Spring, 2013 CIS 511

Introduction to the Theory of Computation Jean Gallier

Practice Final Exam

April 15, 2013

Note that this is a **closed-book exam**. Do the exam in 120 mn.

Solutions will be emailed on April 23.

Problem 1 (10 pts). Given an alphabet Σ , sketch an algorithm to decide whether

$$(R^* + S^*) \cong \Sigma^*,$$

for any two regular expressions R and S over Σ .

Problem 2 (20 pts). Let Σ be an alphabet. Recall that a binary relation, \sim , on Σ^* , is *left invariant* iff $u \sim v$ implies that $wu \sim wv$ for all $w \in \Sigma^*$ and *right invariant* iff $u \sim v$ implies that $uw \sim vw$ for all $w \in \Sigma^*$. An equivalence relation on Σ^* that is both left and right-invariant is called a *congruence*. Recall that a congruence satisfies the property: If $u \sim u'$ and $v \sim v'$, then $uv \sim u'v'$ (You **do not** have to prove this). Also recall that there is a version of the Myhill-Nerode theorem that says that a language, L, is regular iff it is the union of equivalence classes of a congruence with a finite number of equivalence classes. (You **do not** have to prove this). Finally, recall that the reversal of a string, $w \in \Sigma^*$, is defined inductively as follows:

$$\epsilon^R = \epsilon (ua)^R = au^R,$$

for all $u \in \Sigma^*$ and all $a \in \Sigma$.

(i) Let ~ be a congruence (on Σ^*) and assume that ~ has *n* equivalence classes. Define \sim_R and \approx by

$$u \sim_R v$$
 iff $u^R \sim v^R$, for all $u, v \in \Sigma^*$ and $\approx = \sim \cap \sim_R A$

The relation \approx is clearly a congruence (You **do not** have to prove this). Prove that \approx has at most n^2 equivalence classes.

(ii) Given any regular language, L, over Σ^* let

$$L' = \{ w \in \Sigma^* \mid ww^R \in L \}$$

Prove that L' is also regular, using the relation \approx of part (i). *Hint*. Use the usual version of the Myhill-Nerode theorem applied to the relation \approx .

Problem 3 (20 pts). Prove that the following languages are not regular:

$$L_1 = \{a^m b^n c^m \mid m, n > 1\},\$$

$$L_2 = \{a^n \mid n \text{ is not a prime}\}$$

Problem 4 (10 pts). Give a context-free grammar for the language:

$$L_3 = \{ a^m b^m c a^{2n} b^{2n} \mid m, n \ge 1 \},\$$

where $\Sigma = \{a, b, c\}.$

Problem 5 (20 pts). Give an algorithm to decide whether $L \subseteq \{aa, bb\}^*$, where $L \subseteq \{a, b\}^*$ is any context-free language.

Problem 6 (25 pts). (i) Prove that the following sets are not recursive $(\varphi_1, \varphi_2, \ldots, \varphi_i, \ldots)$ is any acceptable indexing of the partial recursive functions):

 $A = \{i \in \mathbb{N} \mid \varphi_i(0) = \varphi_i(1) \text{ and } \varphi_i(0), \varphi_i(1) \text{ are both defined} \}$ $B = \{i \in \mathbb{N} \mid \varphi_i = \varphi_a + \varphi_b\}$ $C = \{\langle i, j, k \rangle \in \mathbb{N} \mid \varphi_i = \varphi_j + \varphi_k\}$ $D = \{i \in \mathbb{N} \mid \varphi_i \text{ diverges for exactly one input} \}$

where a and b are two fixed natural numbers.

(ii) Prove that A is recursively enumerable.

Problem 7 (15 pts). Consider the version of the tiling problem where an instance of the problem is of the form $((\mathcal{T}, V, H), \hat{s}, \sigma_0)$, where (\mathcal{T}, V, H) is a tiling system as before, but \hat{s} is *s* in tally notation and σ_0 is a single tile placed in position (1, 1). Recall that the tally notation of a natural number *n* is $1 \cdots 1$ with n + 1 occurrences of "1". For example, the tally notation for the decimal number 10 is 1111111111.

Prove that this new tiling problem is also \mathcal{NP} -complete.