
 computable' functions introduced by the author are identical with the X-definableO
 functions of Church and the general recursive functions due to Herbrand and

 Godel and developed by Kleene. It is shown that every X-definable function is
 computable and that every computable function is general recursive. There is a

 modified form of X-definability, known as )-K-definability, and it turns out to
 be natural to put the proof that every X-definable function is computable in the
 form of a proof that every X-K-definable function is computable; that every
 X-definable function is X-K-definable is trivial. If these results are taken in con-

 junction with an already available4 proof that every general recursive function
 is X-definable we shall have the required equivalence of computability with

 X-definability and incidentally a new proof of the equivalence of X-definability
 and X-K-definability.

 A definition of what is meant by a computable function cannot be given

 satisfactorily in a short space. I therefore refer the reader to Computable pp. 230-
 235 and p. 254. The proof that computability implies recursiveness requires no
 more knowledge of computable functions than the ideas underlying the defini-
 tion: the technical details are recalled in ?5. On the other hand in proving that
 the X-K-definable functions are computable it is assumed that the reader is
 familiar with the methods of Computable pp. 235-239.

 The identification of 'effectively calculable' functions with computable func-
 tions is possibly more convincing than an identification with the X-definable or
 general recursive functions. For those who take this view the formal proof of

 equivalence provides a justification for Church's calculus, and allows the
 'machines' which generate computable functions to be replaced by the more
 convenient X-definitions.

 Received September 11, 1937.

 x A. M. Tuning, On computable numbers, with an application to the Enscheidungsproblem,
 Proceedings of the London Mathematical Society, ser. 2, vol. 42 (1936-7), pp. 230-265, quoted
 here as Computable. A similar definition was given by E. L. Post, Finite combinatory processes-formu-
 lation 1, this JouRNAL, vol. 1 (1936), pp. 103-105.

 2 Alonzo Church, An unsolvable problem of elementary number theory, American journal of
 mathematics, vol. 58 (1936), pp. 345-363, quoted here as Unsolvable.

 ' S. C. Kleene, General recursivefunctions of natural numbers, Mathematische Annalen, vol. 112

 (1935-6), pp. 727-742. A definition of general recursiveness is also to be found in Unsolvable pp.
 350-351.

 ' S. C. Kleene, -definatbility and recursiveness, Duke mathematical journal, vol. 2 (1936), pp.
 340-353.
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 154 A. M. TuRING

 1. Definition of X-K-definability. In this section the notion of X-K-definabil-
 ity is introduced in a form suitable for handling with machines. There will be
 three differences from the normal, in addition to that which distinguishes

 X-K-definability from X-definability. One consists in using only one kind [ ] of
 bracket istead of three, I}, ( ), [ ]; another is that x, x 1, x I 1, * - * are used as
 variables instead of an indefinite infinite list of the single symbols, and the

 third is a change in the form of condition (ii) of immediate transformability,
 not affecting the definition of convertibility except in form.

 There are five symbols which occur in the formulae of the conversion cal-

 culus. They are X, x, 1, [ and ] . A sequence of symbols consisting of x followed
 by I repeated any number (possibly 0) of times is called a variable. Properly-
 formedformulae are a class of sequences of symbols which includes all variables.

 Also if M and N are" properly-formed formulae, then [M] [N] (i.e. the sequence
 consisting of [ followed by M then by ], [ and the sequence N, and finally by ] )
 is a properly-formed formula. If M is a properly-formed formula and V is a
 variable, then X V[M] is a properly-formed formula. If any sequence is a properly-
 formed formula it must follow that it is so from what has already been said.

 A properly-formed formula M will be said to be immediately transformable
 into N if either:

 (i) M is of the form X V[X] and N is XU[Y] where Y is obtained from X by
 replacing the variable V by the variable U throughout, provided that U does not
 occur in X.

 (ii) M is of the form [X V[X] ] [Y] where V is a variable and N is obtained by
 substituting Y for V throughout X. This is to be subject to the restriction that
 if W be either V or a variable occurring in Y, then X W must not occur in X.

 (iii) N is immediately transformable into M by (ii).
 A will be said to be immediately convertible into B if A is immediately trans-

 formable into B or if A is of the form X[L]Y and B is X[M]Y where L is immedi-
 ately transformable into M. Either X or Y may be void. A is convertible to B
 (A conv B) if there is a finite sequence of properly-formed formulae, beginning
 with A and terminating with B, each immediately convertible into the preceding.

 The formulae,

 Xxc [Xx [X x ] (abbreviated to 0),
 ).x [xX [ [X] [IX] (abbreviated to 1),
 Ax[Xx [[x] [[x][x '1111 (abbreviated to 2), etc.,

 represent the natural numbers. If n represents a natural number then the next

 natural number is represented by a formula which is convertible to [S][n]
 where S is

 Xx I I [Xx[Xx I [[X][[[x I I][X]][x 11]]]].
 A function f(n) of the natural numbers, taking natural numbers as values

 will be said to be X-K-definable if there is a formula F such that [F] [n ] is con-

 ' Heavy type capitals are used to stand for variable or undetermined sequences of symbols.
 In expressions involving brackets and heavy type letters it is to be understood that the possible
 substitutions of sequences of symbols for these letters is to be subject to the restriction that the
 pairing of the explicitly shown brackets is unaltered by the substitution; thus in X[L]Y the number
 of occurrences of [ in L must equal the number of occurrences of ] .
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 COMPUTABILITY AND LAMBDA-DEFINABILITY 155

 vertible to the formula representing f(n) if n is the formula representing n.

 The formula [F] [n ] can never be convertible to two formulae representing
 different natural numbers, for it has been shown that if two properly-formed for-

 mulae are in normal form (i.e., have no parts of the form [X V[M] ] [N]) and are
 convertible into one another, then the conversion can be carried out by the use of
 (i) only. The formulae representing the natural numbers are in normal form and

 the formulae representing two different natural numbers are certainly not con-
 vertible into one another by the use of (i) alone.

 2. Abbreviations. A number of abbreviations of the same character as those

 in Computable (pp. 235-239) are introduced here. They will be applied in con-

 nection with the calculus of conversion, but are necessary for other purposes,
 e.g. for carrying out the processes of any ordinary formal logic with machines.
 The abbreviations in Computable are taken as known.

 'The sequence of symbols marked with a (followed by a)' will be abbreviated
 to S(a) in the explanations. Sequences are normally identified by the way they
 are marked, and are as it were lost when their marks are erased.

 In the tables a will be used as a name for the symbol 'blank.'

 pem(2 a, x) pe(peni1, a)
 pemn RI Po 2
 pemi here stands for oemi(?[, a, P) and similar abbreviations must be understood
 throughout.

 pem(2f a, j3). The machine prints a at the end of the sequence of symbols on
 F-squares and marks it with P. -.-.f.

 The tables for cm(Z, y, ft) and cem(Z, -y, O) are to be obtained from those
 for cr(B, oy) and ce(:E, ey) by replacing pe(21, a) by pem(2[, a, 0) throughout.

 cp(1 CY, ap(Cpri, CMt, cor3, at,/3
 eptr re(re(cpr, b, B, b), b, a, a)
 copt re(re(1, b, 0), a, a)
 CMh re(re(2I, b, ,), a, a)
 cpr(21, A, a, A). The machine compares S(a) with S(p). .--E if they are alike;
 -h otherwise. No erasures are made.

 The letters a, b occurring in the table for cpr should not be used elsewhere in
 any machine whose table involves cpr. This can be made automatic by using
 a." and bt,, say, instead of a and b. We shall however write a and b and under-
 stand them to mean acp, and bcp The same applies for the letters a, ,z in
 all such tables.

 ly L E1
 r01, -0

 not y RI RR
 bf(2f, a, A, Sr, 6) E, Pa f(bf1, e)

 ' Alonzo Church and J. B. Rosser, Some properties of conversion, Transactions of the American
 Mathematical Society, vol. 39 (1936), pp. 472-482. The result used here is Theorem 1 Corollary
 2 as extended to the modified conversion on p. 482.
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 156 A. M. TURING

 (a R, E, Pb f(b:s, Y)
 bRI L bUS

 others RI RI R f(b, ')
 R. E, Pb f(bf, b, a)

 not R. RI R M2br2)
 Ie or b E, PS, L, L bK3

 bf3 a E, P-y 2t
 ,others L, L by

 b a(W, a, a, 5). This describes the process of finding the partner of a bracket.
 If a and , are regarded as left and right brackets, then if the machine takes up
 the internal configuration bf when scanning a square next on the right of an a
 it will find the partner of this a in the sequence S(-y), and will mark the part
 of S(-y) which is between the brackets with 5 (instead of ay). The final internal
 configuration is 2f and the scanned square is that which was scanned when the
 internal configuration bf was first taken up.

 ob(21, a, a, ea ) f't01,} crm(re(re(dS, a, j), b, 0), af, e), .8)
 Ob1 uf R, E, Pb 0b2(?, a, A, 'y, 6, e, a)
 0b2 f'(Nb3, crM(Wr(re(re(2, b, ,I),j, a), a, a), a, 5), a)

 a R. E, Pa *b

 {not a R, E, Pa re(f'(b4, b, a), b, A)

 b4 'r R, E, Pj re(pem(eb, i, 5), a, a)
 Oulb(21, a, A, -j, a) W21, a, #Il 7, 5, 5)
 bt(21, 5iB, a) I) pem(Of~f(e(21, d), Z, d), a) A, PI a, all r, p)
 fub(2I, a, I, y, 5). S(y) is substituted for S(8) throughout S(a). The result is
 copied down and marked with 5. --.

 bt(?I, 55, a, I). It is determined whether the sequence S(B) occurs in S(a). --?I
 if it does; -Hi otherwise.

 The tables which follow are particularly important in all cases where an
 enumeration of all possible results of operations of given types is required. The
 enumeration may be carried out by regarding the operation as determined by a
 number of choices, each between two possibilities, L and M say. Each possible
 sequence of operations is then associated with a finite sequence of letters L and
 M. These sequences can easily be enumerated. The method used here is to re-
 place L by 0, each M by 1, follow the whole by 1, reverse the order and regard
 the result as the binary Arabic numeral corresponding to the given sequence.
 Thus the first few sequences (beginning with the one associated with 1) are:
 the null sequence, L, M, LL, ML, LM, MM, LLL, MLL, LML, MML. In the
 general table below t and v are used instead of L and M.

 abb(2,.a, A, 1) f'(abbi, pem(abb2, A, a), a)
 R, E pem(abb, t, a)

 abbi

 {'.R. E Oem(abb2, 9, a)
 abbO cem(re(2I, a, a), a, a)
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 COMPUTABILITY AND LAMBDA-DEFINABILITY 157

 abb(2f, a, ?, v7). The sequence S(a) consisting of letters r and 73 only is trans-
 formed into the next sequence. H-*[.

 cb(2l, A, Q, a, I, f'(ctj, re((Y, b, a), a)
 RI E, Pb

 C01i

 has R. E, Pb cb(21, 0, Aa, A, ri is an internal configuration which is taken up when a choice
 has to be made. S(a) is the sequence of letters t and iX determining the choices.
 --2 if the first unused letter is I; --+V if it is q: it is then indicated that this
 r or 7 has been used by replacing its mark by b. When the whole sequence has
 been used up these marks are replaced by a again and -i.

 cc b(21, 8, A, a, Az)R cebl
 CO)1 0 E, Pa ccfh(2I, Z, C, a, t, 17, a)
 ccb2 cb(f(ccN, b, a), f(ccb4, b, a), A, a, A, ,)
 cCts E, Pa, L
 cct4 E, Pa, L

 cc)(2[, I3, A, a, t, ,j). This differs from cb in that the internal configurations
 2[ and e are taken up when the same square is scanned as that which was scanned
 when the internal configuration cc4 was first reached, provided that this was an
 F-square.

 3. Mechanical Conversion. We are now in a position to show how the con-
 version process can be carried out mechanically. It will be necessary to be able
 to perform all of the three kinds of immediate transformation. (iii) can be done
 most easily if we can enumerate properly-formed formulae. It is principally for

 this purpose that we introduce the table for pff(2[, a).

 funf (2[, a, j6, -f) pem(crm(Pem2(crnn(pem(21, ], My), ft, y), ], [I a), a, y), , -Y)
 funf(1, a, A, -y). [S(a) ] [S(,) I is written at the end and marked with 'y. -21.

 c012, A, I, 0) cb(?[, Zi, (Sy 0, L, M)
 cc b(21, ZiB X, 0) ccb(2![, A, (, 0, L, M)
 The choices will be determined by a sequence made up of letters L and M.

 off(, (Fla, 8) peb(c(4(af, pff,, (, 8), :, ;, x, ;, x)
 offl q ( f f, :)

 ; ~~~~R. R CcO(offs, Ohf, q. 8)
 Pf f2 af

 others R, R Pff:
 I'; Pff4

 RPfaR af
 others RI Pa, R WffS

 ; ~~~~R. R CC4(Pffb, Pff42 A1, 0)

 others RI R of fs
 ;or a at

 others RI Pb, R of f
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 158 A. M. TURING

 at cb(ne, cb(comp, ab, I, 0), A, 5)
 ne Pe2(nel, ;, x)

 nel cb(pe(nei, l), aft AY, 0)
 cOmp pe(funf(af, a, b, a), ;)
 ab pe3(ab1, ;, X, x)

 ab, cb(pe(abi, 1), ah2, XZ,
 0E2 pe(ce(pe(af, ]), a), [
 af e(e(Offfnt pffly X9, a), a), b)
 fin q(r(r(fin1)), ;)

 fnot a R, Pa, R fin,
 fin,

 pff(2f, A, a, 0). A properly-formed formula is chosen, written down at the end
 and marked with a. -f. This is done by writing down successive properly-
 formed formulae separated by semicolons, and obtaining others from them by

 abstraction (i.e., the process by which XV [M] is obtained from M), by applica-
 tion of a function to its argument (i.e., obtaining [M] [N] from M and N), and
 by writing down new variables. Before writing down a new formula we have the
 alternative of taking the last formula as the result of the calculation. In this case
 the internal configuration fin is taken up. If a new formula is to be constructed
 then two of the old formulae are chosen and marked with a and b: then one of

 the internal configurations ab, comp, ne is chosen and the new formula is corre-
 spondingly XV[S(a) ], [S(a) ] [S(b) ], or V, where V is a new variable. The whole
 of the work is separated by a colon from the symbols which were on the tape
 previously. The meanings of pe3 and pe5 are analogous to pe2.

 The occurrence of X in this table is of course as a symbol of the conversion
 calculus, not as a variable machine symbol.

 The immediate transformations (i) and (ii) are described next.

 ba(2f, A9, a, A, 0) f'(,al, A, a)

 R, E, Pa f'(ta2, b, a)
 bald

 {others crm(2[, a, 0)
 x or R, E, Pb f'(ta2, b, a)

 Others R bf(pe(W., x), [, I, a, c)

 ba3 R, Pd cb(pe(rx:, 1), bt(ma4, tm, C, d), (t, 0)
 ba4 re(re(re(crm(e(2I, d), a, 0), b, a), a, a), c, a)
 a6 (crm(re(re(re(bas, a, a), b, a), c, a), bf)
 W6, tub(e(e(21, d), f), a, ft do P)
 ba(2 , a, c , 6). An immediate transformation (i) is chosen, and if permissible
 is carried out on S(a), the result being marked with 0. If the chosen transforma-
 tion is not permissible then S(8) is identical with S(a). -[.

 reb(21, a, A) f'(rebi, rebut a)
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 COMPUTABILITY AND LAMBDA-DEFINABILITY 159

 R bt(reb2, [, a, c)

 {not[ rebl3

 rebh E, Pf re(f(reb3, b, a), b, a,f)
 reb3 bf(reb4, [, ], a, d)
 reb4 f'(rebs, b, c)

 R, E, Pf f'(reb6, b, c)
 rebs

 Inot X reb13
 x or RI E, Pg f'(reb, b, c)

 reb~s

 R, E, Pf q(reb7, c)

 reb7 E, Pf reb8
 reb8 f'(reb9, rebio, c)

 (X R. E, Pk f'(rebil, b, c)
 rebe

 not X R. E, Pk reb,
 (x or | R, E, Pj f'(rebij, b, c)

 rebi

 U [ cor(reb13, rebut, j, g)
 rebl2 bt(rebM3, re(reb8, j, k), d, j)
 rebio fub(re(re(re(re(2[, d, a),f, a), k, a), g, a)k, g, d, g)
 reb13 re(re(re(re(re(re(cam(2, a, i), d, a), g, a), c, a),f, a), k, a),j, a)
 reb(21, a, f). An immediate transformation (ii) is carried out on S(a), supposing
 that S(a) is properly-formed. The result is marked with A. Hi. If the transfor-

 mation is not possible or permissible S(W) is identical with S(a). Considerable
 use is made of the hypothesis that S(a) is properly-formed. Thus if its first
 symbol is [ then it must be of form [L ] [N] and if in addition the second symbol
 is X then it is of form [XV [M] ][N]. The internal configuration reb8 is never
 reached unless S(a) is of this form, and in that case it first occurs when V has
 been marked with g, M with c, and N with d, the remaining symbols of what was
 S(a) being now marked with a orf. It is then determined whether the immediate
 transformation (ii) is permissible: if it is then reblo is taken up and the substitu-
 tion carried out.

 imc(?, S, a, 6, 6) ct(f'(imci, imc2, a), re(imci, a, a), 6)

 imc[ I RI E, Pc c0(imc, imc3, A 6) imc1 1
 (not [ RI E, Pc imc

 imc2 re(crm(W, a, ), c, a)

 imc3 q(b((imc4, [I I, a, a), c)
 itch cb(bc, cb(rc, ear Ad,6) (YI0)
 bic ba(imc6, (, a, b, 6)
 rc reb(imcr, a, b)
 et pff(reb(ex1, b, d), A, b, 6)
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 160 A. M. TURING

 ext cpr(e(imC&, d), e(t(crM(imc6, a, b), d), b), d, a)
 intc crm(CrtM(crm(rt(r(e(?, b), c, a), a, a), a, 6), b, 0), c, 6)
 imc(21, A, a, i, 0). An immediate conversion is chosen and performed on S(a).

 The result is marked with i. -?.

 conb(2f, a, io e(crm(conbi, a, d), .
 conbi cb(imc(conlh, au, d, f, 0), re(2[, d, A), au, 0)
 conk e (re(contlf, d), d)
 an q(aul,.)

 a crm(2, a,
 wUl

 not a: RI E, R au,

 conb(K, a, a, 6). A conversion is chosen and performed on S(a). The result is
 marked with ,. Hi. The sequence determining the choices is S(6). If it should
 happen that this sequence is exhausted before the conversion is completed then
 the final formula is the same as the original, i.e. S(a). The half finished conversion
 work is effectively removed from the tape by erasing the marks.

 4. Computability of X-K-definable functions. It is now comparatively
 simple to show that a X-K-definable function is computable, i.e., that7 if f(n) is
 X-K-definable then the sequence ey im which there are f(n) figures 1 between
 the nth and the (n+1)th 0, and f(O) figures before the first 0, is computable.

 To simplify the table for the machine which computes Fyf we use the abbrevi-
 ation fWr(2[, M, a) for an internal configuration starting from which the machine
 writes the sequence M of symbols at the end, marking it with a and finishing in
 the internal configuration 21. Thus the table for ZVr(2, Xx 1, a) would be:

 G3r(2[, Xx 1, a) Oe(Qrl, a)

 Or1 PPXIRPaR,Px,R, Pa,R,P1,RPa x

 We use one more skeleton table:

 p01(1, a, 0) fun1(e(re(?[, a, a), a), 8, a, a)
 If F is the formula which X-K-defines f(n) then the table for the machine

 which computes -y is:

 b Pa, R, Pa 3r(bj, F, A)
 b, jWr(b2, ax [X I [x t]1 i)
 b2 crm(bN, i, k)
 N Gr(ba, Xxt I [Xx[Xx' [[x][[[xI | ][x]][x1]]]]],u)
 ba funf (mn, A, k, v)
 en abb(cu1, s, L, M)
 Ct1 crm(eu2, i, d)

 eni co( 3n,, d, m), s0)(m2, d, u), A, s)

 cn, cotr(ae, a, w, M)

 T Compuaibq p. 254.
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 COMPUTABILITY AND LAMBDA-DIEINABILITY 161

 en. C(C(C(Cow , t), m), d)
 Chio CT)(CWIo, Ctto, en, s)
 CM. q(eu7, m)
 CMl7 E q(cn., m)
 ca E q(Ic(mg), m)

 R, E pem(q(1(cn), m), 1, a)
 can{

 not 1 pem(e(e(e(e(bal, s), v), w), m), 0, a)

 ba, pld(ba, k, u)
 When the machine reaches the internal configuration ba for the (n+l)th time
 (n2 0) the tape bears the formula F marked with h, the formula n representing
 the natural number n (or rather a formula convertible into it) marked with k,
 o marked with i, and S marked with u. A formula convertible into one repre-
 senting some natural number r is then chosen and marked with m. This brings
 us to the internal configuration CEn. A conversion is then chosen and performed
 on S(v), i.e. on [F] [n ]. The result is marked with w and compared with S(m).
 If they are not alike the letters w, m are erased and we go back to cml after
 transforming the sequence S(s) which determines the choices into the next
 sequence. If they are alike then 1 is written at the end repeated r times followed
 by 0, all of which is marked with a. In order to have the correct number of figures
 we make use of the fact that the number of brackets occurring consecutively at
 the end of S(m) is r+2. The machine is back in the internal configuration ba as
 soon as S(k) has been changed to [S ] [S(k) 1.
 No attempt is being made to give a formal proof that this machine has the

 properties claimed for it. Such a formal proof is not possible unless the ideas of
 substitution and so forth occurring in the definition of conversion are formally
 defined, and the best form of such a definition is possibly in terms of machines.
 If f(n) (no 1) is X-definable, i.e. if F is well-formed (Unsolvable p. 346), then

 the present argument shows also that f(n) is then computable in the sense that
 a function g(n) of positive integers is computable if there is a computable se-
 quence with g(n) figures 1 between the nth and (n+l)th figure 0.

 5. Recursiveness of computable functions. It will now be shown that every
 computable function f(n) of the natural numbers, taking natural numbers as
 values, is general recursive. We shall in fact find primitive recursive functions
 j(x), +(x) such that if t(x) is the (x+1)th (x=0, 1, 2, . . ) natural number y
 for which j(y) = 0, then f(x) is given by

 f(x) = QW) .
 It is easily seen that such a function is general recursive (cf. Unsolvable p. 353);
 also it can easily be brought into the form,8

 f(x) = 4(ey[i(x, y) = 01)
 'This may be done by defining i(x, y) as follows:

 c() - 0,
 e(S(x)) - S(e(x)) if (x) - 0,

 c(x) otherwise,
 i(x, y) - Max (0, x-c(y)),

 S(x) " usual meaning x+1.

This content downloaded from 165.123.34.86 on Sun, 19 Jan 2020 23:11:51 UTC
All use subject to https://about.jstor.org/terms



 162 A. M. TURING

 (where ey [i(x, y) = 0] means 'the least natural number y for which i(x, y) = 0,'
 and i(x, y) is primitive recursive) which plays a central part9 in the theory of
 general recursive functions. It would be slightly simpler to set up recursion
 equations forf(x) but in that case it would be necessary to show that they were

 consistent; this is avoided by confining ourselves to primitive recursions (whose

 consistency is not likely to be doubted) except at the step from j(x) to Z(x).
 We are given the description of a machine which computesf(x). The machine

 writes down sysmbols on a tape: amongst these symbols occur figures 0 and 1.
 The number of figures 1 between the nth and the (n+1)th figure 0 is f(n).

 At any moment there is one of the symbols on the tape which is to be distin-

 guished from the others and is called the 'scanned symbol.' The state (complete
 configuration) of the system at any moment is described by the sequence of
 symbols on the tape, with an indication as to which of them is scanned, and the
 internal configuration (m-configuration in Computable) of the machine. As names

 for the symbols we take So, Si, - - - , SNjv- and for the internal configurations
 qi, q2, * *, qz. Certain of these are names of definite symbols and internal con-
 figurations independent of the machine; in fact,

 SO always stands for 'blank,'
 SI always stands for 0,
 S2 always stands for 1,
 q, always stands for the initial internal configuration.

 If at any time there is the sequence

 Sly S82 , , * *Y Sep, . . . X Sa I (k > 0, I ?0)
 of symbols on the tape, with the kth symbol scanned and the internal configura-

 tion qj, this complete configuration may be described by the four numbers,

 W = Sk-1 + Ns..2 + * * * + Nk-2s1,
 Sk, t, and

 V = sk+i+Nsk+1+ * +N'-ls+

 or by the single number,

 u = p(w, Sk, t, v),
 where

 p(xi, Xt, x3, x4) = 2"3,5z3724.
 Each complete configuration of the machine is determined by the preceding

 one. The manner of this determination is given in the description of the machine,

 which consists of a number of expressions each of one of the forms qtS.S, Lqt, or
 qtS,S.,Nqt' or qtS.S.,Rqt. The occurrence of the first of these means that if in
 any complete configuration the scanned symbol was S. and the internal con-

 figuration qt, then the machine goes to the next complete configuration by re-
 placing the scanned symbol by S., and making the new scanned symbol the

 symbol on the left of it and the new internal configuration qj,. In other words if a
 complete configuration be described by the number,

 P(Sk-1 + Nsk-2 + * * * + Nk2s1, S, t, Sk+1 + NSk+2 + * * * + Ns k+z)

 = P(Sk-. + Nf, s, t, Sk+l + Ng),

 Compare the two papers by Kleene already quoted.

This content downloaded from 165.123.34.86 on Sun, 19 Jan 2020 23:11:51 UTC
All use subject to https://about.jstor.org/terms



 COMPUTABILITY AND LAMBDA-DEFINABILITY 163

 and if qtS.S.,Lq,' occurs in the description of the machine, then the number
 describing the next complete configuration is

 p(f, Sk-1, I', s' + N(sk+l + Ng)).
 In the case where we have qtS.S.,Nqt, the next complete configuration will be
 described by

 p(sk-1 + Nf, S', t', Sk+1 + Ng),
 and in the case of qtS.S.,Rqt, by

 p(s' + N(sk.1 + Nf), sk+, I', g).
 We may define a primitive recursive function di(s, 1) (or i4(s, 1) or d3(s, t))

 to have the value 1 or 0 according as an expression of the form qtS.S,.Lqs'
 (or qtS.S.,Nqj' or qgS.S.'Rqg') does or does not occur in the description of the
 machine. In each of the three cases z(s, t) is to have the value s' and c(s, 1) to
 have the value i'. q(x), r(x) are to be respectively quotient and remainder of x
 on division by N, and wr(x) (r= 2, 3, 5, 7) is to be the greatest integer k for
 which rk divides x. These functions are primitive recursive.

 Then if we put

 @(X) = dj(w:3(x), w6(x))p(q( &2(x)), r(chs(x)), c( &3(x), wz5 (x)), a ( w53(x), w6(x)) + N107(X))
 ? d&(3(X), W>5(X))p(&h(X), Z(t&h(X), tVS6(X)), C(0S3(X), 06~(X)), 07(X))
 ? d3(r s3(x), v5(x))p(z(a8(x), wss(x)) +N ch2(x), r(w7(x)), C(&h(X), 0S7(X)), q(07(x))),

 and

 u(0) = p(0, 0, 1, 0) = 5,
 u(S(x)) = (ux)),

 u(x) will be the number describing the (x+l)th complete configuration of the
 machine.

 g(x, y) is to be defined by

 g(S(x), y) = 2 (all x, y > 0), g(O, 1) = 0,
 g(0, 0) =2, g(0, 2) 1,

 g(O, x) =2 (x > 3),
 and j(x) by,

 j(X) = g(03(U(X)), Z(W3(U(X)), 05(U(X)))).

 Then j(x) = 0 means that in going from the (x+ 1)th to the (x+2)th complete
 configuration the machine prints a figure 0: if j(x) = 1 it prints 1: j(x) = 2 other-

 wise. Z(x) is defined to be the (x+ 1)th natural number y for which j(y) = 0, and
 4(x) as follows:

 O(M) 0,
 +(S(x)) = 0 if j(x) = 0,

 - +~(x) if j(x) = 2,
 = S(4(x)) if j(x) = 1.

 Then +(x) is the number of times 1 has been printed since the last 0, reckoned
 at the (x+l)th complete configuration. 0t((x)) is the number of times 1 occurs
 between the xth and the (x+ 1)th figure 0, its value when x = 0 being the number
 of figures 1 which precede all figures 0. But these are the properties which
 define f(x).

 PRINCETON ULIVERSITY
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