Spring, 2014 CIS 511

Introduction to the Theory of Computation Jean Gallier

Practice Final Exam

April 25, 2014

Note that this is a **closed-book exam**. Do the exam in 120 mn.

Solutions will be posted on the Web on April 30.

Problem 1 (10 pts). Given an alphabet Σ , sketch an algorithm to decide whether

$$(R^* + S^*) \cong \Sigma^*,$$

for any two regular expressions R and S over Σ .

Problem 2 (20 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be any DFA. For any integer, $m \ge 0$, give an algorithm to decide the following questions:

- (1) The DFA, D, only accepts strings of length $m \ge 0$.
- (2) The DFA, D, only accepts strings of length $\leq m$.

Problem 3 (20 pts). Prove that the following languages are not regular:

$$L_1 = \{a^m b^n c^m \mid m, n \ge 1\}, L_2 = \{a^n \mid n \text{ is not a prime}\}.$$

Problem 4 (10 pts). Consider the grammar G with nonterminal set $\{S, A, C\}$ and terminal set $\{a, b, c\}$ given by the following productions:

$$S \Longrightarrow AC$$
$$A \Longrightarrow aAb$$
$$A \Longrightarrow ab$$
$$C \Longrightarrow c.$$

(i) Describe all rightmost derivations and find out what the set of characteristic strings C_G is.

(ii) Describe all leftmost derivations.

Problem 5 (10 pts). Given any trim DFA $D = (Q, \Sigma, \delta, q_0, F)$ accepting a language L = L(D), if D is a minimal DFA, then prove that its Myhill-Nerode equivalence relation \simeq_D is equal to ρ_L .

Problem 6 (20 pts). Give an algorithm to decide whether $L \subseteq \{aa, bb\}^*$, where $L \subseteq \{a, b\}^*$ is any context-free language.

Problem 7 (20 pts). Prove that the following sets are not recursive $(\varphi_1, \varphi_2, \ldots, \varphi_i, \ldots)$ is any acceptable indexing of the partial recursive functions):

 $A = \{i \in \mathbb{N} \mid \varphi_i(0) = \varphi_i(1) \text{ and } \varphi_i(0), \varphi_i(1) \text{ are both defined} \}$ $B = \{i \in \mathbb{N} \mid \varphi_i = \varphi_a + \varphi_b\}$ $C = \{\langle i, j, k \rangle \in \mathbb{N} \mid \varphi_i = \varphi_j + \varphi_k\}$ $D = \{i \in \mathbb{N} \mid \varphi_i \text{ diverges for exactly one input} \}$

where a and b are two fixed natural numbers.

Problem 8 (10 pts). Consider the version of the tiling problem where an instance of the problem is of the form $((\mathcal{T}, V, H), \hat{s}, \sigma_0)$, where (\mathcal{T}, V, H) is a tiling system as before, but \hat{s} is *s* in tally notation and σ_0 is a single tile placed in position (1, 1). Recall that the tally notation of a natural number *n* is $1 \cdots 1$ with n + 1 occurrences of "1". For example, the tally notation for the decimal number 10 is 1111111111.

Prove that this new tiling problem is also \mathcal{NP} -complete.