Spring, 2013 CIS 511

Introduction to the Theory of Computation Jean Gallier
 Practice Final Exam

April 15, 2013
Note that this is a closed-book exam.
Do the exam in 120 mn .
Solutions will be emailed on April 23.
Problem 1 (10 pts). Given an alphabet Σ, sketch an algorithm to decide whether

$$
\left(R^{*}+S^{*}\right) \cong \Sigma^{*},
$$

for any two regular expressions R and S over Σ.
Problem $2(20 \mathrm{pts})$. Let Σ be an alphabet. Recall that a binary relation, \sim, on Σ^{*}, is left invariant iff $u \sim v$ implies that $w u \sim w v$ for all $w \in \Sigma^{*}$ and right invariant iff $u \sim v$ implies that $u w \sim v w$ for all $w \in \Sigma^{*}$. An equivalence relation on Σ^{*} that is both left and right-invariant is called a congruence. Recall that a congruence satisfies the property: If $u \sim u^{\prime}$ and $v \sim v^{\prime}$, then $u v \sim u^{\prime} v^{\prime}$ (You do not have to prove this). Also recall that there is a version of the Myhill-Nerode theorem that says that a language, L, is regular iff it is the union of equivalence classes of a congruence with a finite number of equivalence classes. (You do not have to prove this). Finally, recall that the reversal of a string, $w \in \Sigma^{*}$, is defined inductively as follows:

$$
\begin{aligned}
\epsilon^{R} & =\epsilon \\
(u a)^{R} & =a u^{R}
\end{aligned}
$$

for all $u \in \Sigma^{*}$ and all $a \in \Sigma$.
(i) Let \sim be a congruence (on Σ^{*}) and assume that \sim has n equivalence classes. Define \sim_{R} and \approx by

$$
u \sim_{R} v \quad \text { iff } \quad u^{R} \sim v^{R}, \quad \text { for all } u, v \in \Sigma^{*} \quad \text { and } \quad \approx=\sim \cap \sim_{R} .
$$

The relation \approx is clearly a congruence (You do not have to prove this). Prove that \approx has at most n^{2} equivalence classes.
(ii) Given any regular language, L, over Σ^{*} let

$$
L^{\prime}=\left\{w \in \Sigma^{*} \mid w w^{R} \in L\right\} .
$$

Prove that L^{\prime} is also regular, using the relation \approx of part (i).
Hint. Use the usual version of the Myhill-Nerode theorem applied to the relation \approx.
Problem 3 (20 pts). Prove that the following languages are not regular:

$$
\begin{aligned}
& L_{1}=\left\{a^{m} b^{n} c^{m} \mid m, n \geq 1\right\}, \\
& L_{2}=\left\{a^{n} \mid n \text { is not a prime }\right\} .
\end{aligned}
$$

Problem 4 (10 pts). Give a context-free grammar for the language:

$$
L_{3}=\left\{a^{m} b^{m} c a^{2 n} b^{2 n} \mid m, n \geq 1\right\}
$$

where $\Sigma=\{a, b, c\}$.
Problem 5 (20 pts). Give an algorithm to decide whether $L \subseteq\{a a, b b\}^{*}$, where $L \subseteq\{a, b\}^{*}$ is any context-free language.
Problem 6 (25 pts). (i) Prove that the following sets are not recursive $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{i}, \ldots\right.$ is any acceptable indexing of the partial recursive functions):

$$
\begin{aligned}
& A=\left\{i \in \mathbb{N} \mid \varphi_{i}(0)=\varphi_{i}(1) \text { and } \varphi_{i}(0), \varphi_{i}(1) \text { are both defined }\right\} \\
& B=\left\{i \in \mathbb{N} \mid \varphi_{i}=\varphi_{a}+\varphi_{b}\right\} \\
& C=\left\{\langle i, j, k\rangle \in \mathbb{N} \mid \varphi_{i}=\varphi_{j}+\varphi_{k}\right\} \\
& D=\left\{i \in \mathbb{N} \mid \varphi_{i} \text { diverges for exactly one input }\right\}
\end{aligned}
$$

where a and b are two fixed natural numbers.
(ii) Prove that A is recursively enumerable.

Problem 7 (15 pts). Consider the version of the tiling problem where an instance of the problem is of the form $\left((\mathcal{T}, V, H), \widehat{s}, \sigma_{0}\right)$, where (\mathcal{T}, V, H) is a tiling system as before, but \widehat{s} is s in tally notation and σ_{0} is a single tile placed in position $(1,1)$. Recall that the tally notation of a natural number n is $1 \cdots 1$ with $n+1$ occurrences of " 1 ". For example, the tally notation for the decimal number 10 is 11111111111.

Prove that this new tiling problem is also $\mathcal{N} \mathcal{P}$-complete.

