Spring, 2014 CIS 511

Introduction to the Theory of Computation Jean Gallier
 Practice Final Exam

April 25, 2014
Note that this is a closed-book exam.
Do the exam in 120 mn .
Solutions will be posted on the Web on April 30.
Problem 1 (10 pts). Given an alphabet Σ, sketch an algorithm to decide whether

$$
\left(R^{*}+S^{*}\right) \cong \Sigma^{*},
$$

for any two regular expressions R and S over Σ.
Problem $2(20 \mathrm{pts})$. Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be any DFA. For any integer, $m \geq 0$, give an algorithm to decide the following questions:
(1) The DFA, D, only accepts strings of length $m \geq 0$.
(2) The DFA, D, only accepts strings of length $\leq m$.

Problem 3 (20 pts). Prove that the following languages are not regular:

$$
\begin{aligned}
& L_{1}=\left\{a^{m} b^{n} c^{m} \mid m, n \geq 1\right\}, \\
& L_{2}=\left\{a^{n} \mid n \text { is not a prime }\right\} .
\end{aligned}
$$

Problem 4 (10 pts). Consider the grammar G with nonterminal set $\{S, A, C\}$ and terminal set $\{a, b, c\}$ given by the following productions:

$$
\begin{aligned}
& S \Longrightarrow A C \\
& A \Longrightarrow a A b \\
& A \Longrightarrow a b \\
& C \Longrightarrow c .
\end{aligned}
$$

(i) Describe all rightmost derivations and find out what the set of characteristic strings C_{G} is.
(ii) Describe all leftmost derivations.

Problem 5 (10 pts). Given any trim DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepting a language $L=L(D)$, if D is a minimal DFA, then prove that its Myhill-Nerode equivalence relation \simeq_{D} is equal to ρ_{L}.
Problem 6 (20 pts). Give an algorithm to decide whether $L \subseteq\{a a, b b\}^{*}$, where $L \subseteq\{a, b\}^{*}$ is any context-free language.

Problem 7 (20 pts). Prove that the following sets are not recursive $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{i}, \ldots\right.$ is any acceptable indexing of the partial recursive functions):

$$
\begin{aligned}
& A=\left\{i \in \mathbb{N} \mid \varphi_{i}(0)=\varphi_{i}(1) \text { and } \varphi_{i}(0), \varphi_{i}(1) \text { are both defined }\right\} \\
& B=\left\{i \in \mathbb{N} \mid \varphi_{i}=\varphi_{a}+\varphi_{b}\right\} \\
& C=\left\{\langle i, j, k\rangle \in \mathbb{N} \mid \varphi_{i}=\varphi_{j}+\varphi_{k}\right\} \\
& D=\left\{i \in \mathbb{N} \mid \varphi_{i} \text { diverges for exactly one input }\right\}
\end{aligned}
$$

where a and b are two fixed natural numbers.
Problem 8 (10 pts). Consider the version of the tiling problem where an instance of the problem is of the form $\left((\mathcal{T}, V, H), \widehat{s}, \sigma_{0}\right)$, where (\mathcal{T}, V, H) is a tiling system as before, but \widehat{s} is s in tally notation and σ_{0} is a single tile placed in position $(1,1)$. Recall that the tally notation of a natural number n is $1 \cdots 1$ with $n+1$ occurrences of " 1 ". For example, the tally notation for the decimal number 10 is 11111111111.

Prove that this new tiling problem is also $\mathcal{N} \mathcal{P}$-complete.

