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Preface

The main goal of this book is to present a mix of material dealing with

1. Proof systems.

2. Computability and undecidability.

3. The Lambda Calculus.

4. Some aspects of complexity theory.

Historically, the theory of computability and undecidability arose from Hilbert’s efforts
to completely formalize mathematics and from Gödel’s first incompleteness theorem that
showed that such a program was doomed to fail. People realized that to carry out both
Hilbert’s program and Gödel’s work it was necessary to define precisely what is the notion of
a computable function and the notion of a mechanically checkable proof. The first definition
given around 1934 was that of the class of computable function in the sense of Herbrand–
Gödel–Kleene. The second definition given by Church in 1935-1936 was the notion of a
function definable in the λ-calculus. The equivalence of these two definitions was shown by
Kleene in 1936. Shortly after in 1936, Turing introduced a third definition, that of a Turing-
computable function. Turing proved the equivalence of his definition with the Herbrand–
Gödel–Kleene definition in 1937 (his proofs are rather sketchy compared to Kleene’s proofs).
All these historical papers can be found in a fascinating book edited by Martin Davis [27].

Negative results pointing out limitations of the notion of computability started to appear:
Gödel’s first (and second) incompleteness result, but also Church’s theorem on the undecid-
ability of validity in first-order logic, and Turing’s result on the undecidability of the halting
problem for Turing machines. Although originally the main focus was on the notion of func-
tion, these undecidability results triggered the study of computable and noncomputable sets
of natural numbers.

Other definitions of the computable functions were given later. From our point of view,
the most important ones are

1. RAM programs and RAM-computable functions by Shepherdson and Sturgis (1963),
and anticipated by Post (1944); see Machtey and Young [43].
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2. Diophantine-definable sets (Davis–Putnam–Robinson–Matiyasevich); see Davis [10,
11].

We find the RAM-progam model quite attractive because it is a very simplified realistic
model of the true architecture of a modern computer. Technically, we also find it more
convenient to assign Gödel numbers to RAM programs than assigning Gödel numbers to
Turing machines. Every RAM program can be converted to a Turing machine and vice-
versa in polynomial time (going from a Turing machine to a RAM is quite horrific), so the
two models are equivalent in a strong sense. So from our perspective Turing machines could
be dispensed with, but there is a problem. The problem is that the Turing machine model
seems more convenient to cope with time or space restrictions, that is, to define complexity
classes.

There is actually no difficulty in defining nondeterministic RAM programs and to impose
a time restriction on the program counter or a space restriction on the size of registers,
but nobody seems to follow this path. This seems unfortunate to us because it appears
that it would be easier to justify the fact that certain reductions can be carried out in
polynomial time (or space) by writing a RAM program rather than by constructing a Turing
machine. Regarding this issue, we are not aware than anyone actually provides Turing
machines computing these reductions, even for SAT.

In any case, we will stick to the tradition of using Turing machines when discussing
complexity classes.

In addition to presenting the RAM-program model, the Turing machine model, the
Herbrand–Gödel–Kleene definition of the computable functions, and showing their equiv-
alence, we provide an introduction to recursion theory (see Chapter 8). In particular, we
discuss creative and productive sets (see Rogers [53]). This allows us to cover most of the
main undecidability results. These include

1. The undecidability of the halting problem for RAM programs (and Turing machines).

2. Rice’s theorem for the computable functions.

3. Rice’s extended theorem for the listable sets.

4. A strong form of Gödel’ first incompleteness theorem (in terms of creative sets) follow-
ing Rogers [53].

5. The fact that the true first-order sentences of arithmetic are not even listable (a pro-
ductive set) following Rogers [53].

6. The undecidability of the Post correspondence problem (PCP) using a proof due to
Dana Scott.

7. The undecidability of the validity in first-order logic (Church’s theorem), using a proof
due to Robert Floyd.
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8. The undecidability of Hilbert’s tenth problem (the DPRM theorem) following Davis
[10].

9. Another strong form of Gödel’ first incompleteness theorem, as a consequence of dio-
phantine definability following Davis [10].

The following two topics are rarely covered in books on the theory of computation and
undecidability.

In Chapter 5 we introduce Church’s λ-calculus and show how the computable functions
and the partial computable functions are definable in the λ-calculus, using a method due to
Barendregt [4]. We also give a glimpse of the second-order polymorphic λ-calculus of Girard.

In Chapter 9 we discuss the definability of the listable sets in terms of Diophantine
equations (zeros of polynomials with integer coefficients) and state the famous result about
the undecidability of Hilbert’s tenth problem (the DPRM theorem). We follow the masterly
exposition of Davis [10, 11].

A possibly unsusual aspect of our book is that we begin with two chapters on mathemat-
ical reasoning and logic. Given the origins of the theory of computation and undecidability,
we feel that this is very appropriate. We present proof systems in natural deduction style
(a la Prawitz), which makes it easy to discuss the special role of the proof–by–contradiction
principle, and to introduce intuitionistic logic, which is the result of removing this rule from
the set of inference rules. It is also quite natural to explain how proofs in intuitionistic
propositional logic are represented by simply-typed λ-terms. Then it is easy to introduce
the “Curry–Howard isomorphism.” This is a prelude to the introduction of the “pure”
(untyped) λ-calculus.

Our treatment of complexity theory is limited to P , NP , co-NP , EXP , NEXP , PS
(PSPACE) and NPS (NPSPACE) and is fairly standard. However, we prove that SAT
is NP-complete by first proving (following Lewis and Papadimitriou [42]) that a bounded
tiling problem is NP-complete.

In Chapter 13 we treat the result that primality testing is in NP in more details than
most other sources, relying on an improved version of a theorem of Lucas as discussed in
Crandall and Pomerance [6]. The only result that we omit is the existence of primitive roots
in (Z/pZ)∗ when p is prime.

In Chapter 14 we prove Savitch’s theorem (PS = NPS). We state the fact that the
validity of quantified boolean formulae is PS-complete and provide parts of the proof. We
conclude with the beautiful proof of Statman [57] that provability in intuitionistic logic is
PS-complete. We do not give all the details but we prove the correctness of Statman’s
amazing translation of a valid QBF into an intuitionistically provable proposition.

We feel strongly that one does not learn mathematics without reading (and struggling
through) proofs, so we tried to provide as many proofs as possible. Among some of the
omissions, we do not show how to construct a Gödel sentence in the proof of the first
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incompleteness theorem; Rogers [53] leaves this as an exercise! We also do not give a complete
proof of Statman’s result. Giving a complete proof of the DPRM would require the inclusion
of some very technical number theory material. This would probably turn off most readers
and be of very little value so we decided to omit the most arduous material. However, we
present an almost complete proof. We have omitted the hardest step: showing that the
exponential function is Diophantine definable. Whenever a proof is omitted, we provide a
pointer to a source that contains such a proof.
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Martin Davis, Herbert Enderton, Harvey Friedman, Jean-Yves Girard, John Hopcroft, Bill
Howard, Harry Lewis, Zohar Manna, Christos Papadimitriou, Carl Pomerance, Dag Prawitz,
Helmut Schwichtenberg, Dana Scott, Rick Statman, Jeff Ullman, Hartley Rogers, and Paul
Young. Of course, we must acknowledge Alonzo Church, Gerhard Gentzen, Kurt Gödel,
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Chapter 1

Mathematical Reasoning And Basic
Logic

1.1 Introduction

One of the main goals of this book is to show how to

construct and read mathematical proofs.

Why?

1. Computer scientists and engineers write programs and build systems.

2. It is very important to have rigorous methods to check that these programs and systems
behave as expected (are correct, have no bugs).

3. It is also important to have methods to analyze the complexity of programs (time/space
complexity).

More generally, it is crucial to have a firm grasp of the basic reasoning principles and
rules of logic. This leads to the question:

What is a proof?

There is no short answer to this question. However, it seems fair to say that a proof is
some kind of deduction (derivation) that proceeds from a set of hypotheses (premises, axioms)
in order to derive a conclusion, using some proof templates (also called logical rules).

A first important observation is that there are different degrees of formality of proofs.

1. Proofs can be very informal, using a set of loosely defined logical rules, possibly omit-
ting steps and premises.

11



12 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

2. Proofs can be completely formal, using a very clearly defined set of rules and premises.
Such proofs are usually processed or produced by programs called proof checkers and
theorem provers.

Thus, a human prover evolves in a spectrum of formality.
It should be said that it is practically impossible to write formal proofs . This is because

it would be extremely tedious and time-consuming to write such proofs and these proofs
would be huge and thus, very hard to read.

In principle, it is possible to write formalized proofs and sometimes it is desirable to do
so if we want to have absolute confidence in a proof. For example, we would like to be sure
that a flight-control system is not buggy so that a plane does not accidentally crash, that a
program running a nuclear reactor will not malfunction, or that nuclear missiles will not be
fired as a result of a buggy “alarm system.”

Thus, it is very important to develop tools to assist us in constructing formal proofs or
checking that formal proofs are correct. Such systems do exist, for example Isabelle, COQ,
TPS, NUPRL, PVS, Twelf. However, 99.99% of us will not have the time or energy to write
formal proofs.

Even if we never write formal proofs, it is important to understand clearly what are the
rules of reasoning (proof templates) that we use when we construct informal proofs.

The goal of this chapter is to explain what is a proof and how we construct proofs using
various proof templates (also known as proof rules).

This chapter is an abbreviated and informal version of Chapter 2. It is meant for readers
who have never been exposed to a presentation of the rules of mathematical reasoning (the
rules for constructing mathematical proofs) and basic logic. Readers with a good background
in these topics may decide to skip this chapter and proceed directly to Chapter 2. This will
not cause any problem and there will be no gap since the other chapters are written so that
they do not rely on the material of Chapter 1 (except for a few remarks).

1.2 Logical Connectives, Definitions

In order to define the notion of proof rigorously, we would have to define a formal language
in which to express statements very precisely, and we would have to set up a proof system in
terms of axioms and proof rules (also called inference rules). We do not go into this in this
chapter as this would take too much time. Instead, we content ourselves with an intuitive
idea of what a statement is and focus on stating as precisely as possible the rules of logic
(proof templates) that are used in constructing proofs.

In mathematics and computer science we prove statements. Statements may be atomic
or compound , that is, built up from simpler statements using logical connectives , such as
implication (if–then), conjunction (and), disjunction (or), negation (not), and (existential
or universal) quantifiers .

As examples of atomic statements, we have:

1. “A student is eager to learn.”
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2. “A student wants an A.”

3. “An odd integer is never 0.”

4. “The product of two odd integers is odd.”

Atomic statements may also contain “variables” (standing for arbitrary objects). For
example,

1. human(x): “x is a human.”

2. needs-to-drink(x): “x needs to drink.”

An example of a compound statement is

human(x)⇒ needs-to-drink(x).

In the above statement, ⇒ is the symbol used for logical implication. If we want to assert
that every human needs to drink, we can write

∀x(human(x)⇒ needs-to-drink(x));

this is read “For every x, if x is a human, then x needs to drink.”
If we want to assert that some human needs to drink we write

∃x(human(x)⇒ needs-to-drink(x));

this is read “There is some x such that, if x is a human, then x needs to drink.”
We often denote statements (also called propositions or (logical) formulae) using letters,

such as A,B, P,Q, and so on, typically upper-case letters (but sometimes Greek letters, ϕ,
ψ, etc.).

Compound statements are defined as follows: if P and Q are statements, then

1. the conjunction of P and Q is denoted P ∧Q (pronounced, P and Q),

2. the disjunction of P and Q is denoted P ∨Q (pronounced, P or Q),

3. the implication of P and Q is denoted by P ⇒ Q (pronounced, if P then Q, or P
implies Q).

We also have the atomic statements ⊥ (falsity) (think of it as the statement that is false
no matter what); and the atomic statement > (truth) (think of it as the statement that is
always true).

The constant ⊥ is also called falsum or absurdum. It is a formalization of the notion of
absurdity or inconsistency (a state in which contradictory facts hold).

Given any proposition P it is convenient to define
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4. the negation ¬P of P (pronounced, not P ) as P ⇒⊥. Thus, ¬P (sometimes denoted
∼ P ) is just a shorthand for P ⇒⊥.

The intuitive idea is that ¬P (an abbreviation for P ⇒⊥) is true if and only if P is false.
Actually, because we don’t know what truth is, it is “safer” to say that ¬P is provable if
and only if for every proof of P we can derive a contradiction (namely, ⊥ is provable). By
provable, we mean that a proof can be constructed using some rules that will be described
shortly (see Section 1.3).

Whenever necessary to avoid ambiguities, we add matching parentheses: (P∧Q), (P∨Q),
(P ⇒ Q). For example, P∨Q∧R is ambiguous; it means either (P∨(Q∧R)) or ((P∨Q)∧R).

Another important logical operator is equivalence.

If P and Q are statements, then

5. the equivalence of P and Q is denoted P ≡ Q (or P ⇐⇒ Q); it is an abbreviation for
(P ⇒ Q)∧ (Q⇒ P ). We often say “P if and only if Q” or even “P iff Q” for P ≡ Q.

As a consequence, to prove a logical equivalence P ≡ Q, we have to prove both implica-
tions P ⇒ Q and Q⇒ P .

The meaning of the logical connectives (∧,∨,⇒,¬,≡) is intuitively clear. This is certainly
the case for and (∧), since a conjunction P ∧Q is true if and only if both P and Q are true
(if we are not sure what “true” means, replace it by the word “provable”). However, for or
(∨), do we mean inclusive or or exclusive or? In the first case, P ∨ Q is true if either P or
Q is true, but in the second case, P ∨Q is true if either P or Q is true but not both at the
same time (again, in doubt change “true” to “provable”). We always mean inclusive or.

The situation is worse for implication (⇒). When do we consider that P ⇒ Q is true
(provable)? The answer is that it depends on the rules! The “classical” answer is that
P ⇒ Q is false (not provable) if and only if P is true and Q is false. For an alternative view
(that of intuitionistic logic), see Chapter 2. In this chapter (and all others except Chapter
2), we adopt the classical view of logic. Since negation (¬) is defined in terms of implication,
in the classical view, ¬P is true if and only if P is false.

The purpose of the proof rules , or proof templates , is to spell out rules for constructing
proofs which reflect, and in fact specify, the meaning of the logical connectives.

Before we present the proof templates it should be said that nothing of much interest can
be proven in mathematics if we do not have at our disposal various objects such as numbers,
functions, graphs, etc. This brings up the issue of where we begin, what may we assume. In
set theory, everything, even the natural numbers, can be built up from the empty set! This
is a remarkable construction but it takes a tremendous amount of work. For us, we assume
that we know what the set

N = {0, 1, 2, 3, . . .}
of natural numbers is, as well as the set

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
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of integers (which allows negative natural numbers). We also assume that we know how
to add, subtract and multiply (perhaps even divide) integers (as well as some of the basic
properties of these operations), and we know what the ordering of the integers is.

The way to introduce new objects in mathematics is to make definitions . Basically, a
definition characterizes an object by some property. Technically, we define a “gizmo” x by
introducing a so-called predicate (or property) gizmo(x), which is an abbreviation for some
possibly complicated logical proposition P (x). The idea is that x is a “gizmo” if and only if
gizmo(x) holds if and only if P (x) holds. We may write

gizmo(x) ≡ P (x),

or

gizmo(x)
def≡ P (x).

Note that gizmo is just a name, but P (x) is a (possibly complex) proposition.
It is also convenient to define properties (also called predicates) of one of more ob-

jects as abbreviations for possibly complicated logical propositions. In this case, a prop-
erty p(x1, . . . , xn) of some objects x1, . . . , xn holds if and only if some logical proposition
P (x1, . . . , xn) holds. We may write

p(x1, . . . , xn) ≡ P (x1, . . . , xn)

or

p(x1, . . . , xn)
def≡ P (x1, . . . , xn)

Here too, p is just a name, but P (x1, . . . , xn) is a (possibly complex) proposition.
Let us give a few examples of definitions.

Definition 1.1. Given two integers a, b ∈ Z, we say that a is a multiple of b if there is some
c ∈ Z such that a = bc. In this case, we say that a is divisible by b, that b is a divisor of a
(or b is a factor of a), and that b divides a. We use the notation b | a.

In Definition 1.1, we define the predicate divisible(a, b) in terms of the proposition P (a, b)
given by

there is some c ∈ N such that a = bc.

For example, 15 is divisible by 3 since 15 = 3 · 5. On the other hand, 14 is not divisible by 3.

Definition 1.2. A integer a ∈ Z is even if it is of the form a = 2b for some b ∈ Z, odd if it
is of the form a = 2b+ 1 for some b ∈ Z.

In Definition 1.2, the property even(a) of a being even is defined in terms of the predicate
P (a) given by

there is some b ∈ N such that a = 2b.

The property odd(a) is obtained by changing a = 2b to a = 2b + 1 in P (a). The integer 14
is even, and the integer 15 is odd. Beware that we can’t assert yet that if an integer is not
even, then it is odd. Although this is true, this needs to be proven and requires induction,
which we haven’t discussed yet.

Prime numbers play a fundamental role in mathematics. Let us review their definition.
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Definition 1.3. A natural number p ∈ N is prime if p ≥ 2 and if the only divisors of p are
1 and p.

In the above definition, the property prime(p) is defined by the predicate P (p) given by

p ≥ 2, and for all q ∈ N, if divisible(p, q), then q = 1 or q = p.

If we expand the definition of a prime number by replacing the predicate divisible by
its defining formula we get a rather complicated formula. Definitions allow us to be more
concise.

According to Definition 1.3, the number 1 is not prime even though it is only divisible by
1 and itself (again 1). The reason for not accepting 1 as a prime is not capricious. It has to
do with the fact that if we allowed 1 to be a prime, then certain important theorems (such
as the unique prime factorization theorem would no longer hold.

Nonprime natural numbers (besides 1) have a special name too.

Definition 1.4. A natural number a ∈ N is composite if a = bc for some natural numbers
b, c with b, c ≥ 2.

For example, 4, 15, 36 are composite. Note that 1 is neither prime nor composite.
We are now ready to introduce the proof templates for implication.

1.3 Meaning of Implication and Proof Templates for

Implication

First, it is important to say that there are two types of proofs:

1. Direct proofs.

2. Indirect proofs.

Indirect proofs use the proof–by–contradiction principle, which will be discussed soon.
Because propositions do not arise from the vacuum but instead are built up from a set

of atomic propositions using logical connectives (here, ⇒), we assume the existence of an
“official set of atomic propositions,” or set of propositional symbols , PS = {P1,P2,P3, . . .}.
So, for example, P1 ⇒ P2 and P1 ⇒ (P2 ⇒ P1) are propositions. Typically, we use upper-
case letters such as P,Q,R, S,A,B,C, and so on, to denote arbitrary propositions formed
using atoms from PS.

We begin by presenting proof templates to construct direct proofs of implications. An
implication P ⇒ Q can be understood as an if–then statement; that is, if P is true, then Q is
also true. A better interpretation is that any proof of P ⇒ Q can be used to construct a proof
of Q, given any proof of P . As a consequence of this interpretation, we show later that if ¬P
is provable, then P ⇒ Q is also provable (instantly) whether or not Q is provable. In such
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a situation, we often say that P ⇒ Q is vacuously provable. For example, (P ∧ ¬P )⇒ Q is
provable for any arbitrary Q.

It might help to view the action of proving an implication P ⇒ Q as the construction of
a program that converts a proof of P into a proof of Q. Then if we supply a proof of P as
input to this program (the proof of P ⇒ Q), it will output a proof of Q. So, if we don’t give
the right kind of input to this program, for example, a “wrong proof” of P , we should not
expect the program to return a proof of Q. However, this does not say that the program is
incorrect; the program was designed to do the right thing only if it is given the right kind
of input. From this functional point of view (also called constructive), we should not be
shocked that the provability of an implication P ⇒ Q generally yields no information about
the provability of Q.

Example 1.1. For a concrete example, say P stands for the statement,
“Our candidate for president wins in Pennsylvania,”
and Q stands for
“Our candidate is elected president.”
Then P ⇒ Q asserts that if our candidate for president wins in Pennsylvania, then our

candidate is elected president.
If P ⇒ Q holds, then if indeed our candidate for president wins in Pennsylvania then

for sure our candidate will win the presidential election. However, if our candidate does not
win in Pennsylvania, we can’t predict what will happen. Our candidate may still win the
presidential election but he/she may not.

If our candidate president does not win in Pennsylvania, then the statement P ⇒ Q
should be regarded as holding, though perhaps uninteresting.

Example 1.2. For one more example, let odd(n) assert that n is an odd natural number
and let Q(n, a, b) assert that an + bn is divisible by a + b, where a, b are any given natural
numbers. By divisible, we mean that we can find some natural number c, so that

an + bn = (a+ b)c.

Then we claim that the implication odd(n)⇒ Q(n, a, b) is provable.
As usual, let us assume odd(n), so that n = 2k + 1, where k = 0, 1, 2, 3, . . .. But then,

we can easily check that

a2k+1 + b2k+1 = (a+ b)

(
2k∑
i=0

(−1)ia2k−ibi

)
,

which shows that a2k+1 + b2k+1 is divisible by a + b. Therefore, we proved the implication
odd(n)⇒ Q(n, a, b).

If n is not odd, then the implication odd(n)⇒ Q(n, a, b) yields no information about the
provablity of the statement Q(n, a, b), and that is fine. Indeed, if n is even and n ≥ 2, then
in general, an + bn is not divisible by a + b, but this may happen for some special values of
n, a, and b, for example: n = 2, a = 2, b = 2.
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During the process of constructing a proof, it may be necessary to introduce a list of
hypotheses , also called premises (or assumptions), which grows and shrinks during the proof.
When a proof is finished, it should have an empty list of premises.

The process of managing the list of premises during a proof is a bit technical. In Chapter
2 we study carefully two methods for managing the list of premises that may appear during
a proof. In this chapter we are much more casual about it, which is the usual attitude when
we write informal proofs. It suffices to be aware that at certain steps, some premises must
be added, and at other special steps, premises must be discarded. We may view this as a
process of making certain propositions active or inactive. To make matters clearer, we call
the process of constructing a proof using a set of premises a deduction, and we reserve the
word proof for a deduction whose set of premises is empty. Every deduction has a possibly
empty list of premises , and a single conclusion. The list of premises is usually denoted by
Γ, and if the conclusion of the deduction is P , we say that we have a deduction of P from
the premises Γ.

The first proof template allows us to make obvious deductions.

Proof Template 1.1. (Trivial Deductions)

If P1, . . . , Pi, . . . , Pn is a list of propositions assumed as premises (where each Pi may occur
more than once), then for each Pi, we have a deduction with conclusion Pi.

All other proof templates are of two kinds: introduction rules or elimination rules. The
meaning of these words will be explained after stating the next two proof templates.

The second proof template allows the construction of a deduction whose conclusion is an
implication P ⇒ Q.

Proof Template 1.2. (Implication–Intro)

Given a list Γ of premises (possibly empty), to obtain a deduction with conclusion P ⇒ Q,
proceed as follows:

1. Add one or more occurrences of P as additional premises to the list Γ.

2. Make a deduction of the conclusion Q from P and the premises in Γ.

3. Delete P from the list of premises.

The third proof template allows the constructions of a deduction from two other deduc-
tions.

Proof Template 1.3. (Implication–Elim or Modus–Ponens)

Given a deduction with conclusion P ⇒ Q from a list of premises Γ and a deduction with
conclusion P from a list of premises ∆, we obtain a deduction with conclusion Q. The list
of premises of this new deduction is the list Γ,∆.
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The modus–ponens proof template formalizes the use of auxilliary lemmas , a mechanism
that we use all the time in making mathematical proofs. Think of P ⇒ Q as a lemma that
has already been established and belongs to some database of (useful) lemmas. This lemma
says if I can prove P , then I can prove Q. Now suppose that we manage to give a proof of
P . It follows from modus–ponens that Q is also provable.

Mathematicians are very fond of modus–ponens because it gives a potential method for
proving important results. If Q is an important result and if we manage to build a large
catalog of implications P ⇒ Q, there may be some hope that, some day, P will be proven, in
which case Q will also be proven. So they build large catalogs of implications! This has been
going on for the famous problem known as P versus NP . So far, no proof of any premise of
such an implication involving P versus NP has been found (and it may never be found).

� Beware, when we deduce that an implication P ⇒ Q is provable, we do not prove that
P and Q are provable; we only prove that if P is provable, then Q is provable.

In case you wonder why the words “Intro” and “Elim” occur in the names assigned to
the proof templates, the reason is the following:

1. If the proof template is tagged with X-Intro, the connective X appears in the conclusion
of the proof template; it is introduced. For example, in Proof Template 1.2, the
conclusion is P ⇒ Q, and ⇒ is indeed introduced.

2. If the proof template is tagged with X-Elim, the connective X appears in one of the
premises of the proof template but it does not appear in the conclusion; it is eliminated.
For example, in Proof Template 1.3 (modus ponens), P ⇒ Q occurs as a premise but
the conclusion is Q; the symbol ⇒ has been eliminated.

The introduction/elimination pattern is a characteristic of the kind of proof system that we
are describing which is called a natural deduction proof system.

Example 1.3. Let us give a simple example of the use of Proof Template 1.2. Recall that
a natural number n is odd iff it is of the form 2k + 1, where k ∈ N. Let us denote the fact
that a number n is odd by odd(n). We would like to prove the implication

odd(n)⇒ odd(n+ 2).

Following Proof Template 1.2, we add odd(n) as a premise (which means that we take
as proven the fact that n is odd) and we try to conclude that n+ 2 must be odd. However,
to say that n is odd is to say that n = 2k + 1 for some natural number k. Now,

n+ 2 = 2k + 1 + 2 = 2(k + 1) + 1,

which means that n + 2 is odd. (Here, n = 2h + 1, with h = k + 1, and k + 1 is a natural
number because k is.)
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Thus, we proven that if we assume odd(n), then we can conclude odd(n + 2), and ac-
cording to Proof Template 1.2, by Step (3) we delete the premise odd(n) and we obtain a
proof of the proposition

odd(n)⇒ odd(n+ 2).

It should be noted that the above proof of the proposition odd(n)⇒ odd(n+ 2) does not
depend on any premises (other than the implicit fact that we are assuming n is a natural
number). In particular, this proof does not depend on the premise odd(n), which was
assumed (became “active”) during our subproof step. Thus, after having applied the Proof
Template 1.2, we made sure that the premise odd(n) is deactivated.

Example 1.4. For a second example, we wish to prove the proposition P ⇒ P .
According to Proof Template 1.2, we assume P . But then by Proof Template 1.1, we

obtain a deduction with premise P and conclusion P ; by executing Step (3) of Proof Template
1.2, the premise P is deleted, and we obtain a deduction of P ⇒ P from the empty list of
premises. Thank God, P ⇒ P is provable!

Proofs described in words as above are usually better understood when represented as
trees. We will reformulate our proof templates in tree form and explain very precisely how
to build proofs as trees in Chapter 2. For now, we use tree representations of proofs in an
informal way.

1.4 Proof Trees and Deduction Trees

A proof tree is drawn with its leaves at the top, corresponding to assumptions, and its root at
the bottom, corresponding to the conclusion. In computer science, trees are usually drawn
with their root at the top and their leaves at the bottom, but proof trees are drawn as
the trees that we see in nature. Instead of linking nodes by edges, it is customary to use
horizontal bars corresponding to the proof templates. One or more nodes appear as premises
above a vertical bar, and the conclusion of the proof template appears immediately below
the lowest horizontal bar. Proof trees are usually constructed from the bottom up (but not
always) and once completed they are read from the top down.

According to the first step of proof of P ⇒ P (presented in words) we move the premise
P to the list of premises, building a deduction of the conclusion P from the premise P
corresponding to the following unfinished tree in which some leaf is labeled with the premise
P but with a missing subtree establishing P as the conclusion

P x

P
Implication-Intro x

P ⇒ P

The premise P is tagged with the label x which corresponds to the proof rule which
causes its deletion from the list of premises.

In order to obtain a proof we need to apply a proof template which allows use to deduce
P from P and of course this is the Trivial Deduction proof template.



1.4. PROOF TREES AND DEDUCTION TREES 21

The finished proof is represented by the tree shown below. Observe that the premise P
is tagged with the symbol

√
, which means that it has been deleted from the list of premises.

The tree representation of proofs also has the advantage that we can tag the premises in such
a way that each tag indicates which rule causes the corresponding premise to be deleted. In
the tree below, the premise P is tagged with x, and it is deleted when the proof template
indicated by x is applied.

P x
√

Trivial Deduction
P

Implication-Intro x

P ⇒ P

Example 1.5. For a third example, we prove the proposition P ⇒ (Q⇒ P ).
According to Proof Template 1.2, we assume P as a premise and we try to prove Q⇒ P

assuming P . In order to prove Q ⇒ P , by Proof Template 1.2, we assume Q as a new
premise so the set of premises becomes {P,Q}, and then we try to prove P from P and Q.

At this stage we have the following unfinished tree with two leaves labeled P and Q but
with a missing subtree establishing P as the conclusion.

P x, Qy

P
Implication-Intro y

Q⇒ P
Implication-Intro x

P ⇒ (Q⇒ P )

We need to find a deduction of P from the premises P and Q. By Proof Template 1.1
(trivial deductions), we have a deduction with the list of premises {P,Q} and conclusion P .
Then, executing Step (3) of Proof Template 1.2 twice, we delete the premise Q and then
the premise P (in this order), and we obtain a proof of P ⇒ (Q⇒ P ). The above proof of
P ⇒ (Q⇒ P ) (presented in words) is represented by the following tree:

P x
√
, Qy

√

Trivial Deduction
P

Implication-Intro y

Q⇒ P
Implication-Intro x

P ⇒ (Q⇒ P )

Observe that both premises P and Q are tagged with the symbol
√

, which means that
they have been deleted from the list of premises.

We tagged the premises in such a way that each tag indicates which rule causes the
corresponding premise to be deleted. In the above tree, Q is tagged with y, and it is deleted
when the proof template indicated by y is applied, and P is tagged with x, and it is deleted
when the proof template indicated by x is applied. In a proof all leaves must be tagged with
the symbol

√
.
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Example 1.6. Let us now give a proof of P ⇒ ((P ⇒ Q)⇒ Q).
Using Proof Template 1.2, we assume both P and P ⇒ Q and we try to prove Q. At

this stage we have the following unfinished tree with two leaves labeled P ⇒ Q and P but
with a missing subtree establishing Q as the conclusion.

(P ⇒ Q)x P y

Q
Implication-Intro x

(P ⇒ Q)⇒ Q
Implication-Intro y

P ⇒ ((P ⇒ Q)⇒ Q)

We can use Proof Template 1.3 to derive a deduction of Q from P ⇒ Q and P . Finally,
we execute Step (3) of Proof Template 1.2 to delete P ⇒ Q and P (in this order), and we
obtain a proof of P ⇒ ((P ⇒ Q) ⇒ Q). A tree representation of the above proof is shown
below.

(P ⇒ Q)x
√

P y
√

Implication-Elim
Q

Implication-Intro x

(P ⇒ Q)⇒ Q
Implication-Intro y

P ⇒ ((P ⇒ Q)⇒ Q)

Remark: We have not yet examined how we can represent precisely arbitrary deductions.
This can be done using certain types of trees where the nodes are tagged with lists of
premises. Two methods for doing this are carefully defined in Chapter 2. It turns out that
the same premise may be used in more than one location in the tree, but in our informal
presentation, we ignore such fine details.

We now describe the proof templates dealing with the connectives ¬,∧,∨,≡.

1.5 Proof Templates for ¬
Recall that ¬P is an abbreviation for P ⇒⊥. We begin with the proof templates for negation,
involving direct proofs.

Proof Template 1.4. (Negation–Intro)

Given a list Γ of premises (possibly empty), to obtain a deduction with conclusion ¬P proceed
as follows:

1. Add one or more occurrences of P as additional premises to the list Γ.

2. Derive a contradiction. More precisely, make a deduction of the conclusion ⊥ from P
and the premises in Γ.
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3. Delete P from the list of premises.

Proof Template 1.4 is a special case of Proof Template 1.2, since ¬P is an abbreviation
for P ⇒⊥.

Proof Template 1.5. (Negation–Elim)

Given a deduction with conclusion ¬P from a list of premises Γ and a deduction with con-
clusion P from a list of premises ∆, we obtain a contradiction; that is, a deduction with
conclusion ⊥. The list of premises of this new deduction is Γ,∆.

Proof Template 1.5 is a special case of Proof Template 1.3, since ¬P is an abbreviation
for P ⇒⊥.

Proof Template 1.6. (Perp–Elim)

Given a deduction with conclusion ⊥ (a contradiction), for every proposition Q, we obtain a
deduction with conclusion Q. The list of premises of this new deduction is the same as the
original list of premises.

The last proof template for negation constructs an indirect proof; it is the proof–by–
contradiction principle.

Proof Template 1.7. (Proof–By–Contradiction Principle)

Given a list Γ of premises (possibly empty), to obtain a deduction with conclusion P , proceed
as follows:

1. Add one of more occurrences of ¬P as additional premises to the list Γ.

2. Derive a contradiction. More precisely, make a deduction of the conclusion ⊥ from ¬P
and the premises in Γ.

3. Delete ¬P from the list of premises.

Proof Template 1.7 (the proof–by–contradiction principle) also has the fancy name of
reductio ad absurdum rule, for short RAA.

Proof Template 1.6 may seem silly and one might wonder why we stated it. It turns
out that it is subsumed by Proof Template 1.7, but it is still useful to state it as a proof
template.

Example 1.7. Let us prove that for every natural number n, if n2 is odd, then n itself must
be odd.

We use the proof–by–contradiction principle (Proof Template 1.7), so we assume that n
is not odd, which means that n is even. (Actually, in this step we are using a property of
the natural numbers that is proven by induction but let’s not worry about that right now;
a proof can be found in Section 1.12) But to say that n is even means that n = 2k for some
k and then n2 = 4k2 = 2(2k2), so n2 is even, contradicting the assumption that n2 is odd.
By the proof–by–contradiction principle (Proof Template 1.7), we conclude that n must be
odd.
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Example 1.8. Let us prove that ¬¬P ⇒ P .
It turns out that this requires using the proof–by–contradiction principle (Proof Template

1.7). First by Proof Template 1.2, assume ¬¬P as a premise. Then by the proof–by–
contradiction principle (Proof template 1.7), in order to prove P , assume ¬P . By Proof
Template 1.5, we obtain a contradiction (⊥). Thus, by Step (3) of the proof–by–contradiction
principle (Proof Template 1.7), we delete the premise ¬P and we obtain a deduction of P
from ¬¬P . Finally, by Step (3) of Proof Template 1.2, we delete the premise ¬¬P and
obtain a proof of ¬¬P ⇒ P . This proof has the following tree representation.

¬¬P y
√

¬P x
√

Negation-Elim
⊥

RAA x

P
Implication-Intro y

¬¬P ⇒ P

Example 1.9. Now we prove that P ⇒ ¬¬P .
First by Proof Template 1.2, assume P as a premise. In order to prove ¬¬P using Proof

Template 1.4, assume ¬P . We now have the two premises ¬P and P , so by Proof Template
1.5, we obtain a contradiction (⊥). By Step (3) of Proof Template 1.4, we delete the premise
¬P and we obtain a deduction of ¬¬P from P . Finally, by Step (3) of Proof Template
1.2, delete the premise P to obtain a proof of P ⇒ ¬¬P . This proof has the following tree
representation.

¬P x
√

P y
√

Negation-Elim
⊥

Negation-Intro x

¬¬P
Implication-Intro y

P ⇒ ¬¬P

Observe that the previous two examples show that the equivalence P ≡ ¬¬P is provable.
As a consequence of this equivalence, if we prove a negated proposition ¬P using the proof–
by–contradiction principle, we assume ¬¬P and we deduce a contradiction. But since ¬¬P
and P are equivalent (as far as provability), this amounts to deriving a contradiction from
P , which is just the Proof Template 1.4.

In summary, to prove a negated proposition ¬P , always use Proof Template 1.4.

On the other hand, to prove a nonnegated proposition, it is generally not possible to
tell if a direct proof exists or if the proof–by–contradiction principle is required. There are
propositions for which it is required, for example ¬¬P ⇒ P and (¬(P ⇒ Q))⇒ P .

Example 1.10. Let us now prove that (¬(P ⇒ Q))⇒ ¬Q.
First by Proof Template 1.2, we add ¬(P ⇒ Q) as a premise. Then in order to prove

¬Q from ¬(P ⇒ Q), we use Proof Template 1.4 and we add Q as a premise. We obtain the
following deduction tree with a piece missing.
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¬(P ⇒ Q)z

Qy

?

P ⇒ Q
Negation-Elim

⊥
Negation-Intro y

¬Q
Implication-Intro z

(¬(P ⇒ Q))⇒ ¬Q
Now recall that we showed in Example 1.5 that P ⇒ Q is provable assuming Q (with P

and Q switched). Then since ¬(P ⇒ Q) is a premise, by Proof Template 1.5, we obtain a
deduction of ⊥; see below.

¬(P ⇒ Q)z

Qy P x
√

Trivial Deduction
Q

Implication-Intro x

P ⇒ Q
Negation-Elim

⊥
Negation-Intro y

¬Q
Implication-Intro z

(¬(P ⇒ Q))⇒ ¬Q
We now execute Step (3) of Proof Template 1.4, delete the premise Q to obtain a deduc-

tion of ¬Q from ¬(P ⇒ Q), we and we execute Step (3) of Proof Template 1.2 to delete the
premise ¬(P ⇒ Q) and obtain a proof of (¬(P ⇒ Q))⇒ ¬Q. The above proof corresponds
to the following tree.

¬(P ⇒ Q)z
√

Qy
√

P x
√

Trivial Deduction
Q

Implication-Intro x

P ⇒ Q
Negation-Elim

⊥
Negation-Intro y

¬Q
Implication-Intro z

(¬(P ⇒ Q))⇒ ¬Q

Here is an example using Proof Templates 1.6 (Perp–Elim) and 1.7 (RAA).

Example 1.11. Let us prove that (¬(P ⇒ Q))⇒ P .
First we use Proof Template 1.2, and we assume ¬(P ⇒ Q) as a premise. Next we

use the proof–by–contradiction principle (Proof Template 1.7). So in order to prove P , we
assume ¬P as another premise. The next step is to deduce P ⇒ Q. By Proof Template
1.2, we assume P as an additional premise. By Proof Template 1.5, from ¬P and P we
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obtain a deduction of ⊥, and then by Proof Template 1.6 a deduction of Q from ¬P and
P . By Proof Template 1.2, executing Step (3), we delete the premise P and we obtain a
deduction of P ⇒ Q. At this stage, we have the premises ¬P,¬(P ⇒ Q) and a deduction of
P ⇒ Q, so by Proof Template 1.5, we obtain a deduction of ⊥. This is a contradiction, so
by Step (3) of the proof–by–contradiction principle (Proof Template 1.7) we can delete the
premise ¬P , and we have a deduction of P from ¬(P ⇒ Q). Finally, we execute Step (3)
of Proof Template 1.2 and delete the premise ¬(P ⇒ Q), which yields the desired proof of
(¬(P ⇒ Q))⇒ P . The above proof has the following tree representation.

¬(P ⇒ Q)z
√

¬P y
√

P x
√

Negation-Elim
⊥

Perp-Elim
Q

Implication-Intro x

P ⇒ Q
Negation-Elim

⊥
RAA y

P
Implication-Intro z

(¬(P ⇒ Q))⇒ P

The reader may be surprised by how many steps are needed in the above proof and may
wonder whether the proof–by–contradiction principle is actually needed. It can be shown
that the proof–by–contradiction principle must be used, and unfortuately there is no shorter
proof.

Even though Proof Template 1.4 qualifies as a direct proof template, it proceeds by
deriving a contradiction, so we suggest to call it the proof–by–contradiction for negated
propositions principle.

Remark: The fact that the implication ¬¬P ⇒ P is provable has the interesting conse-
quence that if we take ¬¬P ⇒ P as an axiom (which means that ¬¬P ⇒ P is assumed to
be provable without requiring any proof), then the proof–by–contradiction principle (Proof
Template 1.7) becomes redundant. Indeed, Proof Template 1.7 is subsumed by Proof Tem-
plate 1.4, because if we have a deduction of ⊥ from ¬P , then by Proof Template 1.4 we
delete the premise ¬P to obtain a deduction of ¬¬P . Since ¬¬P ⇒ P is assumed to be
provable, by Proof Template 1.3, we get a proof of P . The tree shown below illustrates what
is going on. In this tree, a proof of ⊥ from the premise ¬P is denoted by D.

¬¬P ⇒ P

¬P x
√

D
⊥

Negation-Intro x

¬¬P
Implication-Elim

P
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Proof Templates 1.5 and 1.6 together imply that if a contradiction is obtained during a de-
duction because two inconsistent propositions P and ¬P are obtained, then all propositions
are provable (anything goes). This explains why mathematicians are leary of inconsistencies.

1.6 Proof Templates for ∧,∨,≡
The proof templates for conjunction are the simplest.

Proof Template 1.8. (And–Intro)

Given a deduction with conclusion P from a list of premises Γ and a deduction with conclusion
Q from a list of premises ∆, we obtain a deduction with conclusion P∧Q. The list of premises
of this new deduction is Γ,∆.

Proof Template 1.9. (And–Elim)

Given a deduction with conclusion P ∧ Q, we obtain a deduction with conclusion P , and a
deduction with conclusion Q. The list of premises of these new deductions is the same as the
list of premises of the orginal deduction.

Let us consider a few examples of proofs using the proof templates for conjunction as
well as Proof Templates 1.4 and 1.7.

Example 1.12. Let us prove that for any natural number n, if n is divisible by 2 and n is
divisible by 3, then n is divisible by 6. This is expressed by the proposition

((2 | n) ∧ (3 | n))⇒ (6 | n).

We start by using Proof Templates 1.2 and we add the premise (2 | n) ∧ (3 | n). Using
Proof Template 1.9 twice, we obtain deductions of (2 | n) and (3 | n) from (2 | n) ∧ (3 | n).
But (2 | n) means that

n = 2a

for some a ∈ N, and 3 | n means that

n = 3b

for some b ∈ N. This implies that

n = 2a = 3b.

Because 2 and 3 are relatively prime (their only common divisor is 1), the number 2 must
divide b (and 3 must divide a) so b = 2c for some c ∈ N. Here we are using Euclid’s lemma.
So we have shown that

n = 3b = 3 · 2c = 6c,

which says that n is divisible by 6. We conclude with Step (3) of Proof Template 1.2 by
deleting the premise (2 | n) ∧ (3 | n) and we obtain our proof.
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Example 1.13. Let us prove that for any natural number n, if n is divisible by 6, then n is
divisible by 2 and n is divisible by 3. This is expressed by the proposition

(6 | n)⇒ ((2 | n) ∧ (3 | n)).

We start by using Proof Template 1.2 and we add the premise 6 | n. This means that

n = 6a = 2 · 3a
for some a ∈ N. This implies that 2 | n and 3 | n, so we have a deduction of 2 | n from the
premise 6 | n and a deduction of 3 | n from the premise 6 | n. By Proof Template 1.8, we
obtain a deduction of (2 | n) ∧ (3 | n) from 6 | n, and we apply Step (3) of Proof Template
1.2 to delete the premise 6 | n and obtain our proof.

Example 1.14. Let us prove that a natural number n cannot be even and odd simultane-
ously. This is expressed as the proposition

¬(odd(n) ∧ even(n)).

We begin with Proof Template 1.4, and we assume odd(n)∧ even(n) as a premise. Using
Proof Template 1.9 twice, we obtain deductions of odd(n) and even(n) from odd(n)∧even(n).
Now odd(n) says that n = 2a + 1 for some a ∈ N, and even(n) says that n = 2b for some
b ∈ N. But then,

n = 2a+ 1 = 2b,

so we obtain 2(b − a) = 1. Since b − a is an integer, either 2(b − a) = 0 (if a = b) or
|2(b − a)| ≥ 2, so we obtain a contradiction. Applying Step (3) of Proof Template 1.4, we
delete the premise odd(n) ∧ even(n) and we have a proof of ¬(odd(n) ∧ even(n)).

Example 1.15. Let us prove that (¬(P ⇒ Q))⇒ (P ∧ ¬Q).
We start by using Proof Templates 1.2 and we add ¬(P ⇒ Q) as a premise. Now in

Example 1.11 we showed that (¬(P ⇒ Q)) ⇒ P is provable, and this proof contains a
deduction of P from ¬(P ⇒ Q). Similarly, in Example 1.10 we showed that (¬(P ⇒ Q))⇒
¬Q is provable, and this proof contains a deduction of ¬Q from ¬(P ⇒ Q). By proof
Template 1.8, we obtain a deduction of P ∧ ¬Q from ¬(P ⇒ Q), and executing Step (3)
of Proof Templates 1.2, we obtain a proof of (¬(P ⇒ Q)) ⇒ (P ∧ ¬Q). The following tree
represents the above proof. Observe that two copies of the premise ¬(P ⇒ Q) are needed.

¬(P ⇒ Q)z
√

¬P y
√

P x
√

⊥
Q

x

P ⇒ Q

⊥
RAA y

P

¬(P ⇒ Q)z
√

Qw
√

P t
√

Q
t

P ⇒ Q

⊥
Negation-Intro w

¬Q
P ∧ ¬Q

z

(¬(P ⇒ Q))⇒ (P ∧ ¬Q)
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Observe that the left subtree comes from the proof tree Example 1.11 and the right
subtree comes from from the proof tree in Example 1.10.

Next we present the proof templates for disjunction.

Proof Template 1.10. (Or–Intro)

Given a list Γ of premises (possibly empty),

1. If we have a deduction with conclusion P , then we obtain a deduction with conclusion
P ∨Q.

2. If we have a deduction with conclusion Q, then we obtain a deduction with conclusion
P ∨Q.

In both cases, the new deduction has Γ as premises.

Proof Template 1.11. (Or–Elim or Proof–By–Cases)

Given three lists of premises Γ, ∆, Λ, to obtain a deduction of some proposition R as con-
clusion, proceed as follows:

1. Construct a deduction of some disjunction P ∨Q from the list of premises Γ.

2. Add one or more occurrences of P as additional premises to the list ∆ and find a
deduction of R from P and ∆.

3. Add one or more occurrences of Q as additional premises to the list Λ and find a
deduction of R from Q and Λ.

The list of premises after applying this rule is Γ,∆,Λ.

Note that in making the two deductions of R, the premise P ∨Q is not assumed.

Example 1.16. Let us show that for any natural number n, if 4 divides n or 6 divides n,
then 2 divides n. This can expressed as

((4 | n) ∨ (6 | n))⇒ (2 | n).

First, by Proof Template 1.2, we assume (4 | n) ∨ (6 | n) as a premise. Next, we use
Proof Template 1.11, the proof–by–cases principle. First, assume (4 | n). This means that

n = 4a = 2 · 2a

for some a ∈ N. Therefore, we conclude that 2 | n. Next, assume (6 | n). This means that

n = 6b = 2 · 3b

for some b ∈ N. Again, we conclude that 2 | n. Since (4 | n) ∨ (6 | n) is a premise, by Proof
Template 1.11, we can obtain a deduction of 2 | n from (4 | n) ∨ (6 | n). Finally, by Proof
Template 1.2, we delete the premise (4 | n) ∨ (6 | n) to obtain our proof.
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Proof Template 1.10 (Or–Intro) may seem trivial, so let us show an example illustrating
its use.

Example 1.17. Let us prove that ¬(P ∨Q)⇒ (¬P ∧ ¬Q).
First by Proof Template 1.2, we assume ¬(P ∨ Q) (two copies). In order to derive ¬P ,

by Proof Template 1.4, we also assume P . Then by Proof Template 1.10 we deduce P ∨Q,
and since we have the premise ¬(P ∨Q), by Proof Template 1.5 we obtain a contradiction.
By Proof Template 1.4, we can delete the premise P and obtain a deduction of ¬P from
¬(P ∨Q).

In a similar way we can construct a deduction of ¬Q from ¬(P ∨Q). By Proof Template
1.8, we get a deduction of ¬P ∧¬Q from ¬(P ∨Q), and we finish by applying Proof Template
1.2. A tree representing the above proof is shown below.

¬(P ∨Q)z
√

P x
√

Or-Intro
P ∨Q

⊥
Negation-Intro x

¬P

¬(P ∨Q)z
√

Qw
√

Or-Intro
P ∨Q

⊥
Negation-Intro w

¬Q
¬P ∧ ¬Q

z

¬(P ∨Q)⇒ (¬P ∧ ¬Q)

The proposition (¬P ∧ ¬Q)⇒ ¬(P ∨Q) is also provable using the proof–by–cases prin-
ciple. Here is a proof tree; we leave it as an exercise to the reader to check that the proof
templates have been applied correctly.

(P ∨Q)z
√

(¬P ∧ ¬Q)t
√

¬P P x
√

⊥

(¬P ∧ ¬Q)t
√

¬Q Qy
√

⊥
x,y

⊥
z

¬(P ∨Q)
t

(¬P ∧ ¬Q)⇒ ¬(P ∨Q)

As a consequence the equivalence

¬(P ∨Q) ≡ (¬P ∧ ¬Q)

is provable. This is one of three identities known as de Morgan laws .

Example 1.18. Next let us prove that ¬(¬P ∨ ¬Q)⇒ P .
First by Proof Template 1.2, we assume ¬(¬P ∨ ¬Q) as a premise. In order to prove

P from ¬(¬P ∨ ¬Q), we use the proof–by–contradiction principle (Proof Template 1.7). So
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we add ¬P as a premise. Now by Proof Template 1.10, we can deduce ¬P ∨ ¬Q from ¬P ,
and since ¬(¬P ∨ ¬Q) is a premise, by Proof Template 1.5, we obtain a contradiction. By
the proof–by–contradiction principle (Proof Template 1.7), we delete the premise ¬P and
we obtain a deduction of P from ¬(¬P ∨ ¬Q). We conclude by using Proof Template 1.2
to delete the premise ¬(¬P ∨ ¬Q) and to obtain our proof. A tree representing the above
proof is shown below.

¬(¬P ∨ ¬Q)y
√

¬P x
√

¬P ∨ ¬Q
⊥

RAA x

P
y

¬(¬P ∨ ¬Q)⇒ P

A similar proof shows that ¬(¬P ∨¬Q)⇒ Q is provable. Putting together the proofs of
P and Q from ¬(¬P ∨ ¬Q) using Proof Template 1.8, we obtain a proof of

¬(¬P ∨ ¬Q)⇒ (P ∧Q).

A tree representing this proof is shown below.

¬(¬P ∨ ¬Q)y
√

¬P x
√

¬P ∨ ¬Q
⊥

RAA x

P

¬(¬P ∨ ¬Q)y
√

¬Qw
√

¬P ∨ ¬Q
⊥

RAA w

Q

P ∧Q
y

¬(¬P ∨ ¬Q)⇒ (P ∧Q)

Example 1.19. The proposition ¬(P ∧Q)⇒ (¬P ∨ ¬Q) is provable.

First by Proof Template 1.2, we assume ¬(P ∧Q) as a premise. Next we use the proof–
by–contradiction principle (Proof Template 1.7) to deduce ¬P ∨ ¬Q, so we also assume
¬(¬P ∨ ¬Q). Now, we just showed that P ∧ Q is provable from the premise ¬(¬P ∨ ¬Q).
Using the premise ¬(P ∧ Q), by Proof Principle 1.5, we derive a contradiction, and by the
proof–by–contradiction principle, we delete the premise ¬(¬P ∨ ¬Q) to obtain a deduction
of ¬P ∨¬Q from ¬(P ∧Q). We finish the proof by applying Proof Template 1.2. This proof
is represented by the following tree.
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¬(P ∧Q)t
√

¬(¬P ∨ ¬Q)y
√

¬P x
√

¬P ∨ ¬Q
⊥

RAA x

P

¬(¬P ∨ ¬Q)y
√
¬Qw

√

¬P ∨ ¬Q
⊥

RAA w

Q

P ∧Q
⊥

RAA y

¬P ∨ ¬Q
t

¬(P ∧Q)⇒ ¬P ∨ ¬Q
The next example is particularly interesting. It can be shown that the

proof–by–contradictiong principle must be used.

Example 1.20. We prove the proposition

P ∨ ¬P.

We use the proof–by–contradiction principle (Proof Template 1.7), so we assume ¬(P ∨¬P )
as a premise. The first tricky part of the proof is that we actually assume that we have two
copies of the premise ¬(P ∨ ¬P ).

Next the second tricky part of the proof is that using one of the two copies of ¬(P ∨¬P ),
we are going to deduce P ∨¬P . For this, we first derive ¬P using Proof Template 1.4, so we
assume P . By Proof Template 1.10, we deduce P ∨¬P , but we have the premise ¬(P ∨¬P ),
so by Proof Template 1.5, we obtain a contradiction. Next, by Proof Template 1.4, we delete
the premise P , deduce ¬P , and then by Proof Template 1.10, we deduce P ∨ ¬P .

Since we still have a second copy of the premise ¬(P ∨ ¬P ), by Proof Template 1.5,
we get a contradiction! The only premise left is ¬(P ∨ ¬P ) (two copies of it), so by the
proof–by–contradiction principle (Proof Template 1.7), we delete the premise ¬(P ∨ ¬P )
and we obtain the desired proof of P ∨ ¬P .

¬(P ∨ ¬P )x
√

¬(P ∨ ¬P )x
√

P y
√

P ∨ ¬P
Negation-Elim

⊥
Negation-Intro y

¬P
P ∨ ¬P

Negation-Elim
⊥

RAA x

P ∨ ¬P
If the above proof made you dizzy, this is normal. The sneaky part of this proof is that

when we proceed by contradiction and assume ¬(P∨¬P ), this proposition is an inconsistency,
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so it allows us to derive P ∨¬P , which then clashes with ¬(P ∨¬P ) to yield a contradiction.
Observe that during the proof we actually showed that ¬¬(P ∨¬P ) is provable. The proof–
by–contradiction principle is needed to get rid of the double negation.

The fact is that even though the proposition P ∨¬P seems obviously “true,” its truth is
viewed as controversial by certain matematicians and logicians. To some extant, this is why
its proof has to be a bit tricky and has to involve the proof–by–contradiction principle. This
matter is discussed quite extensively in Chapter 2. In this chapter, which is more informal,
let us simply say that the proposition P ∨¬P is known as the law of excluded middle. Indeed,
intuitively, it says that for every proposition P , either P is true or ¬P is true; there is no
middle alternative.

It can be shown that if we take all formulae of the form P ∨ ¬P as axioms, then the
proof–by–contradiction principle is derivable from the other proof tempates; see Section 2.8.
Furthermore, the proposition ¬¬P ⇒ P and P ∨¬P are equivalent (that is, (¬¬P ⇒ P ) ≡
(P ∨ ¬P ) is provable).

Typically, to prove a disjunction P ∨ Q, it is rare that we can use Proof Template 1.10
(Or–Intro), because this requires constructing of a proof of P or a proof of Q in the first
place. But the fact that P ∨ Q is provable does not imply in general that either a proof
of P or a proof of Q can be produced, as the example of the proposition P ∨ ¬P shows
(other examples can be given). Thus, usually to prove a disjunction we use the proof–by-
contradiction principle. Here is an example.

Example 1.21. Given some natural numbers p, q, we wish to prove that if 2 divides pq,
then either 2 divides p or 2 divides q. This can be expressed by

(2 | pq)⇒ ((2 | p) ∨ (2 | q)).

We use the proof–by-contradiction principle (Proof Template 1.7), so we assume ¬((2 |
p) ∨ (2 | q)) as a premise. This is a proposition of the form ¬(P ∨Q), and in Example 1.17
we showed that ¬(P ∨Q)⇒ (¬P ∧¬Q) is provable. Thus, by Proof Template 1.3, we deduce
that ¬(2 | p)∧¬(2 | q). By Proof Template 1.9, we deduce both ¬(2 | p) and ¬(2 | q). Using
some basic arithmetic, this means that p = 2a + 1 and q = 2b + 1 for some a, b ∈ N. But
then,

pq = 2(2ab+ a+ b) + 1.

and pq is not divisible by 2, a contradiction. By the proof–by-contradiction principle (Proof
Template 1.7), we can delete the premise ¬((2 | p) ∨ (2 | q)) and obtain the desired proof.

Another proof template which is convenient to use in some cases is the
proof–by–contrapositive principle.

Proof Template 1.12. (Proof–By–Contrapositive)

Given a list of premises Γ, to prove an implication P ⇒ Q, proceed as follows:

1. Add ¬Q to the list of premises Γ.
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2. Construct a deduction of ¬P from the premises ¬Q and Γ.

3. Delete ¬Q from the list of premises.

It is not hard to see that the proof–by–contrapositive principle (Proof Template 1.12)
can be derived from the proof–by–contradiction principle. We leave this as an exercise.

Example 1.22. We prove that for any two natural numbers m,n ∈ N, if m + n is even,
then m and n have the same parity. This can be expressed as

even(m+ n)⇒ ((even(m) ∧ even(n)) ∨ (odd(m) ∧ odd(n))).

According to Proof Template 1.12 (proof–by–contrapositive principle), let us assume
¬((even(m)∧ even(n))∨ (odd(m)∧ odd(n))). Using the implication proven in Example 1.17
((¬(P ∨Q))⇒ ¬P ∧¬Q)) and Proof Template 1.3, we deduce that ¬(even(m)∧even(n)) and
¬(odd(m) ∧ odd(n)). Using the result of Example 1.19 and modus ponens (Proof Template
1.3), we deduce that ¬even(m) ∨ ¬even(n) and ¬odd(m) ∨ ¬odd(n). At this point, we can
use the proof–by–cases principle (twice) to deduce that ¬even(m+ n) holds. We leave some
of the tedious details as an exercise. In particular, we use the fact proven in Chapter 2 that
even(p) iff ¬odd(p) (see Section 2.19).

We treat logical equivalence as a derived connective: that is, we view P ≡ Q as an
abbreviation for (P ⇒ Q) ∧ (Q ⇒ P ). In view of the proof templates for ∧, we see that
to prove a logical equivalence P ≡ Q, we just have to prove both implications P ⇒ Q and
Q⇒ P . For the sake of completeness, we state the following proof template.

Proof Template 1.13. (Equivalence–Intro)

Given a list of premises Γ, to obtain a deduction of an equivalence P ≡ Q, proceed as follows:

1. Construct a deduction of the implication P ⇒ Q from the list of premises Γ.

2. Construct a deduction of the implication Q⇒ P from the list of premises Γ.

The proof templates described in this section and the previous one allow proving propo-
sitions which are known as the propositions of classical propositional logic. We also say that
this set of proof templates is a natural deduction proof system for propositional logic; see
Prawitz [50] and Gallier [16].

1.7 De Morgan Laws and Other Useful Rules of Logic

In Section 1.5, we proved certain implications that are special cases of the so-called de Morgan
laws .
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Proposition 1.1. The following equivalences (de Morgan laws) are provable:

¬¬P ≡ P

¬(P ∧Q) ≡ ¬P ∨ ¬Q
¬(P ∨Q) ≡ ¬P ∧ ¬Q.

The following equivalence expressing ⇒ in terms of ∨ and ¬ is also provable:

P ⇒ Q ≡ ¬P ∨Q.

The following proposition (the law of the excluded middle) is provable:

P ∨ ¬P.

The proofs that we have not shown are left as as exercises (sometimes tedious).

Proposition 1.1 shows a property that is very specific to classical logic, namely, that the
logical connectives ⇒,∧,∨,¬ are not independent. For example, we have P ∧Q ≡ ¬(¬P ∨
¬Q), which shows that ∧ can be expressed in terms of ∨ and ¬. Similarly, P ⇒ Q ≡ ¬P ∨Q
shows that ⇒ can be expressed in terms of ∨ and ¬.

The next proposition collects a list of equivalences involving conjunction and disjunction
that are used all the time. Constructing proofs using the proof templates is not hard but
tedious.

Proposition 1.2. The following propositions are provable:

P ∨ P ≡ P

P ∧ P ≡ P

P ∨Q ≡ Q ∨ P
P ∧Q ≡ Q ∧ P.

The last two assert the commutativity of ∨ and ∧. We have distributivity of ∧ over ∨ and
of ∨ over ∧:

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R).

We have associativity of ∧ and ∨:

P ∧ (Q ∧R) ≡ (P ∧Q) ∧R
P ∨ (Q ∨R) ≡ (P ∨Q) ∨R.
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1.8 Formal Versus Informal Proofs; Some Examples

In this section we give some explicit examples of proofs illustrating the proof templates that
we just discussed. But first it should be said that it is practically impossible to write formal
proofs (i.e., proofs written using the proof templates of the system presented earlier) of “real”
statements that are not “toy propositions.” This is because it would be extremely tedious
and time-consuming to write such proofs and these proofs would be huge and thus very hard
to read.

As we said before it is possible in principle to write formalized proofs; however, most of
us will never do so. So what do we do?

Well, we construct “informal” proofs in which we still make use of the proof templates
that we have presented but we take shortcuts and sometimes we even omit proof steps (some
proof templates such as 1.9 (And–Elim) and 1.10 (Or–Intro)), and we use a natural language
(here, presumably, English) rather than formal symbols (we say “and” for ∧, “or” for ∨, etc.).
As an example of a shortcut, when using the Proof Template 1.11 (Or–Elim), in most cases,
the disjunction P ∨Q has an “obvious proof” because P and Q “exhaust all the cases,” in the
sense that Q subsumes ¬P (or P subsumes ¬Q) and classically, P ∨ ¬P is an axiom. Also,
we implicitly keep track of the open premises of a proof in our head rather than explicitly
delete premises when required. This may be the biggest source of mistakes, and we should
make sure that when we have finished a proof, there are no “dangling premises,” that is,
premises that were never used in constructing the proof. If we are “lucky,” some of these
premises are in fact unnecessary and we should discard them. Otherwise, this indicates that
there is something wrong with our proof and we should make sure that every premise is
indeed used somewhere in the proof or else look for a counterexample.

We urge our readers to read Chapter 3 of Gowers [28] which contains very illuminating
remarks about the notion of proof in mathematics.

The next question is then, “How does one write good informal proofs?”

It is very hard to answer such a question because the notion of a “good” proof is quite
subjective and partly a social concept. Nevertheless, people have been writing informal
proofs for centuries so there are at least many examples of what to do (and what not to do).
As with everything else, practicing a sport, playing a music instrument, knowing “good”
wines, and so on, the more you practice, the better you become. Knowing the theory of
swimming is fine but you have to get wet and do some actual swimming. Similarly, knowing
the proof rules is important but you have to put them to use.

Write proofs as much as you can. Find good proof writers (like good swimmers, good
tennis players, etc.), try to figure out why they write clear and easily readable proofs, and
try to emulate what they do. Don’t follow bad examples (it will take you a little while to
“smell” a bad proof style).

Another important point is that nonformalized proofs make heavy use of modus ponens .
This is because, when we search for a proof, we rarely (if ever) go back to first principles. This
would result in extremely long proofs that would be basically incomprehensible. Instead, we
search in our “database” of facts for a proposition of the form P ⇒ Q (an auxiliary lemma)
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that is already known to be proven, and if we are smart enough (lucky enough), we find
that we can prove P and thus we deduce Q, the proposition that we really want to prove.
Generally, we have to go through several steps involving auxiliary lemmas. This is why it is
important to build up a database of proven facts as large as possible about a mathematical
field: numbers, trees, graphs, surfaces, and so on. This way we increase the chance that we
will be able to prove some fact about some field of mathematics (by practicing (constructing
proofs).

And now we return to some explicit examples of informal proofs.
Recall that the set of integers is the set

Z = {. . . ,−2,−1, 0, 1, 2, . . .},

and that the set of natural numbers is the set

N = {0, 1, 2, . . .}.

(Some authors exclude 0 from N. We don’t like this discrimination against zero.) The
following facts are essentially obvious from the definition of even and odd.

(a) The sum of even integers is even.

(b) The sum of an even integer and of an odd integer is odd.

(c) The sum of two odd integers is even.

(d) The product of odd integers is odd.

(e) The product of an even integer with any integer is even.

We will contruct deductions using sets of premises consisting of the above propositions.
Now we prove the following fact using the proof–by–cases method.

Proposition 1.3. Let a, b, c be odd integers. For any integers p and q, if p and q are not
both even, then

ap2 + bpq + cq2

is odd.

Proof. We consider the three cases:

1. p and q are odd. In this case as a, b, and c are odd, by (d) all the products ap2, bpq,
and cq2 are odd. By (c), ap2 + bpq is even and by (b), ap2 + bpq + cq2 is odd.

2. p is even and q is odd. In this case, by (e), both ap2 and bpq are even and by (d), cq2

is odd. But then, by (a), ap2 + bpq is even and by (b), ap2 + bpq + cq2 is odd.

3. p is odd and q is even. This case is analogous to the previous case, except that p and
q are interchanged. The reader should have no trouble filling in the details.
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All three cases exhaust all possibilities for p and q not to be both even, thus the proof
is complete by Proof Template 1.11 applied twice, because there are three cases instead of
two.

The set of rational numbers Q consists of all fractions p/q, where p, q ∈ Z, with q 6= 0.
The set of real numbers is denoted by R. A real number, a ∈ R, is said to be irrational if it
cannot be expressed as a number in Q (a fraction).

We now use Proposition 1.3 and the proof by contradiction method to prove the following.

Proposition 1.4. Let a, b, c be odd integers. Then the equation

aX2 + bX + c = 0

has no rational solution X. Equivalently, every zero of the above equation is irrational.

Proof. We proceed by contradiction (by this, we mean that we use the proof–by–contradiction
principle). So assume that there is a rational solution X = p/q. We may assume that p
and q have no common divisor, which implies that p and q are not both even. As q 6= 0, if
aX2 + bX + c = 0, then by multiplying by q2, we get

ap2 + bpq + cq2 = 0.

However, as p and q are not both even and a, b, c are odd, we know from Proposition 1.3 that
ap2 + bpq + cq2 is odd. This contradicts the fact that p2 + bpq + cq2 = 0 and thus finishes
the proof.

As an example of the proof–by–contrapositive method, we prove that if an integer n2 is
even, then n must be even.

Proof. Observe that if an integer is not even, then it is odd (and vice versa). This fact
may seem quite obvious but to prove it actually requires using induction (which we haven’t
officially met yet). A rigorous proof is given in Section 1.12.

Now the contrapositive of our statement is: if n is odd, then n2 is odd. But to say that
n is odd is to say that n = 2k+ 1, and then n2 = (2k+ 1)2 = 4k2 + 4k+ 1 = 2(2k2 + 2k) + 1,
which shows that n2 is odd.

As another illustration of the proof methods that we have just presented, let us prove
that

√
2 is irrational, which means that

√
2 is not rational. The reader may also want to

look at the proof given by Gowers in Chapter 3 of his book [28]. Obviously, our proof is
similar but we emphasize Step (2) a little more.

Because we are trying to prove that
√

2 is not rational, we use Proof Template 1.4. Thus
let us assume that

√
2 is rational and derive a contradiction. Here are the steps of the proof.

1. If
√

2 is rational, then there exist some integers p, q ∈ Z, with q 6= 0, so that
√

2 = p/q.

2. Any fraction p/q is equal to some fraction r/s, where r and s are not both even.
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3. By (2), we may assume that √
2 =

p

q
,

where p, q ∈ Z are not both even and with q 6= 0.

4. By (3), because q 6= 0, by multiplying both sides by q, we get

q
√

2 = p.

5. By (4), by squaring both sides, we get

2q2 = p2.

6. Inasmuch as p2 = 2q2, the number p2 must be even. By a fact previously established,
p itself is even; that is, p = 2s, for some s ∈ Z.

7. By (6), if we substitute 2s for p in the equation in (5) we get 2q2 = 4s2. By dividing
both sides by 2, we get

q2 = 2s2.

8. By (7), we see that q2 is even, from which we deduce (as above) that q itself is even.

9. Now, assuming that
√

2 = p/q where p and q are not both even (and q 6= 0), we
concluded that both p and q are even (as shown in (6) and(8)), reaching a contradiction.
Therefore, by negation introduction, we proved that

√
2 is not rational.

A closer examination of the steps of the above proof reveals that the only step that may
require further justification is Step (2): that any fraction p/q is equal to some fraction r/s
where r and s are not both even.

This fact does require a proof, and the proof uses the division algorithm, which itself
requires induction. Besides this point, all the other steps only require simple arithmetic
properties of the integers and are constructive.

Remark: Actually, every fraction p/q is equal to some fraction r/s where r and s have no
common divisor except 1. This follows from the fact that every pair of integers has a greatest
common divisor (a gcd ; and r and s are obtained by dividing p and q by their gcd. Using
this fact and Euclid’s lemma, we can obtain a shorter proof of the irrationality of

√
2. First

we may assume that p and q have no common divisor besides 1 (we say that p and q are
relatively prime). From (5), we have

2q2 = p2,

so q divides p2. However, q and p are relatively prime and as q divides p2 = p×p, by Euclid’s
lemma, q divides p. But because 1 is the only common divisor of p and q, we must have
q = 1. Now, we get p2 = 2, which is impossible inasmuch as 2 is not a perfect square.
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The above argument can be easily adapted to prove that if the positive integer n is not
a perfect square, then

√
n is not rational.

We conclude this section by showing that the proof–by–contradiction principle allows for
proofs of propositions that may lack a constructive nature. In particular, it is possible to
prove disjunctions P ∨Q which states some alternative that cannot be settled .

For example, consider the question: are there two irrational real numbers a and b such
that ab is rational? Here is a way to prove that this is indeed the case. Consider the number√

2
√

2
. If this number is rational, then a =

√
2 and b =

√
2 is an answer to our question

(because we already know that
√

2 is irrational). Now observe that

(
√

2
√

2
)
√

2 =
√

2
√

2×
√

2
=
√

2
2

= 2 is rational.

Thus, if
√

2
√

2
is not rational, then a =

√
2
√

2
and b =

√
2 is an answer to our question.

Because P ∨ ¬P is provable using the proof–by–contradiction principle (
√

2
√

2
is rational or

it is not rational), we proved that

(
√

2 is irrational and
√

2
√

2
is rational) or

(
√

2
√

2
and
√

2 are irrational and (
√

2
√

2
)
√

2 is rational).

However, the above proof does not tell us whether
√

2
√

2
is rational!

We see one of the shortcomings of classical reasoning: certain statements (in particular,
disjunctive or existential) are provable but their proof does not provide an explicit answer.
For this reason, classical logic is considered to be nonconstructive.

Remark: Actually, it turns out that another irrational number b can be found so that
√

2
b

is rational, and the proof that b is not rational is fairly simple. It also turns out that the

exact nature of
√

2
√

2
(rational or irrational) is known. The answers to these puzzles can be

found in Section 1.10.

1.9 Truth Tables and Truth Value Semantics

So far we have deliberately focused on the construction of proofs using proof templates, we
but have ignored the notion of truth. We can’t postpone any longer a discussion of the truth
value semantics for classical propositional logic.

We all learned early on that the logical connectives⇒, ∧, ∨, ¬ and ≡ can be interpreted
as Boolean functions, that is, functions whose arguments and whose values range over the
set of truth values ,

BOOL = {true, false}.

These functions are given by the following truth tables .
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P Q P ⇒ Q P ∧Q P ∨Q ¬P P ≡ Q
true true true true true false true
true false false false true false false
false true true false true true false
false false true false false true true

Note that the implication P ⇒ Q is false (has the value false) exactly when P = true
and Q = false.

Now any proposition P built up over the set of atomic propositions PS = {P1,P2,P3, . . .}
(our propositional symbols) contains a finite set of propositional letters, say

{P1, . . . , Pm}.

If we assign some truth value (from BOOL) to each symbol Pi, then we can “compute” the
truth value of P under this assignment by using recursively using the truth tables above.
For example, the proposition P1 ⇒ (P1 ⇒ P2), under the truth assignment v given by

P1 = true, P2 = false,

evaluates to false. Indeed, the truth value, v(P1 ⇒ (P1 ⇒ P2)), is computed recursively as

v(P1 ⇒ (P1 ⇒ P2)) = v(P1)⇒ v(P1 ⇒ P2).

Now, v(P1) = true and v(P1 ⇒ P2) is computed recursively as

v(P1 ⇒ P2) = v(P1)⇒ v(P2).

Because v(P1) = true and v(P2) = false, using our truth table, we get

v(P1 ⇒ P2) = true⇒ false = false.

Plugging this into the right-hand side of v(P1 ⇒ (P1 ⇒ P2)), we finally get

v(P1 ⇒ (P1 ⇒ P2)) = true⇒ false = false.

However, under the truth assignment v given by

P1 = true, P2 = true,

we find that our proposition evaluates to true.
The values of a proposition can be determined by creating a truth table, in which a

proposition is evaluated by computing recursively the truth values of its subexpressions. For
example, the truth table corresponding to the proposition P1 ⇒ (P1 ⇒ P2) is
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P1 P2 P1 ⇒ P2 P1 ⇒ (P1 ⇒ P2)
true true true true
true false false false
false true true true
false false true true

.

If we now consider the proposition P = (P1 ⇒ (P2 ⇒ P1)), its truth table is

P1 P2 P2 ⇒ P1 P1 ⇒ (P2 ⇒ P1)
true true true true
true false true true
false true false true
false false true true

,

which shows that P evaluates to true for all possible truth assignments.
The truth table of a proposition containing m variables has 2m rows. When m is large,

2m is very large, and computing the truth table of a proposition P may not be practically
feasible. Even the problem of finding whether there is a truth assignment that makes P true
is hard. This is actually a very famous problem in computer science.

A proposition P is said to be valid or a tautology if in the truth table for P all the entries
in the column corresponding to P have the value true. This means that P evaluates to true
for all 2m truth assignments.

What’s the relationship between validity and provability? Remarkably, validity and prov-
ability are equivalent .

In order to prove the above claim, we need to do two things:

(1) Prove that if a proposition P is provable using the proof templates that we described
earlier, then it is valid. This is known as soundness or consistency (of the proof
system).

(2) Prove that if a proposition P is valid, then it has a proof using the proof templates.
This is known as the completeness (of the proof system).

In general, it is relatively easy to prove (1) but proving (2) can be quite complicated. In
this book we content ourselves with soundness.

Proposition 1.5. (Soundness of the proof templates) If a proposition P is provable using
the proof templates desribed earlier, then it is valid (according to the truth value semantics).

Sketch of Proof . It is enough to prove that if there is a deduction of a proposition P from a
set of premises Γ, then for every truth assignment for which all the propositions in Γ evaluate
to true, then P evaluates to true. However, this is clear for the axioms and every proof
template preserves that property.

Now, if P is provable, a proof of P has an empty set of premises and so P evaluates to
true for all truth assignments, which means that P is valid.
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Theorem 1.6. (Completeness) If a proposition P is valid (according to the truth value
semantics), then P is provable using the proof templates.

Proofs of completeness for classical logic can be found in van Dalen [62] or Gallier [21]
(but for a different proof system).

Soundness (Proposition 1.5) has a very useful consequence: in order to prove that a
proposition P is not provable, it is enough to find a truth assignment for which P evaluates
to false. We say that such a truth assignment is a counterexample for P (or that P can be
falsified).

For example, no propositional symbol Pi is provable because it is falsified by the truth
assignment Pi = false.

The soundness of our proof system also has the extremely important consequence that
⊥ cannot be proven in this system, which means that contradictory statements cannot be
derived. This is by no means obvious at first sight, but reassuring.

Note that completeness amounts to the fact that every unprovable proposition has a coun-
terexample. Also, in order to show that a proposition is provable, it suffices to compute its
truth table and check that the proposition is valid. This may still be a lot of work, but it is
a more “mechanical” process than attempting to find a proof. For example, here is a truth
table showing that (P1 ⇒ P2) ≡ (¬P1 ∨P2) is valid.

P1 P2 P1 ⇒ P2 ¬P1 ∨P2 (P1 ⇒ P2) ≡ (¬P1 ∨P2)
true true true true true
true false false false true
false true true true true
false false true true true

1.10 Proof Templates for the Quantifiers

As we mentioned in Section 1.1, atomic propositions may contain variables. The intention
is that such variables correspond to arbitrary objects. An example is

human(x)⇒ needs-to-drink(x).

In mathematics, we usually prove universal statements, that is statements that hold for all
possible “objects,” or existential statements, that is, statements asserting the existence of
some object satisfying a given property. As we saw earlier, we assert that every human needs
to drink by writing the proposition

∀x(human(x)⇒ needs-to-drink(x)).

The symbol ∀ is called a universal quantifier . Observe that once the quantifier ∀ (pronounced
“for all” or “for every”) is applied to the variable x, the variable x becomes a placeholder
and replacing x by y or any other variable does not change anything . We say that x is a
bound variable (sometimes a “dummy variable”).
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If we want to assert that some human needs to drink we write

∃x(human(x)⇒ needs-to-drink(x));

The symbol ∃ is called an existential quantifier . Again, once the quantifier ∃ (pronounced
“there exists”) is applied to the variable x, the variable x becomes a placeholder. However,
the intended meaning of the second proposition is very different and weaker than the first.
It only asserts the existence of some object satisfying the statement

human(x)⇒ needs-to-drink(x).

Statements may contain variables that are not bound by quantifiers. For example, in

∃x parent(x, y),

the variable x is bound but the variable y is not. Here the intended meaning of parent(x, y)
is that x is a parent of y, and the intended meaning of ∃x parent(x, y) is that any given y
has some parent x. Variables that are not bound are called free. The proposition

∀y∃x parent(x, y),

which contains only bound variables is meant to assert that every y has some parent x. Typi-
cally, in mathematics, we only prove statements without free variables. However, statements
with free variables may occur during intermediate stages of a proof.

Now in addition to propositions of the form P ∧ Q,P ∨ Q,P ⇒ Q,¬P, P ≡ Q, we add
two new kinds of propositions (also called formulae):

1. Universal formulae, which are formulae of the form ∀xP , where P is any formula and
x is any variable.

2. Existential formulae, which are formulae of the form ∃xP , where P is any formula and
x is any variable.

The intuitive meaning of the statement ∀xP is that P holds for all possible objects x,
and the intuitive meaning of the statement ∃xP is that P holds for some object x. Thus we
see that it would be useful to use symbols to denote various objects. For example, if we want
to assert some facts about the “parent” predicate, we may want to introduce some constant
symbols (for short, constants) such as “Jean,” “Mia,” and so on and write

parent(Jean,Mia)

to assert that Jean is a parent of Mia. Often we also have to use function symbols (or
operators, constructors), for instance, to write a statement about numbers: +, ∗, and so on.
Using constant symbols, function symbols, and variables, we can form terms , such as

(x ∗ x+ 1) ∗ (3 ∗ y + 2).
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In addition to function symbols, we also use predicate symbols , which are names for atomic
properties. We have already seen several examples of predicate symbols: “odd,” “even,”
“prime,” “human,” “parent.” So in general, when we try to prove properties of certain
classes of objects (people, numbers, strings, graphs, and so on), we assume that we have a
certain alphabet consisting of constant symbols, function symbols, and predicate symbols.
By using these symbols and an infinite supply of variables we can form terms and predicate
terms . We say that we have a (logical) language. Using this language, we can write compound
statements. A detailed presentation of this approach is given in Chapter 2. Here we follow
a more informal and more intuitive approach. We use the notion of term as a synonym for
some specific object. Terms are often denoted by the Greek letter τ , sometimes subscripted.
A variable qualifies as a term.

When working with propositions possibly containing quantifiers, it is customary to use the
term formula instead of proposition. The term proposition is typically reserved to formulae
wihout quantifiers.

Unlike the proof templates for⇒,∨,∧ and ⊥, which are rather straightforward, the proof
templates for quantifiers are more subtle due to the presence of variables (occurring in terms
and predicates) and the fact that it is sometimes necessary to make substitutions .

Given a formula P containing some free variable x and given a term τ , the result of
replacing all occurrences of x by τ in P is called a substitution and is denoted P [τ/x] (and
pronounced “the result of substituting τ for x in P”). Substitutions can be defined rigorously
by recursion. Let us simply give an example. Consider the predicate P (x) = odd(2x + 1).
If we substitute the term τ = (y + 1)2 for x in P (x), we obtain

P [τ/x] = odd(2(y + 1)2 + 1).

We have to be careful to forbid inferences that would yield “wrong” results, and for
this we have to be very precise about the way we use free variables. More specifically, we
have to exercise care when we make substitutions of terms for variables in propositions. If
P (t1, t2, . . . , tn) is a statement containing the free variables t1, . . . , tn and if τ1, . . . , τn are
terms, we can form the new statement

P [τ1/t1, . . . , τn/tn]

obtained by substituting the term τi for all free occurrences of the variable ti, for i = 1, . . . , n.
By the way, we denote terms by the Greek letter τ because we use the letter t for a variable
and using t for both variables and terms would be confusing; sorry.

However, if P (t1, t2, . . . , tn) contains quantifiers, some bad things can happen; namely,
some of the variables occurring in some term τi may become quantified when τi is substituted
for ti. For example, consider

∀x∃y P (x, y, z)

which contains the free variable z, and substitute the term x+ y for z; we get

∀x∃y P (x, y, x+ y).
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We see that the variables x and y occurring in the term x+ y become bound variables after
substitution. We say that there is a “capture” of variables.

This is not what we intended to happen. To fix this problem, we recall that bound
variables are really place holders so they can be renamed without changing anything. There-
fore, we can rename the bound variables x and y in ∀x∃y P (x, y, z) to u and v, getting the
statement ∀u∃v P (u, v, z) and now, the result of the substitution is

∀u∃v P (u, v, x+ y),

where x and y are free. Again, all this needs to be explained very carefully but in this
chapter we will content ourselves with an informal treatment.

We begin with the proof templates for the universal quantifier.

Proof Template 1.14. (Forall–Intro)

Let Γ be a list of premises and let y be a variable that does not occur free in any premise in Γ
or in ∀xP . If we have a deduction of the formula P [y/x] from Γ, then we obtain a deduction
of ∀xP from Γ.

Proof Template 1.15. (Forall–Elim)

Let Γ be a list of premises and let τ be a term representing some specific object. If we have
a deduction of ∀xP from Γ, then we obtain a deduction of P [τ/x] from Γ.

The proof template 1.14 may look a little strange but the idea behind it is actually very
simple: Because y is totally unconstrained, if P [y/x] (the result of replacing all occurrences
of x by y in P ) is provable (from Γ), then intuitively P [y/x] holds for any arbitrary object,
and so, the statement ∀xP should also be provable (from Γ).

Note that we can’t deduce ∀xP from P [y/x] because the deduction has the single premise
P [y/x] and y occurs in P [y/x] (unless x does not occur in P ).

The meaning of the Proof Template 1.15 is that if ∀xP is provable (from Γ), then P holds
for all objects and so, in particular for the object denoted by the term τ ; that is, P [τ/x]
should be provable (from Γ).

Here are the proof templates for the existential quantifier.

Proof Template 1.16. (Exist–Intro)

Let Γ be a list of premises and let τ be a term representing some specific object. If we have
a deduction of P [τ/x] from Γ, then we obtain a deduction of ∃xP (x) from Γ.

Proof Template 1.17. (Exist–Elim)

Let Γ and ∆ be a two lists of premises. Let C and ∃xP be formulae, and let y be a variable
that does not occur free in any premise in Γ, in ∃xP , or in C. To obtain a deduction of C
from Γ,∆, proceed as follows:

1. Make a deduction of ∃xP from Γ.
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2. Add one or more occurrences of P [y/x] as premises to ∆ and find a deduction of C
from P [y/x] and ∆.

3. Delete the premise P [y/x].

If P [τ/x] is provable (from Γ), this means that the object denoted by τ satisfies P , so
∃xP should be provable (this latter formula asserts the existence of some object satisfying
P , and τ is such an object).

Proof Template 1.17 is reminiscent of the proof–by–cases principle (Proof template 1.11)
and is a little more tricky. It goes as follows. Suppose that we proved ∃xP (from Γ).
Moreover, suppose that for every possible case P [y/x] we were able to prove C (from ∆).
Then, as we have “exhausted” all possible cases and as we know from the provability of ∃xP
that some case must hold, we can conclude that C is provable (from Γ,∆) without using
P [y/x] as a premise.

Like the the proof–by–cases principle, Proof Template 1.17 is not very constructive. It
allows making a conclusion C by considering alternatives without knowing which one actually
occurs.

Constructing proofs using the proof templates for the quantifiers can be quite tricky due
to the restrictions on variables. In practice, we always use “fresh” (brand new) variables
to avoid problems. Also, when we use Proof Template 1.14, we begin by saying “let y be
arbitrary,” then we prove P [y/x] (mentally substituting y for x), and we conclude with:
“since y is arbitrary, this proves ∀xP .” We proceed in a similar way when using Proof
Template 1.17, but this time we say “let y be arbitrary” in step (2). When we use Proof
Template 1.15, we usually say: “Since ∀xP holds, it holds for all x, so in particular it holds
for τ , and thus P [τ/x] holds.” Similarly, when using Proof Template 1.16, we say “since
P [τ/x] holds for a specific object τ , we can deduce that ∃xP holds.”

Here is an example of a “wrong proof” in which the ∀-introduction rule is applied illegally,
and thus, yields a statement that is actually false (not provable). In the incorrect “proof”
below, P is an atomic predicate symbol taking two arguments (e.g., “parent”) and 0 is a
constant denoting zero:

P (u, 0)x
illegal step!

∀tP (t, 0)
Implication-Intro x

P (u, 0)⇒ ∀tP (t, 0)
Forall-Intro

∀s(P (s, 0)⇒ ∀tP (t, 0))
Forall-Elim

P (0, 0)⇒ ∀tP (t, 0)

The problem is that the variable u occurs free in the premise P [u/t, 0] = P (u, 0) and
therefore, the application of the ∀-introduction rule in the first step is illegal . However,
note that this premise is discharged in the second step and so the application of the ∀-
introduction rule in the third step is legal. The (false) conclusion of this faulty proof is that
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P (0, 0) ⇒ ∀tP (t, 0) is provable. Indeed, there are plenty of properties such that the fact
that the single instance P (0, 0) holds does not imply that P (t, 0) holds for all t.

Let us now give two examples of a proof using the proof templates for ∀ and ∃.

Example 1.23. For any natural number n, let odd(n) be the predicate that asserts that n
is odd, namely

odd(n) ≡ ∃m((m ∈ N) ∧ (n = 2m+ 1)).

First let us prove that
∀a((a ∈ N)⇒ odd(2a+ 1)).

By Proof Template 1.14, let x be a fresh variable; we need to prove

(x ∈ N)⇒ odd(2x+ 1).

By Proof Template 1.2, assume x ∈ N. If we consider the formula

(m ∈ N) ∧ (2x+ 1 = 2m+ 1),

by substituting x for m, we get

(x ∈ N) ∧ (2x+ 1 = 2x+ 1),

which is provable since x ∈ N. By Proof Template 1.16, we obtain

∃m(m ∈ N) ∧ (2x+ 1 = 2m+ 1);

that is, odd(2x+ 1) is provable. Using Proof Template 1.2, we delete the premise x ∈ N and
we have proven

(x ∈ N)⇒ odd(2x+ 1).

This proof has no longer any premises, so we can safely conclude that

∀a((a ∈ N)⇒ odd(2a+ 1)).

Next consider the term τ = 7. By Proof Template 1.15, we obtain

(7 ∈ N)⇒ odd(15).

Since 7 ∈ N, by modus ponens we deduce that 15 is odd.
Let us now consider the term τ = (b+1)2 with b ∈ N. By Proof Template 1.15, we obtain

((b+ 1)2 ∈ N)⇒ odd(2(b+ 1)2 + 1)).

But b ∈ N implies that (b+ 1)2 ∈ N so by modus ponens and Proof Template 1.2, we deduce
that

(b ∈ N)⇒ odd(2(b+ 1)2 + 1)).
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Example 1.24. Let us prove the formula ∀x(P ∧Q)⇒ ∀xP ∧ ∀xQ.
First using Proof Template 1.2, we assume ∀x(P ∧ Q) (two copies). The next step uses

a trick. Since variables are terms, if u is a fresh variable, then by Proof Templare 1.15 we
deduce (P ∧Q)[u/x]. Now we use a property of substitutions which says that

(P ∧Q)[u/x] = P [u/x] ∧Q[u/x].

We can now use Proof Template 1.9 (twice) to deduce P [u/x] and Q[u/x]. But remember
that the premise is ∀x(P ∧Q) (two copies), and since u is a fresh variable, it does not occur
in this premise, so we can safely apply Proof Template 1.14 and conclude ∀xP , and similarly
∀xQ. By Proof Template 1.8, we deduce ∀xP ∧ ∀xQ from ∀x(P ∧ Q). Finally, by Proof
Template 1.2, we delete the premise ∀x(P ∧Q) and obtain our proof. The above proof has
the following tree representation.

∀x(P ∧Q)x
√

P [u/x] ∧Q[u/x]

P [u/x]

∀xP

∀x(P ∧Q)x
√

P [u/x] ∧Q[u/x]

Q[u/x]

∀xQ
∀xP ∧ ∀xQ

x

∀x(P ∧Q)⇒ ∀xP ∧ ∀xQ

The reader should show that ∀xP ∧ ∀xQ⇒ ∀x(P ∧Q) is also provable.
However, in general, one can’t just replace ∀ by ∃ (or ∧ by ∨) and still obtain provable

statements. For example, ∃xP ∧ ∃xQ⇒ ∃x(P ∧Q) is not provable at all.
Here are some useful equivalences involving quantifiers. The first two are analogous to

the de Morgan laws for ∧ and ∨.

Proposition 1.7. The following formulae are provable:

¬∀xP ≡ ∃x¬P
¬∃xP ≡ ∀x¬P

∀x(P ∧Q) ≡ ∀xP ∧ ∀xQ
∃x(P ∨Q) ≡ ∃xP ∨ ∃xQ
∃x(P ∧Q)⇒ ∃xP ∧ ∃xQ
∀xP ∨ ∀xQ⇒ ∀x(P ∨Q).

The proof system that uses all the Proof Templates that we have defined proves formulae
of classical first-order logic.

One should also be careful that the order the quantifiers is important. For example, a
formula of the form

∀x∃yP
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is generally not equivalent to the formula

∃y∀xP.

The second formula asserts the existence of some object y such that P holds for all x. But
in the first formula, for every x, there is some y such that P holds, but each y depends on
x and there may not be a single y that works for all x.

Another amusing mistake involves negating a universal quantifier. The formula ∀x¬P
is not equivalent to ¬∀xP . Once traveling from Philadelphia to New York I heard a train
conductor say: “All doors will not open.” Actually, he meant “not all doors will open,”
which would give us a chance to get out!

Remark: We can illustrate, again, the fact that classical logic allows for nonconstructive

proofs by re-examining the example at the end of Section 1.8. There we proved that if
√

2
√

2

is rational, then a =
√

2 and b =
√

2 are both irrational numbers such that ab is rational,

and if
√

2
√

2
is irrational, then a =

√
2
√

2
and b =

√
2 are both irrational numbers such that

ab is rational. By Proof Template 1.16, we deduce that if
√

2
√

2
is rational, then there exist

some irrational numbers a, b so that ab is rational, and if
√

2
√

2
is irrational, then there exist

some irrational numbers a, b so that ab is rational. In classical logic, as P ∨ ¬P is provable,
by the proof–by–cases principle we just proved that there exist some irrational numbers a
and b so that ab is rational.

However, this argument does not give us explicitly numbers a and b with the required
properties. It only tells us that such numbers must exist.

Now, it turns out that
√

2
√

2
is indeed irrational (this follows from the Gel’fond–Schneider

theorem, a hard theorem in number theory). Furthermore, there are also simpler explicit
solutions such as a =

√
2 and b = log2 9, as the reader should check.

1.11 Sets and Set Operations

In this section we review the definition of a set and basic set operations. This section takes
the “naive” point of view that a set is an unordered collection of objects, without duplicates,
the collection being regarded as a single object.

Given a set A we write that some object a is an element of (belongs to) the set A as

a ∈ A,

and that a is not an element of A (does not belong to A) as

a /∈ A.

The symbol ∈ is the set membership symbol.
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A set can either be defined explicitely by listing its elements within curly braces (the
symbols { and }) or as a collection of objects satisfying a certain property. For example, the
set C consisting of the colors red, blue, green is given by

C = {red, blue, green}.

Because the order of elements in a set is irrelevant, the set C is also given by

C = {green, red, blue}.

In fact, a moment of reflexion reveals that there are six ways of writing the set C.
If we denote by N the set of natural numbers

N = {0, 1, 2, 3, . . .},

then the set E of even integers can be defined in terms of the property even of being even
by

E = {n ∈ N | even(n)}.
More generally, given some property P and some set X, we denote the set of all elements of
X that satisfy the property P by

{x ∈ X | P (x)} or {x | x ∈ X ∧ P (x)}.

When are two sets A and B equal? The answer is given by the first proof template of
set theory, called the Extensionality Axiom.

Proof Template 1.18. (Extensionality Axiom)

Two sets A and B are equal iff they have exactly the same elements; that is, every element
of A is an element of B and conversely. This can be written more formally as

∀x(x ∈ A⇒ x ∈ B) ∧ ∀x(x ∈ B ⇒ x ∈ A).

There is a special set having no elements at all, the empty set , denoted ∅. The empty
set is characterized by the property

∀x(x /∈ ∅).
Next we define the notion of inclusion between sets

Definition 1.5. Given any two sets, A and B, we say that A is a subset of B (or that A is
included in B), denoted A ⊆ B, iff every element of A is also an element of B, that is,

∀x(x ∈ A⇒ x ∈ B).

We say that A is a proper subset of B iff A ⊆ B and A 6= B. This implies that that there is
some b ∈ B with b /∈ A. We usually write A ⊂ B.
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For example, if A = {green, blue} and C = {green, red, blue}, then

A ⊆ C.

Note that the empty set is a subset of every set.
Observe the important fact that equality of two sets can be expressed by

A = B iff A ⊆ B and B ⊆ A.

Proving that two sets are equal may be quite complicated if the definitions of these sets
are complex, and the above method is the safe one.

If a set A has a finite number of elements, then this number (a natural number) is called
the cardinality of the set and is denoted by |A| (sometimes by card(A)). Otherwise, the set
is said to be infinite. The cardinality of the empty set is 0.

Sets can be combined in various ways, just as numbers can be added, multiplied, etc.
However, operations on sets tend to minic logical operations such as disjunction, conjunction,
and negation, rather than the arithmetical operations on numbers. The most basic operations
are union, intersection, and relative complement.

Definition 1.6. For any two sets A and B, the union of A and B is the set A ∪ B defined
such that

x ∈ A ∪B iff (x ∈ A) ∨ (x ∈ B).

This reads x is a member of A∪B if either x belongs to A or x belongs to B (or both). We
also write

A ∪B = {x | x ∈ A or x ∈ B}.
The intersection of A and B is the set A ∩B defined such that

x ∈ A ∩B iff (x ∈ A) ∧ (x ∈ B).

This reads x is a member of A ∩B if x belongs to A and x belongs to B. We also write

A ∩B = {x | x ∈ A and x ∈ B}.

The relative complement (or set difference) of A and B is the set A−B defined such that

x ∈ A−B iff (x ∈ A) ∧ ¬(x ∈ B).

This reads x is a member of A− B if x belongs to A and x does not belong to B. We also
write

A−B = {x | x ∈ A and x /∈ B}.
Example 1.25. For example, if A = {0, 2, 4, 6} and B = {0, 1, 3, 5}, then

A ∪B = {0, 1, 2, 3, 4, 5, 6}
A ∩B = {0}
A−B = {2, 4, 6}.
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Two sets A,B are said to be disjoint if A ∩ B = ∅. It is easy to see that if A and B are
two finite sets and if A and B are disjoint, then

|A ∪B| = |A|+ |B|.

In general, by writing

A ∪B = (A ∩B) ∪ (A−B) ∪ (B − A),

if A and B are finite, it can be shown that

|A ∪B| = |A|+ |B| − |A ∩B|.

The situation in which we maniplulate subsets of some fixed set X often arises, and it is
useful to introduce a special type of relative complement with respect to X. For any subset
A of X, the complement A of A in X is defined by

A = X − A,

which can also be expressed as

A = {x ∈ X | x /∈ A}.

Using the union operation, we can form bigger sets by taking unions with singletons. For
example, we can form

{a, b, c} = {a, b} ∪ {c}.

Remark: We can systematically construct bigger and bigger sets by the following method:
given any set A let

A+ = A ∪ {A}.

If we start from the empty set, we obtain the sets

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, etc.

These sets can be used to define the natural numbers and the + operation corresponds to
the successor function on the natural numbers (i.e., n 7→ n+ 1).

The algebraic properties of union, intersection, and complementation are inherited from
the properties of disjunction, conjunction, and negation. The following proposition lists
some of the most important properties of union, intersection, and complementation. Some
of these properties are versions of Proposition 1.2 for subsets.
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Proposition 1.8. The following equations hold for all sets A,B,C:

A ∪ ∅ = A

A ∩ ∅ = ∅
A ∪ A = A

A ∩ A = A

A ∪B = B ∪ A
A ∩B = B ∩ A.

The last two assert the commutativity of ∪ and ∩. We have distributivity of ∩ over ∪ and
of ∪ over ∩:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

We have associativity of ∩ and ∪:

A ∩ (B ∩ C) = (A ∩B) ∩ C
A ∪ (B ∪ C) = (A ∪B) ∪ C.

Proof. We use Proposition 1.2. Let us prove that A∩ (B ∪C) = (A∩B)∪ (A∩C), leaving
the proof of the other equations as an exercise. We prove the two inclusions A ∩ (B ∪ C) ⊆
(A ∩B) ∪ (A ∩ C) and (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

Assume that x ∈ A ∩ (B ∪ C). This means that x ∈ A and x ∈ B ∪ C; that is

(x ∈ A) ∧ ((x ∈ B) ∨ (x ∈ C)).

Using the distributivity of ∧ over ∨, we obtain

((x ∈ A) ∧ (x ∈ B)) ∨ ((x ∈ A) ∧ (x ∈ C)).

But the above says that x ∈ (A ∩B) ∪ (A ∩ C), which proves our first inclusion.
Conversely assume that x ∈ (A∩B)∪(A∩C). This means that x ∈ (A∩B) or x ∈ (A∩C);

that is
((x ∈ A) ∧ (x ∈ B)) ∨ ((x ∈ A) ∧ (x ∈ C)).

Using the distributivity of ∧ over ∨ (in the other direction), we obtain

(x ∈ A) ∧ ((x ∈ B) ∨ (x ∈ C)),

which says that x ∈ A ∩ (B ∪ C), and proves our second inclusion.
Note that we could have avoided two arguments by proving that x ∈ A∩ (B∪C) iff (A∩

B)∪(A∩C) using the fact that the distributivity of ∧ over ∨ is a logical equivalence.

We also have the following version of Proposition 1.1 for subsets.
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Proposition 1.9. For every set X and any two subsets A,B of X, the following identities
hold:

A = A

(A ∩B) = A ∪B
(A ∪B) = A ∩B.

The last two are de Morgan laws.

Another operation is the power set formation. It is indeed a “powerful” operation, in the
sense that it allows us to form very big sets.

Definition 1.7. Given any set A, there is a set P(A), also denoted 2A, called the power set
of A whose members are exactly the subsets of A; that is

X ∈ P(A) iff X ⊆ A.

For example, if A = {a, b, c}, then

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}},

a set containing eight elements. Note that the empty set and A itself are always members
of P(A).

Remark: If A has n elements, it is not hard to show that P(A) has 2n elements. For this
reason, many people, including us, prefer the notation 2A for the power set of A.

It is possible to define the union of possibly infinitely many sets. Given any set X (think
of X as a set of sets), there is a set

⋃
X defined so that

x ∈
⋃

X iff ∃B(B ∈ X ∧ x ∈ B).

This says that
⋃
X consists of all elements that belong to some member of X.

If we take X = {A,B}, where A and B are two sets, we see that⋃
{A,B} = A ∪B.

Observe that ⋃
{A} = A,

⋃
{A1, . . . , An} = A1 ∪ · · · ∪ An.

and in particular,
⋃ ∅ = ∅.

We can also define infinite intersections. For every nonempty set X there is a set
⋂
X

defined by

x ∈
⋂

X iff ∀B(B ∈ X ⇒ x ∈ B).
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Observe that ⋂
{A,B} = A ∩B,

⋂
{A1, . . . , An} = A1 ∩ · · · ∩ An.

However,
⋂ ∅ is undefined. Indeed,

⋂ ∅ would have to be the set of all sets, since the
condition

∀B(B ∈ ∅ ⇒ x ∈ B)

holds trivially for all B (as the empty set has no members). However there is no such set
because its existence would lead to a paradox! This point is discussed is Chapter 2. Let us
simply say that dealing with big infinite sets is tricky.

Thorough and yet accessible presentations of set theory can be found in Halmos [30] and
Enderton [13].

We close this chapter with a quick discussion of induction on the natural numbers.

1.12 Induction and the Well–Ordering Principle on the

Natural Numbers

Recall that the set of natural numbers is the set N given by

N = {0, 1, 2, 3, . . .}.

In this chapter we do not attempt to define the natural numbers from other concepts, such
as sets. We assume that they are “God given.” One of our main goals is to prove properties
of the natural numbers. For this, certain subsets called inductive play a crucial role.

Definition 1.8. We say that a subset S of N is inductive iff

(1) 0 ∈ S.

(2) For every n ∈ S, we have n+ 1 ∈ S.

One of the most important proof principles for the natural numbers is the following:

Proof Template 1.19. (Induction Principle for N)
Every inductive subset S of N is equal to N itself; that is S = N.

Let us give one example illustrating Proof Template 1.19. Many more examples are given
in Chapter 11.3.

Example 1.26. We prove that for every real number a 6= 1 and every natural number n,
we have

1 + a+ · · ·+ an =
an+1 − 1

a− 1
.
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This can also be written as
n∑
i=0

ai =
an+1 − 1

a− 1
, (∗)

with the convention that a0 = 1, even if a = 0. Let S be the set of natural numbers n for
which the identity (∗) holds, and let us prove that S is inductive.

First we need to prove that 0 ∈ S. The lefthand side becomes a0 = 1, and the righthand
side is (a− 1)/(a− 1), which is equal to 1 since we assume that a 6= 1. Therefore, (∗) holds
for n = 0; that is, 0 ∈ S.

Next assume that n ∈ S (this is called the induction hypothesis). We need to prove that
n+ 1 ∈ S. Observe that

n+1∑
i=0

ai =
n∑
i=0

ai + an+1.

Now since we assumed that n ∈ S, we have

n∑
i=0

ai =
an+1 − 1

a− 1
,

and we deduce that

n+1∑
i=0

ai =
n∑
i=0

ai + an+1

=
an+1 − 1

a− 1
+ an+1

=
an+1 − 1 + an+2 − an+1

a− 1

=
an+2 − 1

a− 1
.

This proves that n+ 1 ∈ S. Therefore, S is inductive, and so S = N.

We show how to rephrase this induction principle a little more conveniently using the
notion of function in Chapter 11.3.

Another important property of N is the so-called well–ordering principle. This principle
turns out to be equivalent to the induction principle for N. In this chapter we accept the
well–ordering principle without proof.

Proof Template 1.20. (Well–Ordering Principle for N)
Every nonempty subset of N has a smallest element.

Proof Template 1.20 can be used to prove properties of N by contradiction. For example,
consider the property that every natural number n is either even or odd.

For the sake of contradiction (here, we use the proof–by–contradiction principle), assume
that our statement does not hold. If so, the subset S of natural numbers n for which n is
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neither even nor odd is nonempty. By the well–ordering principle, the set S has a smallest
element, say m.

If m = 0, then 0 would be neither even nor odd, a contradiction since 0 is even. Therefore,
m > 0. But then, m− 1 /∈ S, since m is the smallest element of S. This means that m− 1
is either even or odd. But if m − 1 is even, then m − 1 = 2k for some k, so m = 2k + 1 is
odd, and if m− 1 is odd, then m− 1 = 2k + 1 for some k, so m = 2(k + 1) is even. We just
proved that m is either even or odd, contradicting the fact that m ∈ S. Therefore, S must
be empty and we proved the desired result.

We conclude this section with one more example showing the usefulness of the well–
ordering principle.

Example 1.27. Suppose we have a property P (n) of the natural numbers such that P (n)
holds for at least some n, and that for every n such that P (n) holds and n ≥ 100, then
there is some m < n such that P (m) holds. We claim that there is some m < 100 such that
P (m) holds. Let S be the set of natural numbers n such that P (n) holds. By hypothesis,
there is some n such that P (n) holds, so S is nonempty. By the well–ordering principle, the
set S has a smallest element, say m. For the sake of contradiction, assume that m ≥ 100.
Then since P (m) holds and m ≥ 100, by the hypothesis there is some m′ < m such that
P (m′) holds, contradicting the fact that m is the smallest element of S. Therefore, by the
proof–by–contradiction principle, we conclude that m < 100, as claimed.

� Beware that the well–ordering principle is false for Z because Z does not have a smallest
element.

1.13 Summary

The main goal of this chapter is to describe how to construct proofs in terms of proof
templates . A brief and informal introduction to sets and set operations is also provided.

• We describe the syntax of propositions .

• We define the proof templates for implication.

• We show that deductions proceed from assumptions (or premises) according to proof
templates .

• We introduce falsity ⊥ and negation ¬P as an abbrevation for P ⇒⊥. We describe
the proof templates for conjunction, disjunction, and negation.

• We show that one of the rules for negation is the proof–by–contradiction rule (also
known as RAA). It plays a special role, in the sense that it allows for the construction
of indirect proofs.

• We present the proof–by–contrapositive rule.
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• We present the de Morgan laws as well as some basic properties of ∨ and ∧.

• We give some examples of proofs of “real” statements.

• We give an example of a nonconstructive proof of the statement: there are two irrational
numbers, a and b, such that ab is rational.

• We explain the truth-value semantics of propositional logic.

• We define the truth tables for the boolean functions associated with the logical con-
nectives (and, or, not, implication, equivalence).

• We define the notion of validity and tautology .

• We discuss soundness (or consistency) and completeness .

• We state the soundness and completeness theorems for propositional classical logic.

• We explain how to use counterexamples to prove that certain propositions are not
provable.

• We add first-order quantifiers (“for all” ∀ and “there exists” ∃) to the language of
propositional logic and define first-order logic.

• We describe free and bound variables.

• We describe proof templates for the quantifiers.

• We prove some “de Morgan”-type rules for the quantified formulae.

• We introduce sets and explain when two sets are equal.

• We define the notion of subset .

• We define some basic operations on sets: the union A ∪ B, intersection A ∩ B, and
relative complement A−B.

• We define the complement of a subset of a given set.

• We prove some basic properties of union, intersection and complementation, including
the de Morgan laws .

• We define the power set of a set.

• We define inductive subsets of N and state the induction principle for N.

• We state the well–ordering principle for N.
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Problems

Problem 1.1. Give a proof of the proposition (P ⇒ Q)⇒ ((P ⇒ (Q⇒ R))⇒ (P ⇒ R)).

Problem 1.2. (a) Prove the “de Morgan” laws:

¬(P ∧Q) ≡ ¬P ∨ ¬Q
¬(P ∨Q) ≡ ¬P ∧ ¬Q.

(b) Prove the propositions (P ∧ ¬Q)⇒ ¬(P ⇒ Q) and ¬(P ⇒ Q)⇒ (P ∧ ¬Q).

Problem 1.3. (a) Prove the equivalences

P ∨ P ≡ P

P ∧ P ≡ P

P ∨Q ≡ Q ∨ P
P ∧Q ≡ Q ∧ P.

(b) Prove the equivalences

P ∧ (P ∨Q) ≡ P

P ∨ (P ∧Q) ≡ P.

Problem 1.4. Prove the propositions

P ⇒ (Q⇒ (P ∧Q))

(P ⇒ Q)⇒ ((P ⇒ ¬Q)⇒ ¬P )

(P ⇒ R)⇒ ((Q⇒ R)⇒ ((P ∨Q)⇒ R)).

Problem 1.5. Prove the following equivalences:

P ∧ (P ⇒ Q) ≡ P ∧Q
Q ∧ (P ⇒ Q) ≡ Q(
P ⇒ (Q ∧R)

)
≡

(
(P ⇒ Q) ∧ (P ⇒ R)

)
.

Problem 1.6. Prove the propositions

(P ⇒ Q)⇒ ¬¬(¬P ∨Q)

¬¬(¬¬P ⇒ P ).

Problem 1.7. Prove the proposition ¬¬(P ∨ ¬P ).

Problem 1.8. Prove the propositions

(P ∨ ¬P )⇒ (¬¬P ⇒ P ) and (¬¬P ⇒ P )⇒ (P ∨ ¬P ).
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Problem 1.9. Prove the propositions

(P ⇒ Q)⇒ ¬¬(¬P ∨Q) and (¬P ⇒ Q)⇒ ¬¬(P ∨Q).

Problem 1.10. (a) Prove the distributivity of ∧ over ∨ and of ∨ over ∧:

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R).

(b) Prove the associativity of ∧ and ∨:

P ∧ (Q ∧R) ≡ (P ∧Q) ∧R
P ∨ (Q ∨R) ≡ (P ∨Q) ∨R.

Problem 1.11. (a) Let X = {Xi | 1 ≤ i ≤ n} be a finite family of sets. Prove that if
Xi+1 ⊆ Xi for all i, with 1 ≤ i ≤ n− 1, then⋂

X = Xn.

Prove that if Xi ⊆ Xi+1 for all i, with 1 ≤ i ≤ n− 1, then⋃
X = Xn.

(b) Recall that N+ = N−{0} = {1, 2, 3, . . . , n, . . .}. Give an example of an infinite family
of sets, X = {Xi | i ∈ N+}, such that

1. Xi+1 ⊆ Xi for all i ≥ 1.

2. Xi is infinite for every i ≥ 1.

3.
⋂
X has a single element.

(c) Give an example of an infinite family of sets, X = {Xi | i ∈ N+}, such that

1. Xi+1 ⊆ Xi for all i ≥ 1.

2. Xi is infinite for every i ≥ 1.

3.
⋂
X = ∅.

Problem 1.12. An integer, n ∈ Z, is divisible by 3 iff n = 3k, for some k ∈ Z. Thus (by
the division theorem), an integer, n ∈ Z, is not divisible by 3 iff it is of the form n = 3k + 1
or n = 3k + 2, for some k ∈ Z (you don’t have to prove this).

Prove that for any integer, n ∈ Z, if n2 is divisible by 3, then n is divisible by 3.

Hint . Prove the contrapositive. If n of the form n = 3k+ 1 or n = 3k+ 2, then so is n2 (for
a different k).

Problem 1.13. Use Problem 1.12 to prove that
√

3 is irrational, that is,
√

3 can’t be written
as
√

3 = p/q, with p, q ∈ Z and q 6= 0.

Problem 1.14. Prove that b = log2 9 is irrational. Then prove that a =
√

2 and b = log2 9
are two irrational numbers such that ab is rational.
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Chapter 2

Mathematical Reasoning And Logic,
A Deeper View

2.1 Introduction

This chapter is a more advanced and more formal version of Chapter 1. The reader should
review Chapter 1 before reading this chapter which relies rather heavily on it.

As in Chapter 1 , the goal of this chapter is to provide an answer to the question, “What
is a proof?” We do so by formalizing the basic rules of reasoning that we use, most of the
time subconsciously, in a certain kind of formalism known as a natural deduction system. We
give a (very) quick introduction to mathematical logic, with a very deliberate proof-theoretic
bent, that is, neglecting almost completely all semantic notions, except at a very intuitive
level. We still feel that this approach is fruitful because the mechanical and rules-of-the-
game flavor of proof systems is much more easily grasped than semantic concepts. In this
approach, we follow Peter Andrews’ motto [1]:

“To truth through proof.”

We present various natural deduction systems due to Prawitz and Gentzen (in more
modern notation), both in their intuitionistic and classical version. The adoption of natural
deduction systems as proof systems makes it easy to question the validity of some of the
inference rules, such as the principle of proof by contradiction. In brief, we try to explain to
our readers the difference between constructive and classical (i.e., not necessarily construc-
tive) proofs. In this respect, we plant the seed that there is a deep relationship between
constructive proofs and the notion of computation (the “Curry–Howard isomorphism” or
“formulae-as-types principle,” see Section 2.13 and Howard [34]).

2.2 Logical Connectives and Propositions

In this section we review some basic proof principles and attempt to clarify, at least infor-
mally, what constitutes a mathematical proof.

63
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In order to define the notion of proof rigorously, we would have to define a formal language
in which to express statements very precisely and we would have to set up a proof system
in terms of axioms and proof rules (also called inference rules). We do not go into this
as this would take too much time. Instead, we content ourselves with an intuitive idea of
what a statement is and focus on stating as precisely as possible the rules of logic that
are used in constructing proofs. Readers who really want to see a thorough (and rigorous)
introduction to logic are referred to Gallier [21], van Dalen [62], or Huth and Ryan [35], a nice
text with a computer science flavor. A beautiful exposition of logic (from a proof-theoretic
point of view) is also given in Troelstra and Schwichtenberg [61], but at a more advanced
level. Frank Pfenning has also written an excellent and more extensive introduction to
constructive logic. This is available on the web at http://www.andrew.cmu.edu/course/15-
317/handouts/logic.pdf.

We also highly recommend the beautifully written little book by Timothy Gowers (Fields
Medalist, 1998) [28] which, among other things, discusses the notion of proof in mathematics
(as well as the necessity of formalizing proofs without going overboard).

In mathematics and computer science, we prove statements. Recall that statements
may be atomic or compound , that is, built up from simpler statements using logical connec-
tives , such as implication (if–then), conjunction (and), disjunction (or), negation (not), and
(existential or universal) quantifiers .

As examples of atomic statements, we have:

1. “A student is eager to learn.”

2. “The product of two odd integers is odd.”

Atomic statements may also contain “variables” (standing for arbitrary objects). For
example

1. human(x): “x is a human.”

2. needs-to-drink(x): “x needs to drink.”

An example of a compound statement is

human(x)⇒ needs-to-drink(x).

In the above statement, ⇒ is the symbol used for logical implication. If we want to assert
that every human needs to drink, we can write

∀x(human(x)⇒ needs-to-drink(x));

this is read: “For every x, if x is a human, then x needs to drink.”
If we want to assert that some human needs to drink we write

∃x(human(x)⇒ needs-to-drink(x));
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this is read: “There is some x such that if x is a human, then x needs to drink.”
We often denote statements (also called propositions or (logical) formulae) using letters

such as A,B, P,Q, and so on, typically upper-case letters (but sometimes Greek letters ϕ,
ψ, etc.).

Recall from Section 1.2 that compound statements are defined as follows. If P and Q are
statements, then

1. the conjunction of P and Q is denoted P ∧Q (pronounced P and Q),

2. the disjunction of P and Q is denoted P ∨Q (pronounced P or Q),

3. the implication of P and Q is denoted by P ⇒ Q (pronounced if P then Q, or P
implies Q).

Instead of using the symbol⇒, some authors use the symbol→ and write an implication
as P → Q. We do not like to use this notation because the symbol → is already used in
the notation for functions (f : A→ B). The symbol ⊃ is sometimes used instead of ⇒. We
mostly use the symbol ⇒.

We also have the atomic statement ⊥ (falsity), think of it as the statement that is false
no matter what; and the atomic statement > (truth), think of it as the statement that is
always true.

The constant ⊥ is also called falsum or absurdum. It is a formalization of the notion of
absurdity inconsistency (a state in which contradictory facts hold).

Given any proposition P it is convenient to define

4. the negation ¬P of P (pronounced not P ) as P ⇒⊥. Thus, ¬P (sometimes denoted
∼ P ) is just a shorthand for P ⇒⊥. We write ¬P ≡ (P ⇒⊥).

The intuitive idea is that ¬P ≡ (P ⇒⊥) is true if and only if P is false. Actually, because
we don’t know what truth is, it is “safer” (and more constructive) to say that ¬P is provable
if and only if for every proof of P we can derive a contradiction (namely, ⊥ is provable). In
particular, P should not be provable. For example, ¬(Q∧¬Q) is provable (as we show later,
because any proof of Q ∧ ¬Q yields a proof of ⊥). However, the fact that a proposition P
is not provable does not imply that ¬P is provable. There are plenty of propositions such
that both P and ¬P are not provable, such as Q ⇒ R, where Q and R are two unrelated
propositions (with no common symbols).

Whenever necessary to avoid ambiguities, we add matching parentheses: (P∧Q), (P∨Q),
(P ⇒ Q). For example, P∨Q∧R is ambiguous; it means either (P∨(Q∧R)) or ((P∨Q)∧R).

Another important logical operator is equivalence.
If P and Q are statements, then

5. the equivalence of P and Q is denoted P ≡ Q (or P ⇐⇒ Q); it is an abbreviation for
(P ⇒ Q)∧ (Q⇒ P ). We often say “P if and only if Q,” or even “P iff Q” for P ≡ Q.



66 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

To prove a logical equivalence P ≡ Q, we have to prove both implications P ⇒ Q and
Q⇒ P .

As discussed in Sections 1.2 and 1.3, the meaning of the logical connectives (∧,∨,⇒,¬,≡)
is intuitively clear. This is certainly the case for and (∧), since a conjunction P ∧Q is true
if and only if both P and Q are true (if we are not sure what “true” means, replace it by
the word “provable”). However, for or (∨), do we mean inclusive or or exclusive or? In the
first case, P ∨ Q is true if both P and Q are true, but in the second case, P ∨ Q is false
if both P and Q are true (again, in doubt change “true” to “provable”). We always mean
inclusive or. The situation is worse for implication (⇒). When do we consider that P ⇒ Q
is true (provable)? The answer is that it depends on the rules! The “classical” answer is
that P ⇒ Q is false (not provable) if and only if P is true and Q is false.

Of course, there are problems with the above paragraph. What does truth have to do
with all this? What do we mean when we say, “P is true”? What is the relationship between
truth and provability?

These are actually deep (and tricky) questions whose answers are not so obvious. One
of the major roles of logic is to clarify the notion of truth and its relationship to provability.
We avoid these fundamental issues by dealing exclusively with the notion of proof. So, the
big question is: what is a proof?

An alternative view (that of intuitionistic logic) of the meaning of implication is that
any proof of P ⇒ Q can be used to construct a proof of Q given any proof of P . As a
consequence of this interpretation, we show later that if ¬P is provable, then P ⇒ Q is also
provable (instantly) whether or not Q is provable. In such a situation, we often say that
P ⇒ Q is vacuously provable.

2.3 Proof Rules, Deductions and Proof Trees for Im-

plication

During the process of constructing a proof, it may be necessary to introduce a list of hy-
potheses , also called premises (or assumptions), which grows and shrinks during the proof.
When a proof is finished, it should have an empty list of premises . As we show shortly, this
amounts to proving implications of the form

(P1 ∧ P2 ∧ · · · ∧ Pn)⇒ Q.

However, there are certain advantages in defining the notion of proof (or deduction) of a
proposition from a set of premises. Sets of premises are usually denoted using upper-case
Greek letters such as Γ or ∆.

Roughly speaking, a deduction of a proposition Q from a multiset of premises Γ is a
finite labeled tree whose root is labeled with Q (the conclusion), whose leaves are labeled
with premises from Γ (possibly with multiple occurrences), and such that every interior node
corresponds to a given set of proof rules (or inference rules). In Chapter 1, proof rules were
called proof templates. Certain simple deduction trees are declared as obvious proofs, also
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Figure 2.1: David Hilbert, 1862–1943 (left and middle), Gerhard Gentzen, 1909–1945 (middle
right), and Dag Prawitz, 1936– (right)

called axioms . The process of managing the list of premises during a proof is a bit technical
and can be achieved in various ways. We will present a method due to Prawitz and another
method due to Gentzen.

There are many kinds of proof systems: Hilbert-style systems, natural-deduction systems,
Gentzen sequents systems, and so on. We describe a so-called natural deduction system
invented by G. Gentzen in the early 1930s (and thoroughly investigated by D. Prawitz in
the mid 1960s).

The major advantage of this system is that it captures quite nicely the “natural” rules of
reasoning that one uses when proving mathematical statements . This does not mean that it
is easy to find proofs in such a system or that this system is indeed very intuitive. We begin
with the inference rules for implication and first consider the following question.

How do we proceed to prove an implication, A ⇒ B? The proof rule corresponds to
Proof Template 1.2 (Implication–Intro) and the reader may want to first review the examples
discussed in Section 1.3. The rule, called⇒-intro, is: assume that A has already been proven
and then prove B, making as many uses of A as needed .

An important point is that a proof should not depend on any “open” assumptions
(premises), and to address this problem we introduce a mechanism of “discharging” or “clos-
ing” premises, as we discussed in Section 1.3.

What this means is that certain rules of our logic are required to discard (the usual
terminology is “discharge”) certain occurrences of premises so that the resulting proof does
not depend on these premises.

Technically, there are various ways of implementing the discharging mechanism but they
all involve some form of tagging (with a “new” variable). For example, the rule formalizing
the process that we have just described to prove an implication, A ⇒ B, known as ⇒-
introduction, uses a tagging mechanism described precisely in Definition 2.1.

Now the rule that we have just described is not sufficient to prove certain propositions
that should be considered provable under the “standard” intuitive meaning of implication.
For example, after a moment of thought, I think most people would want the proposition
P ⇒ ((P ⇒ Q) ⇒ Q) to be provable. If we follow the procedure that we have advocated,
we assume both P and P ⇒ Q and we try to prove Q. For this, we need a new rule, namely:

If P and P ⇒ Q are both provable, then Q is provable.
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The above rule is known as the⇒-elimination rule (or modus ponens) and it is formalized
in tree-form in Definition 2.1. It corresponds to Proof Template 1.3.

We now make the above rules precise and for this, we represent proofs and deductions
as certain kinds of trees and view the logical rules (inference rules) as tree-building rules .
In the definition below, the expression Γ, P stands for the multiset obtained by adding one
more occurrence of P to Γ. More precisely, the expression Γ, P is an abbreviation for the

multiset Γ,

k︷ ︸︸ ︷
P, . . . , P , with k ≥ 1. So P may already belong to Γ. Similarly, if Γ and ∆ are

two multisets of propositions, then Γ,∆ denotes the union of Γ and ∆ as a multiset , which
means that if P occurs k1 times in Γ and P occurs k2 times in ∆, then P occurs k1 + k2

times in Γ,∆ (k1, k2 ∈ N).
A picture such as

∆

D
P

represents a deduction tree D whose root is labeled with P and whose leaves are labeled with
propositions from the multiset ∆ (a set possibly with multiple occurrences of its members).
Some of the propositions in ∆ may be tagged by variables. The list of untagged propositions
in ∆ is the list of premises of the deduction tree. We often use an abbreviated version of the
above notation where we omit the deduction D, and simply write

∆

P .

For example, in the deduction tree below (where all rules that implication eliminations
rules),

P ⇒ (R⇒ S) P

R⇒ S

Q⇒ R

P ⇒ Q P

Q

R

S

no leaf is tagged, so the premises form the multiset

∆ = {P ⇒ (R⇒ S), P,Q⇒ R,P ⇒ Q,P},

with two occurrences of P , and the conclusion is S.
As we saw in our earlier example, certain inferences rules have the effect that some of

the original premises may be discarded; the traditional jargon is that some premises may
be discharged (or closed). This is the case for the inference rule whose conclusion is an
implication. When one or several occurrences of some proposition P are discharged by an
inference rule, these occurrences (which label some leaves) are tagged with some new variable
not already appearing in the deduction tree. If x is a new tag, the tagged occurrences of P



2.3. PROOF RULES, DEDUCTIONS AND PROOF TREES FOR IMPLICATION 69

are denoted P x and we indicate the fact that premises were discharged by that inference by
writing x immediately to the right of the inference bar. For example,

P x, Q

Q
x

P ⇒ Q

is a deduction tree in which the premise P is discharged by the inference rule. This deduction
tree only has Q as a premise, inasmuch as P is discharged.

What is the meaning of the horizontal bars? Actually, nothing really. Here, we are victims
of an old habit in logic. Observe that there is always a single proposition immediately under
a bar but there may be several propositions immediately above a bar. The intended meaning
of the bar is that the proposition below it is obtained as the result of applying an inference
rule to the propositions above it. For example, in

Q⇒ R Q

R

the proposition R is the result of applying the ⇒-elimination rule (see Definition 2.1 below)
to the two premises Q ⇒ R and Q. Thus, the use of the bar is just a convention used by
logicians going back at least to the 1900s. Removing the bar everywhere would not change
anything in our trees, except perhaps reduce their readability. Most logic books draw proof
trees using bars to indicate inferences. Therefore, we also use bars in depicting our proof
trees.

Because propositions do not arise from the vacuum but instead are built up from a set
of atomic propositions using logical connectives (here, ⇒), we assume the existence of an
“official set of atomic propositions,” or set of propositional symbols , PS = {P1,P2,P3, . . .}.
So for example, P1 ⇒ P2 and P1 ⇒ (P2 ⇒ P1) are propositions. Typically, we use upper-
case letters such as P,Q,R, S,A,B,C, and so on, to denote arbitrary propositions formed
using atoms from PS.

Definition 2.1. The axioms, inference rules, and deduction trees for implicational logic are
defined as follows.

Axioms.
(i) Every one-node tree labeled with a single proposition P is a deduction tree for P with

set of premises {P}.
(ii) The tree

Γ, P

P

is a deduction tree for the proposition P , with multiset set of premises Γ, P .

The above is a concise way of denoting a two-node tree with its leaf labeled with the
multiset consisting of the proposition P and the propositions in Γ, each of these propositions



70 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

(including P ) having possibly multiple occurrences but at least one, and whose root is labeled
with P . A more explicit form is

k1︷ ︸︸ ︷
P1, · · · , P1, · · · ,

ki︷ ︸︸ ︷
Pi, · · · , Pi, · · · ,

kn︷ ︸︸ ︷
Pn, · · · , Pn

,
Pi

where k1, . . . , kn ≥ 1 and n ≥ 1. This axiom says that we always have a deduction of Pi
from any set of premises including Pi. They correspond to the Proof Template 1.1 (Trivial
Deduction).

The ⇒-introduction rule.
If D is a deduction tree for Q from the premises in Γ and one or more occurrences of the

proposition P , then

Γ, P x

D
Q

x

P ⇒ Q

is a deduction tree for P ⇒ Q from Γ.
This proof rule is a formalization of Proof Template 1.2 (Implication–Intro). This rule is

described more accurately as

Γ,

k︷ ︸︸ ︷
P x, . . . , P x

D
Q

x

P ⇒ Q

Note that this inference rule has the additional effect of discharging a nonempty multiset of
k ≥ 1 occurrences of the premise P , which label distinct leaves of the deduction D. These
occurrences are tagged with a new variable x, and the tag x is also placed immediately to
the right of the inference bar. This is a reminder that the deduction tree whose conclusion is
P ⇒ Q no longer has the k occurrences of P labeled with x as premises . The new multiset
of premises of this deduction tree for P ⇒ Q is Γ, which may contain occurrences of P .

The ⇒-elimination rule.
If D1 is a deduction tree for P ⇒ Q from the premises Γ and D2 is a deduction for P

from the premises ∆, then

Γ

D1

P ⇒ Q

∆

D2

P

Q
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is a deduction tree for Q from the premises in the multiset Γ,∆. This rule is also known as
modus ponens . This proof rule is a formalization of Proof Template 1.3 (Implication–Elim).

In the above axioms and rules, Γ or ∆ may be empty; P,Q denote arbitrary propositions
built up from the atoms in PS; and D,D1, and D2 denote deductions, possibly a one-node
tree.

Definition 2.2. A deduction tree is either a one-node tree labeled with a single proposition
or a tree constructed using the above axioms and rules. A proof tree is a deduction tree
such that all its premises are discharged . The above proof system is denoted N⇒m (here, the
subscript m stands for minimal , referring to the fact that this a bare-bones logical system).

Observe that a proof tree has at least two nodes. A proof tree Π for a proposition P may
be denoted

Π

P

with an empty set of premises (we don’t display ∅ on top of Π). We tend to denote deductions
by the letter D and proof trees by the letter Π, possibly subscripted.

We emphasize that the ⇒-introduction rule says that in order to prove an implication
P ⇒ Q from a set of premises Γ, we assume that P has already been proven, add P to the
premises in Γ, and then prove Q from Γ and P . Once this is done, the premise P is deleted .

This rule formalizes the kind of reasoning that we all perform whenever we prove an
implication statement. In that sense, it is a natural and familiar rule, except that we per-
haps never stopped to think about what we are really doing. However, the business about
discharging the premise P when we are through with our argument is a bit puzzling. Most
people probably never carry out this “discharge step” consciously, but such a process does
take place implicitly.

Remarks:

1. Only the leaves of a deduction tree may be discharged. Interior nodes, including the
root, are never discharged.

2. Once a set of leaves labeled with some premise P marked with the label x has been
discharged, none of these leaves can be discharged again. So each label (say x) can
only be used once. This corresponds to the fact that some leaves of our deduction trees
get “killed off” (discharged).

3. A proof is a deduction tree whose leaves are all discharged (Γ is empty). This corre-
sponds to the philosophy that if a proposition has been proven, then the validity of
the proof should not depend on any assumptions that are still active. We may think
of a deduction tree as an unfinished proof tree.

4. When constructing a proof tree, we have to be careful not to include (accidentally)
extra premises that end up not being discharged. If this happens, we probably made a
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mistake and the redundant premises should be deleted. On the other hand, if we have
a proof tree, we can always add extra premises to the leaves and create a new proof
tree from the previous one by discharging all the new premises.

5. Beware, when we deduce that an implication P ⇒ Q is provable, we do not prove
that P and Q are provable; we only prove that if P is provable, then Q is provable.

The⇒-elimination rule formalizes the use of auxiliary lemmas , a mechanism that we use
all the time in making mathematical proofs. Think of P ⇒ Q as a lemma that has already
been established and belongs to some database of (useful) lemmas. This lemma says if I can
prove P , then I can prove Q. Now, suppose that we manage to give a proof of P . It follows
from the ⇒-elimination rule that Q is also provable.

Observe that in an introduction rule, the conclusion contains the logical connective as-
sociated with the rule, in this case, ⇒; this justifies the terminology “introduction”. On the
other hand, in an elimination rule, the logical connective associated with the rule is gone
(although it may still appear in Q). The other inference rules for ∧, ∨, and the like, follow
this pattern of introduction and elimination.

2.4 Examples of Proof Trees

(a) Here is a proof tree for P ⇒ P .

P x

P
x

P ⇒ P

So, P ⇒ P is provable; this is the least we should expect from our proof system! Note
that

P x

x

P ⇒ P

is also a valid proof tree for P ⇒ P , because the one-node tree labeled with P is a deduction
tree.

(b) Here is a proof tree for (P ⇒ Q)⇒ ((Q⇒ R)⇒ (P ⇒ R)).

(Q⇒ R)y

(P ⇒ Q)z P x

Q

R
x

P ⇒ R
y

(Q⇒ R)⇒ (P ⇒ R)
z

(P ⇒ Q)⇒ ((Q⇒ R)⇒ (P ⇒ R))
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In order to better appreciate the difference between a deduction tree and a proof tree,
consider the following two examples.

Example 2.1. The tree below is a deduction tree because two of its leaves are labeled with
the premises P ⇒ Q and Q⇒ R, that have not been discharged yet. So this tree represents
a deduction of P ⇒ R from the set of premises Γ = {P ⇒ Q,Q ⇒ R} but it is not a
proof tree because Γ 6= ∅. However, observe that the original premise P , labeled x, has been
discharged.

Q⇒ R

P ⇒ Q P x

Q

R
x

P ⇒ R

Example 2.2. The next tree was obtained from the previous one by applying the ⇒-
introduction rule which triggered the discharge of the premise Q ⇒ R labeled y, which is
no longer active. However, the premise P ⇒ Q is still active (has not been discharged yet),
so the tree below is a deduction tree of (Q ⇒ R) ⇒ (P ⇒ R) from the set of premises
Γ = {P ⇒ Q}. It is not yet a proof tree inasmuch as Γ 6= ∅.

(Q⇒ R)y
P ⇒ Q P x

Q

R
x

P ⇒ R
y

(Q⇒ R)⇒ (P ⇒ R)

Finally, one more application of the⇒-introduction rule discharged the premise P ⇒ Q,
at last, yielding the proof tree in (b).

(c) This example illustrates the fact that different proof trees may arise from the same set
of premises {P,Q}. For example, here are proof trees for Q⇒ (P ⇒ P ) and P ⇒ (Q⇒ P ).

P x, Qy

P
x

P ⇒ P
y

Q⇒ (P ⇒ P )

and

P x, Qy

P
y

Q⇒ P
x

P ⇒ (Q⇒ P )
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Similarly, there are six proof trees with a conclusion of the form

A⇒ (B ⇒ (C ⇒ P ))

begining with the deduction

P x, Qy, Rz

P

where A,B,C correspond to the six permutations of the premises P,Q,R.
Note that we would not have been able to construct the above proofs if Axiom (ii),

Γ, P
,

P

were not available. We need a mechanism to “stuff” more premises into the leaves of our
deduction trees in order to be able to discharge them later on. We may also view Axiom (ii)
as a weakening rule whose purpose is to weaken a set of assumptions. Even though we are
assuming all of the propositions in Γ and P , we only use the assumption P . The necessity
of allowing multisets of premises is illustrated by the following proof of the proposition
P ⇒ (P ⇒ (Q⇒ (Q⇒ (P ⇒ P )))).

P u, P v, P y, Qw, Qx

P
y

P ⇒ P
x

Q⇒ (P ⇒ P )
w

Q⇒ (Q⇒ (P ⇒ P ))
v

P ⇒ (Q⇒ (Q⇒ (P ⇒ P )))
u

P ⇒ (P ⇒ (Q⇒ (Q⇒ (P ⇒ P ))))

(d) In the next example which shows a proof of(
A⇒ (B ⇒ C)

)
⇒
(
(A⇒ B)⇒ (A⇒ C)

)
,

the two occurrences of A labeled x are discharged simultaneously .

(A⇒ (B ⇒ C))z Ax

B ⇒ C

(A⇒ B)y Ax

B

C
x

A⇒ C
y

(A⇒ B)⇒ (A⇒ C)
z(

A⇒ (B ⇒ C)
)
⇒
(
(A⇒ B)⇒ (A⇒ C)

)
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(e) In contrast to Example (d), in the proof tree below with conclusion

A⇒
((
A⇒ (B ⇒ C)

)
⇒
(
(A⇒ B)⇒ (A⇒ C)

))
,

the two occurrences of A are discharged separately . To this effect, they are labeled differently.

(A⇒ (B ⇒ C))z Ax

B ⇒ C

(A⇒ B)y At

B

C
x

A⇒ C
y

(A⇒ B)⇒ (A⇒ C)
z(

A⇒ (B ⇒ C)
)
⇒
(
(A⇒ B)⇒ (A⇒ C)

)
t

A⇒
((
A⇒ (B ⇒ C)

)
⇒
(
(A⇒ B)⇒ (A⇒ C)

))
How do we find these proof trees? Well, we could try to enumerate all possible proof

trees systematically and see if a proof of the desired conclusion turns up. Obviously, this is
a very inefficient procedure and moreover, how do we know that all possible proof trees will
be generated and how do we know that such a method will terminate after a finite number
of steps (what if the proposition proposed as a conclusion of a proof is not provable)?

Finding an algorithm to decide whether a proposition is provable is a very difficult prob-
lem and for sets of propositions with enough “expressive power” (such as propositions in-
volving first-order quantifiers), it can be shown that there is no procedure that will give an
answer in all cases and terminate in a finite number of steps for all possible input propo-
sitions. We come back to this point in Section 2.13. However, for the system N⇒m , such a
procedure exists but it is not easy to prove that it terminates in all cases and in fact, it can
take a very long time.

What we did, and we strongly advise our readers to try it when they attempt to construct
proof trees, is to construct the proof tree from the bottom up, starting from the proposition
labeling the root, rather than top-down, that is, starting from the leaves. During this
process, whenever we are trying to prove a proposition P ⇒ Q, we use the ⇒-introduction
rule backward, that is, we add P to the set of active premises and we try to prove Q from
this new set of premises. At some point, we get stuck with an atomic proposition, say R.
Call the resulting deduction Dbu; note that R is the only active (undischarged) premise of
Dbu and the node labeled R immediately below it plays a special role; we call it the special
node of Dbu.

Here is an illustration of this method for Example (d). At the end of the bottom-up
process, we get the deduction tree Dbu.
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(A⇒ (B ⇒ C))z (A⇒ B)y Ax C

C
x

A⇒ C
y

(A⇒ B)⇒ (A⇒ C)
z(

A⇒ (B ⇒ C)
)
⇒
(
(A⇒ B)⇒ (A⇒ C)

)
In the above deduction tree the proposition R = C is the only active (undischarged)

premise. To turn the above deduction tree into a proof tree we need to construct a deduction
of C from the premises other than C. This is a more creative step which can be quite difficult.
The trick is now to switch strategies and start building a proof tree top-down, starting from
the leaves, using the ⇒-elimination rule. If everything works out well, we get a deduction
with root R, say Dtd, and then we glue this deduction Dtd to the deduction Dbu in such a
way that the root of Dtd is identified with the special node of Dbu labeled R.

We also have to make sure that all the discharged premises are linked to the correct
instance of the⇒-introduction rule that caused them to be discharged. One of the difficulties
is that during the bottom-up process, we don’t know how many copies of a premise need to
be discharged in a single step. We only find out how many copies of a premise need to be
discharged during the top-down process.

Going back to our example, at the end of the top-down process, we get the deduction
tree Dtd.

A⇒ (B ⇒ C) A

B ⇒ C

A⇒ B A

B

C

Finally, after gluing Dtd on top of Dbu (which has the correct number of premises to be
discharged), we get our proof tree:

(A⇒ (B ⇒ C))z Ax

B ⇒ C

(A⇒ B)y Ax

B

C
x

A⇒ C
y

(A⇒ B)⇒ (A⇒ C)
z(

A⇒ (B ⇒ C)
)
⇒
(
(A⇒ B)⇒ (A⇒ C)

)
(f) The following example shows that proofs may be redundant. The proposition P ⇒

((P ⇒ Q)⇒ Q) has the following proof.
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(P ⇒ Q)x P y

Q
x

(P ⇒ Q)⇒ Q
y

P ⇒ ((P ⇒ Q)⇒ Q)

Now say P is the proposition R⇒ R, which has the proof

Rz

R
z

R⇒ R

Using ⇒-elimination, we obtain a proof of ((R ⇒ R) ⇒ Q) ⇒ Q from the proof of
(R⇒ R)⇒ (((R⇒ R)⇒ Q)⇒ Q) and the proof of R⇒ R shown above.

((R⇒ R)⇒ Q)x (R⇒ R)y

Q
x

((R⇒ R)⇒ Q)⇒ Q
y

(R⇒ R)⇒ (((R⇒ R)⇒ Q)⇒ Q)

Rz

R
z

R⇒ R

((R⇒ R)⇒ Q)⇒ Q

Note that the above proof is redundant . The deduction tree shown in blue has the
proposition ((R ⇒ R) ⇒ Q) ⇒ Q as conclusion but the proposition R ⇒ R is introduced
in the step labeled y and immediately eliminated in the next step. A more direct proof can
be obtained as follows. Undo the last ⇒-introduction (involving the the proposition R⇒ R
and the tag y) in the proof of (R⇒ R)⇒ (((R⇒ R)⇒ Q)⇒ Q) obtaining the deduction
tree shown in blue above

((R⇒ R)⇒ Q)x R⇒ R

Q
x

((R⇒ R)⇒ Q)⇒ Q

and then glue the proof of R⇒ R on top of the leaf R⇒ R, obtaining the desired proof of
((R⇒ R)⇒ Q)⇒ Q.

((R⇒ R)⇒ Q)x

Rz

R
z

R⇒ R

Q
x

((R⇒ R)⇒ Q)⇒ Q
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In general, one has to exercise care with the label variables. It may be necessary to re-
name some of these variables to avoid clashes. What we have above is an example of proof
substitution also called proof normalization. We come back to this topic in Section 2.13.

2.5 A Gentzen-Style System for Natural Deduction

The process of discharging premises when constructing a deduction is admittedly a bit con-
fusing. Part of the problem is that a deduction tree really represents the last of a sequence
of stages (corresponding to the application of inference rules) during which the current set
of “active” premises, that is, those premises that have not yet been discharged (closed, can-
celled) evolves (in fact, shrinks). Some mechanism is needed to keep track of which premises
are no longer active and this is what this business of labeling premises with variables achieves.
Historically, this is the first mechanism that was invented. However, Gentzen (in the 1930s)
came up with an alternative solution that is mathematically easier to handle. Moreover, it
turns out that this notation is also better suited to computer implementations, if one wishes
to implement an automated theorem prover.

The point is to keep a record of all undischarged assumptions at every stage of the
deduction. Thus, a deduction is now a tree whose nodes are labeled with pairs of the form
〈Γ, P 〉, where P is a proposition, and Γ is a record of all undischarged assumptions at the
stage of the deduction associated with this node.

Instead of using the notation 〈Γ, P 〉, which is a bit cumbersome, Gentzen used expressions
of the form Γ→ P , called sequents

It should be noted that the symbol → is used as a separator between the left-hand side
Γ, called the antecedent , and the right-hand side P , called the conclusion (or succedent) and
any other symbol could be used. Of course → is reminiscent of implication but we should
not identify → and ⇒. Still, it turns out that a sequent Γ→ P is provable if and only if
(P1 ∧ · · · ∧ Pm)⇒ P is provable, where Γ = (P1, . . . , Pm).

During the construction of a deduction tree, it is necessary to discharge packets of as-
sumptions consisting of one or more occurrences of the same proposition. To this effect, it is
convenient to tag packets of assumptions with labels, in order to discharge the propositions
in these packets in a single step. We use variables for the labels, and a packet labeled with
x consisting of occurrences of the proposition P is written as x : P .

Definition 2.3. A sequent is an expression Γ→ P , where Γ is any finite set of the form
{x1 : P1, . . . , xm : Pm} called a context , where the xi are pairwise distinct (but the Pi need
not be distinct). Given Γ = {x1 : P1, . . . , xm : Pm}, the notation Γ, x : P is only well defined
when x 6= xi for all i, 1 ≤ i ≤ m, in which case it denotes the set {x1 : P1, . . . , xm : Pm, x : P}.
Given two contexts Γ and ∆, the context Γ ∪∆ is the union of the sets of pairs (xi : Pi) in
Γ and the set of pairs (yk : Qj) in ∆, provided that if x : P ∈ Γ and x : Q ∈ ∆ for the same
variable x, then P = Q. In this case we say that Γ and ∆ are consistent . So if x : P occurs
both in Γ and ∆, then x : P also occurs in Γ ∪∆ (once).
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One can think of a context Γ = {x1 : P1, . . . , xm : Pm} as a set of type declarations for the
variables x1, . . . , xm (xi has type Pi). It should be noted that in the Prawitz-style formal-
ism for proof trees, premises are treated as multisets , but in the Gentzen-style formalism,
premises are sets of tagged pairs.

Using sequents, the axioms and rules of Definition 2.4 are now expressed as follows.

Definition 2.4. The axioms and inference rules of the system NG⇒m (implicational logic,
Gentzen-sequent style (the G in NG stands for Gentzen)) are listed below.

Γ, x : P → P (Axioms)

Γ, x : P → Q

Γ→ P ⇒ Q
(⇒-intro)

Γ→ P ⇒ Q ∆→ P

Γ ∪∆→ Q
(⇒-elim)

In an axiom or the rule (⇒-intro), it is assumed that x : P /∈ Γ. In an application of the
rule (⇒-intro), in the lower sequent, the proposition P labeled x is deleted from the list of
premises occurring on the left-hand side of the arrow in the upper sequent. We say that the
proposition P that appears as a hypothesis of the deduction is discharged (or closed). In
the rule (⇒-elim), it is assumed that Γ and ∆ are consistent contexts. A deduction tree is
either a one-node tree labeled with an axiom or a tree constructed using the above inference
rules. A proof tree is a deduction tree whose conclusion is a sequent with an empty set of
premises (a sequent of the form → P ).

It is important to note that the ability to label packets consisting of occurrences of the
same proposition with different labels is essential in order to be able to have control over
which groups of packets of assumptions are discharged simultaneously. Equivalently, we
could avoid tagging packets of assumptions with variables if we assume that in a sequent
Γ→ C, the expression Γ is a multiset of propositions.

Let us display the proof tree for the second proof tree in Example (c) in our new Gentzen-
sequent system. The orginal proof tree is

P x, Qy

P
y

Q⇒ P
x

P ⇒ (Q⇒ P )

and the corresponding proof tree in our new system is

x : P, y : Q→ P

x : P → Q⇒ P

→ P ⇒ (Q⇒ P )
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Below we show a proof of the first proposition of Example (d) given above in our new
system. Since the tree is too wide to fit in the page we set Q = B ⇒ C.

z : A⇒ Q→ A⇒ Q x : A→ A

z : A⇒ (B ⇒ C), x : A→ B ⇒ C

y : A⇒ B → A⇒ B x : A→ A

y : A⇒ B, x : A→ B

z : A⇒ (B ⇒ C), y : A⇒ B, x : A→ C

z : A⇒ (B ⇒ C), y : A⇒ B → A⇒ C

z : A⇒ (B ⇒ C)→ (A⇒ B)⇒ (A⇒ C)

→
(
A⇒ (B ⇒ C)

)
⇒
(
(A⇒ B)⇒ (A⇒ C)

)
It is not hard to design an algorithm that converts a deduction tree (or a proof tree) in

the system N⇒m into a deduction tree (or a proof tree) in the system NG⇒m , and vice-versa.
In both cases the underlying tree is exactly the same and there is a bijection between the
sets of undischarged premises in both representations.

After experimenting with the construction of proofs, one gets the feeling that every proof
can be simplified to a “unique minimal” proof, if we define “minimal” in a suitable sense,
namely, that a minimal proof never contains an elimination rule immediately following an
introduction rule (for more on this, see Section 2.13). Then it turns out that to define the
notion of uniqueness of proofs, the second version is preferable. However, it is important to
realize that in general, a proposition may possess distinct minimal proofs.

In principle, it does not matter which of the two systems N⇒m or NG⇒m we use to con-
struct deductions; it is basically a matter of taste. The Prawitz-style system N⇒m produces
proofs that are closer to the informal proofs that humans construct. One the other hand,
the Gentzen-style system NG⇒m is better suited for implementing theorem provers. My ex-
perience is that I make fewer mistakes with the Gentzen-sequent style system NG⇒m .

We now describe the inference rules dealing with the connectives ∧, ∨ and ⊥.

2.6 Adding ∧, ∨, ⊥; The Proof Systems N⇒,∧,∨,⊥c and

NG⇒,∧,∨,⊥c

In this section we describe the proof rules for all the connectives of propositional logic both in
Prawitz-style and in Gentzen-style. As we said earlier, the rules of the Prawitz-style system
are closer to the rules that human use informally, and the rules of the Gentzen-style system
are more convenient for computer implementations of theorem provers.

The rules involving ⊥ are not as intuitively justifed as the other rules. In fact, in the early
1900s, some mathematicians especially L. Brouwer (1881–1966), questioned the validity of
the proof-by-contradiction rule, among other principles. This led to the idea that it may
be useful to consider proof systems of different strength. The weakest (and considered the
safest) system is called minimal logic. This system rules out the ⊥-elimination rule (the
ability to deduce any proposition once a contradiction has been established) and the proof–
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by–contradiction rule. Intuitionistic logic rules out the proof–by–contradiction rule, and
classical logic allows all the rules. Most people use classical logic, but intuitionistic logic is
an interesting alternative because it is more constructive. We will elaborate on this point
later. Minimal logic is just too weak.

Recall that ¬P is an abbreviation for P ⇒⊥.

Definition 2.5. The axioms, inference rules, and deduction trees for (propositional) classical
logic are defined as follows. In the axioms and rules below, Γ,∆, or Λ may be empty; P,Q,R
denote arbitrary propositions built up from the atoms in PS; D, D1, D2 denote deductions,
possibly a one-node tree; and all the premises labeled x or y are discharged.

Axioms:

(i) Every one-node tree labeled with a single proposition P is a deduction tree for P with
set of premises {P}.

(ii) The tree

Γ, P

P

is a deduction tree for P with multiset of premises Γ, P .

The ⇒-introduction rule:

If D is a deduction of Q from the premises in Γ and one or more occurrences of the
proposition P , then

Γ, P x

D
Q

x

P ⇒ Q

is a deduction tree for P ⇒ Q from Γ. As in Definition 2.1, recall that Γ, P is an abbreviation

for the multiset Γ,

k︷ ︸︸ ︷
P, . . . , P , with k ≥ 1. This inference rule has the additional effect of

discharging a nonempty multiset of occurrences of the premise P (which label distinct leaves
of the deduction D). These occurrences are tagged with a new variable x, and the tag x
is also placed immediately to the right of the inference bar. This proof rule corresponds to
Proof Template 1.2 (Implication–Intro).

The ⇒-elimination rule (or modus ponens):

If D1 is a deduction tree for P ⇒ Q from the premises Γ, and D2 is a deduction for P
from the premises ∆, then

Γ

D1

P ⇒ Q

∆

D2

P

Q
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is a deduction tree for Q from the premises in the multiset Γ,∆. This proof rule corresponds
to Proof Template 1.3 (Implication–Elim).

The ∧-introduction rule:
If D1 is a deduction tree for P from the premises Γ, and D2 is a deduction for Q from

the premises ∆, then

Γ

D1

P

∆

D2

Q

P ∧Q
is a deduction tree for P ∧ Q from the premises in the multiset Γ,∆. This proof rule
corresponds to Proof Template 1.8 (And–Intro).

The ∧-elimination rule:
If D is a deduction tree for P ∧Q from the premises Γ, then

Γ

D
P ∧Q
P

Γ

D
P ∧Q
Q

are deduction trees for P and Q from the premises Γ. This proof rule corresponds to Proof
Template 1.9 (And–elim).

The ∨-introduction rule:
If D is a deduction tree for P or for Q from the premises Γ, then

Γ

D
P

P ∨Q

Γ

D
Q

P ∨Q
are deduction trees for P ∨Q from the premises in Γ. This proof rule corresponds to Proof
Template 1.10 (Or–Intro).

The ∨-elimination rule:
If D1 is a deduction tree for P ∨ Q from the premises Γ, D2 is a deduction for R from

the premises in the multiset ∆ and one or more occurrences of P , and D3 is a deduction for
R from the premises in the multiset Λ and one or more occurrences of Q, then

Γ

D1

P ∨Q

∆, P x

D2

R

Λ, Qy

D3

R
x,y

R

is a deduction tree for R from the premises in the multiset Γ,∆,Λ. A nonempty set of
premises P in D2 labeled x and a nonempty set of premises Q in D3 labeled y are discharged.
This proof rule corresponds to Proof Template 1.11 (Or–Elim).
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The ⊥-elimination rule:
If D is a deduction tree for ⊥ from the premises Γ, then

Γ

D
⊥
P

is a deduction tree for P from the premises Γ, for any proposition P . This proof rule
corresponds to Proof Template 1.6 (Perp–Elim).

The proof–by–contradiction rule (also known as reductio ad absurdum rule, for
short RAA):

If D is a deduction tree for ⊥ from the premises in the multiset Γ and one or more
occurrences of ¬P , then

Γ,¬P x

D
⊥

x

P

is a deduction tree for P from the premises Γ. A nonempty set of premises ¬P labeled x
are discharged. This proof rule corresponds to Proof Template 1.7 (Proof–By–Contradiction
Principle).

Because ¬P is an abbreviation for P ⇒⊥, the ¬-introduction rule is a special case of the
⇒-introduction rule (with Q =⊥). However, it is worth stating it explicitly.

The ¬-introduction rule:
If D is a deduction tree for ⊥ from the premises in the multiset Γ and one or more

occurrences of P , then

Γ, P x

D
⊥

x

¬P
is a deduction tree for ¬P from the premises Γ. A nonempty set of premises P labeled x are
discharged. This proof rule corresponds to Proof Template 1.4 (Negation–Intro).

The above rule can be viewed as a proof–by–contradiction principle applied to negated
propositions.

Similarly, the ¬-elimination rule is a special case of ⇒-elimination applied to ¬P (=
P ⇒⊥) and P .

The ¬-elimination rule:
If D1 is a deduction tree for ¬P from the premises Γ, and D2 is a deduction for P from

the premises ∆, then
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Γ

D1

¬P

∆

D2

P

⊥
is a deduction tree for ⊥ from the premises in the multiset Γ,∆. This proof rule corresponds
to Proof Template 1.5 (Negation–Elim).

A deduction tree is either a one-node tree labeled with a single proposition or a tree
constructed using the above axioms and inference rules. A proof tree is a deduction tree
such that all its premises are discharged. The above proof system is denoted N⇒,∧,∨,⊥c (here,
the subscript c stands for classical).

Definition 2.6. The system obtained by removing the proof–by–contradiction (RAA) rule
is called (propositional) intuitionistic logic and is denoted N⇒,∧,∨,⊥i . The system obtained
by deleting both the ⊥-elimination rule and the proof–by–contradiction rule is called (propo-
sitional) minimal logic and is denoted N⇒,∧,∨,⊥m

The version of N⇒,∧,∨,⊥c in terms of Gentzen sequents is the following.

Definition 2.7. The axioms and inference rules of the system NG⇒,∧,∨,⊥c (of propositional
classical logic, Gentzen-sequent style) are listed below.

Γ, x : P → P (Axioms)

Γ, x : P → Q

Γ→ P ⇒ Q
(⇒-intro)

Γ→ P ⇒ Q ∆→ P

Γ ∪∆→ Q
(⇒-elim)

Γ→ P ∆→ Q

Γ ∪∆→ P ∧Q (∧-intro)

Γ→ P ∧Q
Γ→ P

(∧-elim)
Γ→ P ∧Q

Γ→ Q
(∧-elim)

Γ→ P

Γ→ P ∨Q (∨-intro)
Γ→ Q

Γ→ P ∨Q (∨-intro)

Γ→ P ∨Q ∆, x : P → R Λ, y : Q→ R

Γ ∪∆ ∪ Λ→ R
(∨-elim)

Γ→⊥
Γ→ P

(⊥-elim)

Γ, x : ¬P →⊥
Γ→ P

(by-contra)
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Γ, x : P →⊥
Γ→ ¬P (¬-introduction)

Γ→ ¬P ∆→ P

Γ ∪∆→⊥ (¬-elimination)

The following restrictions apply. In the axioms and the rule (⇒-intro), x : P /∈ Γ; in the
rule (∨-elim), x : P /∈ ∆ and y : Q /∈ Λ; in the rule (by-contra), x : ¬P /∈ Γ; and in the rule
(¬-introduction), x : P /∈ Γ.

A deduction tree is either a one-node tree labeled with an axiom or a tree constructed
using the above inference rules. A proof tree is a deduction tree whose conclusion is a sequent
with an empty set of premises (a sequent of the form ∅ → P ).

The rule (⊥-elim) is trivial (does nothing) when P =⊥. Therefore, from now, on we
assume that P 6=⊥. Propositional minimal logic, denotedNG⇒,∧,∨,⊥m , is obtained by dropping
the (⊥-elim) and (by-contra) rules. Propositional intuitionistic logic, denoted NG⇒,∧,∨,⊥i , is
obtained by dropping the (by-contra) rule.

Definition 2.8. When we say that a proposition P is provable from Γ, we mean that we can
construct a proof tree whose conclusion is P and whose set of premises is Γ, in one of the
systems N⇒,∧,∨,⊥c or NG⇒,∧,∨,⊥c . Therefore, when we use the word “provable” unqualified, we
mean provable in classical logic. If P is provable from Γ in one of the intuitionistic systems
N⇒,∧,∨,⊥i or NG⇒,∧,∨,⊥i , then we say intuitionistically provable (and similarly, if P is provable
from Γ in one of the systems N⇒,∧,∨,⊥m or NG⇒,∧,∨,⊥m , then we say provable in minimal logic).

When P is provable from Γ, most people write Γ ` P , or ` Γ→ P , sometimes with the
name of the corresponding proof system tagged as a subscript on the sign ` if necessary to
avoid ambiguities. When Γ is empty, we just say P is provable (provable in intuitionistic
logic, and so on) and write ` P .

We treat logical equivalence as a derived connective; that is, we view P ≡ Q as an
abbreviation for (P ⇒ Q) ∧ (Q ⇒ P ). In view of the inference rules for ∧, we see that to
prove a logical equivalence P ≡ Q, we just have to prove both implications P ⇒ Q and
Q⇒ P .

Since the only difference between the proof systems N⇒,∧,∨,⊥m and NG⇒,∧,∨,⊥m is the way
in which they perform the bookkeeping of premises, it is intuitively clear that they are equiv-
alent. However, they produce different kinds of proof so to be rigorous we must check that
the proof systems N⇒,∧,∨,⊥m and NG⇒,∧,∨,⊥m , as well as the systems N⇒,∧,∨,⊥i and NG⇒,∧,∨,⊥i

and the systems N⇒,∧,∨,⊥c and NG⇒,∧,∨,⊥c , are equivalent. This is not hard to show but is a
bit tedious; see Problem 2.14.

In view of the ¬-elimination rule, we may be tempted to interpret the provability of a
negation ¬P as “P is not provable.” Indeed, if ¬P and P were both provable, then ⊥ would
be provable. So, P should not be provable if ¬P is. However, if P is not provable, then
¬P is not provable in general. There are plenty of propositions such that neither P nor
¬P is provable (for instance P , with P an atomic proposition). Thus, the fact that P is not
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provable is not equivalent to the provability of ¬P and we should not interpret ¬P as “P is
not provable.”

Let us now make some (much-needed) comments about the above inference rules. There
is no need to repeat our comments regarding the ⇒-rules.

(1) The ∨-introduction rule says that if P (or Q) has been proved from Γ, then P ∨Q is
also provable from Γ. Again, this makes sense intuitively as P ∨Q is “weaker” than P
and Q.

(2) The ∨-elimination rule formalizes the proof–by–cases method. It is a more subtle rule.
The idea is that if we know that in the case where P is already assumed to be provable
and similarly in the case where Q is already assumed to be provable that we can prove
R (also using premises in Γ), then if P ∨Q is also provable from Γ, as we have “covered
both cases,” it should be possible to prove R from Γ only (i.e., the premises P and
Q are discarded). For example, if remain1(n) is the proposition that asserts n is a
natural number of the form 4k + 1 and remain3(n) is the proposition that asserts n is
a natural number of the form 4k + 3 (for some natural number k), then we can prove
the implication

(remain1(n) ∨ remain3(n))⇒ odd(n),

where odd(n) asserts that n is odd, namely, that n is of the form 2h+ 1 for some h.

To prove the above implication we first assume the premise, remain1(n)∨ remain3(n).
Next we assume each of the alternatives in this proposition.

When we assume remain1(n), we have n = 4k + 1 = 2(2k) + 1 for some k, so n
is odd. When we assume remain3(n), we have n = 4k + 3 = 2(2k + 1) + 1, so
again, n is odd. By ∨-elimination, we conclude that odd(n) follows from the premise
remain1(n)∨remain3(n), and by⇒-introduction, we obtain a proof of our implication.

(3) The ⊥-elimination rule formalizes the principle that once a false statement has been
established, then anything should be provable.

(4) The ¬-introduction rule is a proof–by–contradiction principle applied to negated propo-
sitions. In order to prove ¬P , we assume P and we derive a contradiction (⊥). It is a
more restrictive principle than the classical proof–by–contradiction rule (RAA). Indeed,
if the proposition P to be proven is not a negation (P is not of the form ¬Q), then
the ¬-introduction rule cannot be applied. On the other hand, the classical proof-
by-contradiction rule can be applied but we have to assume ¬P as a premise. For
further comments on the difference between the ¬-introduction rule and the classical
proof–by–contradiction rule, see Section 2.8.

(5) The proof–by–contradiction rule formalizes the method of proof by contradiction. That
is, in order to prove that P can be deduced from some premises Γ, one may assume the
negation ¬P of P (intuitively, assume that P is false) and then derive a contradiction
from Γ and ¬P (i.e., derive falsity). Then P actually follows from Γ without using ¬P
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as a premise, that is, ¬P is discharged. For example, let us prove by contradiction
that if n2 is odd, then n itself must be odd, where n is a natural number.

According to the proof–by–contradiction rule, let us assume that n is not odd, which
means that n is even. (Actually, in this step we are using a property of the natural
numbers that is proven by induction but let’s not worry about that right now. A proof
is given in Section 2.19. ) But to say that n is even means that n = 2k for some k and
then n2 = 4k2 = 2(2k2), so n2 is even, contradicting the assumption that n2 is odd.
By the proof–by–contradiction rule, we conclude that n must be odd.

Remark: If the proposition P to be proven is of the form ¬Q, then if we use the proof-
by-contradiction rule, we have to assume the premise ¬¬Q and then derive a contradiction.
Because we are using classical logic, we often make implicit use of the fact that ¬¬Q is
equivalent to Q (see Proposition 2.2) and instead of assuming ¬¬Q as a premise, we assume
Q as a premise. But then, observe that we are really using ¬-introduction.

In summary, when trying to prove a proposition P by contradiction, proceed as follows.

(1) If P is a negated formula (P is of the form ¬Q), then use the ¬-introduction rule; that
is, assume Q as a premise and derive a contradiction.

(2) If P is not a negated formula, then use the the proof-by-contradiction rule; that is,
assume ¬P as a premise and derive a contradiction.

2.7 Constructivism Versus Classical Logic

Most people, I believe, will be comfortable with the rules of minimal logic and will agree that
they constitute a “reasonable” formalization of the rules of reasoning involving ⇒, ∧, and
∨. Indeed, these rules seem to express the intuitive meaning of the connectives⇒, ∧, and ∨.
However, some may question the two rules⊥-elimination and proof-by-contradiction. Indeed,
their meaning is not as clear and, certainly, the proof-by-contradiction rule introduces a form
of indirect reasoning that is somewhat worrisome.

The problem has to do with the meaning of disjunction and negation and more gener-
ally, with the notion of constructivity in mathematics. In fact, in the early 1900s, some
mathematicians, especially L. Brouwer (1881–1966), questioned the validity of the proof-by-
contradiction rule, among other principles.

Two specific cases illustrate the problem, namely, the propositions

P ∨ ¬P and ¬¬P ⇒ P.

As we show shortly, the above propositions are both provable in classical logic; see Proposi-
tion 2.1 and Proposition 2.2.

Now Brouwer and some mathematicians belonging to his school of thought (the so-called
“intuitionists” or “constructivists”) advocate that in order to prove a disjunction P ∨ Q
(from some premises Γ) one has to either exhibit a proof of P or a proof or Q (from Γ).
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Figure 2.2: L. E. J. Brouwer, 1881–1966

However, it can be shown that this fails for P ∨ ¬P . The fact that P ∨ ¬P is provable (in
classical logic) does not imply (in general) that either P is provable or that ¬P is provable.
That P ∨ ¬P is provable is sometimes called the principle (or law) of the excluded middle.
In intuitionistic logic, P ∨ ¬P is not provable (in general). Of course, if one gives up the
proof-by-contradiction rule, then fewer propositions become provable. On the other hand,
one may claim that the propositions that remain provable have more constructive proofs and
thus feel on safer grounds.

A similar controversy arises with the proposition ¬¬P ⇒ P (double-negation rule) If we
give up the proof-by-contradiction rule, then this formula is no longer provable (i.e., ¬¬P is
no longer equivalent to P ). Perhaps this relates to the fact that if one says “I don’t have no
money,” then this does not mean that this person has money. (Similarly with “I can’t get
no satisfaction.”) However, note that one can still prove P ⇒ ¬¬P in minimal logic (try
doing it). Even stranger, ¬¬¬P ⇒ ¬P is provable in intuitionistic (and minimal) logic, so
¬¬¬P and ¬P are equivalent intuitionistically.

Remark: Suppose we have a deduction

Γ,¬P
D
⊥

as in the proof-by-contradiction rule. Then by ¬-introduction, we get a deduction of ¬¬P
from Γ:

Γ,¬P x

D
⊥

x

¬¬P
So, if we knew that ¬¬P was equivalent to P (actually, if we knew that ¬¬P ⇒ P is

provable), then the proof-by-contradiction rule would be justified as a valid rule (it follows
from modus ponens). We can view the proof-by-contradiction rule as a sort of act of faith
that consists in saying that if we can derive an inconsistency (i.e., chaos) by assuming the
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falsity of a statement P , then P has to hold in the first place. It not so clear that such an
act of faith is justified and the intuitionists refuse to take it.

Constructivity in mathematics is a fascinating subject but it is a topic that is really
outside the scope in this book. What we hope is that our brief and very incomplete discussion
of constructivity issues made the reader aware that the rules of logic are not cast in stone
and that, in particular, there isn’t only one logic.

We feel safe in saying that most mathematicians work with classical logic and only a
few of them have reservations about using the proof-by-contradiction rule. Nevertheless,
intuitionistic logic has its advantages, especially when it comes to proving the correctess of
programs (a branch of computer science). We come back to this point several times in this
book.

In the rest of this section we make further useful remarks about (classical) logic and give
some explicit examples of proofs illustrating the inference rules of classical logic. We begin
by proving that P ∨ ¬P is provable in classical logic.

Proposition 2.1. The proposition P ∨ ¬P is provable in classical logic.

Proof. We prove that P ∨ (P ⇒⊥) is provable by using the proof-by-contradiction rule as
shown below.

((P ∨ (P ⇒⊥))⇒⊥)y

((P ∨ (P ⇒⊥))⇒⊥)y

P x

∨-intro
P ∨ (P ⇒⊥)

⊥
x (¬-intro)

P ⇒⊥ ∨-intro
P ∨ (P ⇒⊥)

⊥
y (by-contra)

P ∨ (P ⇒⊥)

Next, we consider the equivalence of P and ¬¬P .

Proposition 2.2. The proposition P ⇒ ¬¬P is provable in minimal logic. The proposition
¬¬P ⇒ P is provable in classical logic. Therefore, in classical logic, P is equivalent to ¬¬P .

Proof. We leave that P ⇒ ¬¬P is provable in minimal logic as an exercise. Below is a proof
of ¬¬P ⇒ P using the proof-by-contradiction rule.

((P ⇒⊥)⇒⊥)y (P ⇒⊥)x

⊥
x (by-contra)

P
y

((P ⇒⊥)⇒⊥)⇒ P
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The next proposition shows why ⊥ can be viewed as the “ultimate” contradiction.

Proposition 2.3. In intuitionistic logic, the propositions ⊥ and P ∧ ¬P are equivalent for
all P . Thus, ⊥ and P ∧ ¬P are also equivalent in classical propositional logic

Proof. We need to show that both ⊥⇒ (P ∧¬P ) and (P ∧¬P )⇒⊥ are provable in intuition-
istic logic. The provability of ⊥⇒ (P ∧ ¬P ) is an immediate consequence or ⊥-elimination,
with Γ = ∅. For (P ∧ ¬P )⇒⊥, we have the following proof.

(P ∧ ¬P )x

¬P
(P ∧ ¬P )x

P

⊥
x

(P ∧ ¬P )⇒⊥

So, in intuitionistic logic (and also in classical logic), ⊥ is equivalent to P ∧¬P for all P .
This means that ⊥ is the “ultimate” contradiction; it corresponds to total inconsistency. By
the way, we could have the bad luck that the system N⇒,∧,∨,⊥c (or N⇒,∧,∨,⊥i or even N⇒,∧,∨,⊥m )
is inconsistent , that is, that ⊥ is provable. Fortunately, this is not the case, although this
is hard to prove. (It is also the case that P ∨ ¬P and ¬¬P ⇒ P are not provable in
intuitionistic logic, but this too is hard to prove.)

2.8 Clearing Up Differences Among ¬-Introduction,

⊥-Elimination, and RAA

The differences between the rules, ¬-introduction, ⊥-elimination, and (RAA), the proof-
by-contradiction rule, are often unclear to the uninitiated reader and this tends to cause
confusion. In this section we try to clear up some common misconceptions about these rules.

Confusion 1. Why is RAA not a special case of ¬-introduction?

Γ, P x

D
⊥

x (¬-intro)
¬P

Γ,¬P x

D
⊥

x (RAA)
P

The only apparent difference between ¬-introduction (on the left) and RAA (on the right) is
that in RAA, the premise P is negated but the conclusion is not, whereas in ¬-introduction
the premise P is not negated but the conclusion is.

The important difference is that the conclusion of RAA is not negated. If we had applied
¬-introduction instead of RAA on the right, we would have obtained
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Γ,¬P x

D
⊥

x (¬-intro)
¬¬P

where the conclusion would have been ¬¬P as opposed to P . However, as we already said
earlier, ¬¬P ⇒ P is not provable intuitionistically. Consequently, RAA is not a special
case of ¬-introduction. On the other hand, one may view ¬-introduction as a “constructive”
version of RAA applying to negated propositions (propositions of the form ¬P ).

Confusion 2. Is there any difference between ⊥-elimination and RAA?

Γ

D
⊥

(⊥-elim)
P

Γ,¬P x

D
⊥

x (RAA)
P

The difference is that ⊥-elimination does not discharge any of its premises. In fact, RAA is
a stronger rule that implies ⊥-elimination as we now demonstate.

RAA implies ⊥-Elimination

Suppose we have a deduction

Γ

D
⊥

Then for any proposition P , we can add the premise ¬P to every leaf of the above deduction
tree and we get the deduction tree

Γ,¬P
D′
⊥

We can now apply RAA to get the following deduction tree of P from Γ (because ¬P is
discharged) which simulates ⊥-elimination.

Γ,¬P x

D′
⊥

x (RAA)
P

The above considerations also show that RAA is obtained from ¬-introduction by adding
the new rule of ¬¬-elimination (also called double-negation elimination):
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Γ

D
¬¬P

(¬¬-elimination)
P

Indeed we now have the following deduction which is equivalen to RAA.

Γ,¬P x

D
⊥

x (¬-intro)
¬¬P

(¬¬-elimination)
P

Some authors prefer adding the ¬¬-elimination rule to intuitionistic logic instead of RAA
in order to obtain classical logic. As we just demonstrated, the two additions are equivalent:
by adding either RAA or ¬¬-elimination to intuitionistic logic, we get classical logic.

There is another way to obtain RAA from the rules of intuitionistic logic, this time using
the propositions of the form P ∨ ¬P . We saw in Proposition 2.1 that all formulae of the
form P ∨ ¬P are provable in classical logic (using RAA).

Confusion 3. Are propositions of the form P ∨ ¬P provable in intuitionistic logic?

The answer is no, which may be disturbing to some readers. In fact, it is quite difficult
to prove that propositions of the form P ∨ ¬P are not provable in intuitionistic logic. One
method consists in using the fact that intuitionistic proofs can be normalized (see Section
2.13 for more on normalization of proofs). Another method uses Kripke models (see Section
2.12 and van Dalen [62]).

Part of the difficulty in understanding at some intuitive level why propositions of the
form P ∨¬P are not provable in intuitionistic logic is that the notion of truth based on the
truth values true and false is deeply rooted in all of us. In this frame of mind, it seems
ridiculous to question the provability of P ∨ ¬P , because its truth value is true whether P
is assigned the value true or false. Classical two-valued truth value semantics is too crude
for intuitionistic logic.

Another difficulty is that it is tempting to equate the notion of truth and the notion
of provability. Unfortunately, because classical truth values semantics is too crude for intu-
itionistic logic, there are propositions that are universally true (i.e., they evaluate to true for
all possible truth assignments of the atomic letters in them) and yet they are not provable
intuitionistically. The propositions P ∨ ¬P and ¬¬P ⇒ P are such examples.

One of the major motivations for advocating intuitionistic logic is that it yields proofs
that are more constructive than classical proofs. For example, in classical logic, when we
prove a disjunction P ∨ Q, we generally can’t conclude that either P or Q is provable, as
exemplified by P ∨ ¬P . A more interesting example involving a nonconstructive proof of
a disjunction is given in Section 2.9. But in intuitionistic logic, from a proof of P ∨ Q,
it is possible to extract either a proof of P or a proof of Q (and similarly for existential
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statements; see Section 2.16). This property is not easy to prove. It is a consequence of the
normal form for intuitionistic proofs (see Section 2.13).

In brief, besides being a fun intellectual game, intuitionistic logic is only an interesting
alternative to classical logic if we care about the constructive nature of our proofs. But then
we are forced to abandon the classical two-valued truth values semantics and adopt other
semantics such as Kripke semantics. If we do not care about the constructive nature of our
proofs and if we want to stick to two-valued truth values semantics, then we should stick
to classical logic. Most people do that, so don’t feel bad if you are not comfortable with
intuitionistic logic.

One way to gauge how intuitionisic logic differs from classical logic is to ask what kind
of propositions need to be added to intuitionisic logic in order to get classical logic. It turns
out that if all the propositions of the form P ∨ ¬P are considered to be axioms, then RAA
follows from some of the rules of intuitionistic logic.

RAA Holds in Intuitionistic Logic + All Axioms P ∨ ¬P .
The proof involves a subtle use of the ⊥-elimination and ∨-elimination rules which may be
a bit puzzling. Assume, as we do when we use the proof-by-contradiction rule (RAA) that
we have a deduction

Γ,¬P
D
⊥

Here is the deduction tree demonstrating that RAA is a derived rule.

P ∨ ¬P
P x

P

Γ,¬P y

D
⊥

(⊥-elim)
P

x,y (∨-elim)
P

At first glance, the rightmost subtree

Γ,¬P y

D
⊥

(⊥-elim)
P

appears to use RAA and our argument looks circular. But this is not so because the premise
¬P labeled y is not discharged in the step that yields P as conclusion; the step that yields P
is a ⊥-elimination step. The premise ¬P labeled y is actually discharged by the ∨-elimination
rule (and so is the premise P labeled x). So our argument establishing RAA is not circular
after all.

In conclusion, intuitionistic logic is obtained from classical logic by taking away the proof-
by-contradiction rule (RAA). In this more restrictive proof system, we obtain more construc-
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tive proofs. In that sense, the situation is better than in classical logic. The major drawback
is that we can’t think in terms of classical truth values semantics anymore.

Conversely, classical logic is obtained from intuitionistic logic in at least three ways:

1. Add the proof-by-contradiction rule (RAA).

2. Add the ¬¬-elimination rule.

3. Add all propositions of the form P ∨ ¬P as axioms.

2.9 De Morgan Laws and Other Rules of

Classical Logic

In Section 1.7 we discussed the de Morgan laws. Now that we also know about intuitionistic
logic we revisit these laws.

Proposition 2.4. The following equivalences (de Morgan laws) are provable in classical
logic.

¬(P ∧Q) ≡ ¬P ∨ ¬Q
¬(P ∨Q) ≡ ¬P ∧ ¬Q.

In fact, ¬(P ∨Q) ≡ ¬P ∧¬Q and (¬P ∨¬Q)⇒ ¬(P ∧Q) are provable in intuitionistic logic.
The proposition (P ∧¬Q)⇒ ¬(P ⇒ Q) is provable in intuitionistic logic and ¬(P ⇒ Q)⇒
(P ∧ ¬Q) is provable in classical logic. Therefore, ¬(P ⇒ Q) and P ∧ ¬Q are equivalent
in classical logic. Furthermore, P ⇒ Q and ¬P ∨ Q are equivalent in classical logic and
(¬P ∨Q)⇒ (P ⇒ Q) is provable in intuitionistic logic.

Proof. We only prove the very last part of Proposition 2.4 leaving the other parts as a series
of exercises. Here is an intuitionistic proof of (¬P ∨Q)⇒ (P ⇒ Q).

(¬P ∨Q)w

¬P z P x

⊥
Q

x

P ⇒ Q

P y Qt

Q
y

P ⇒ Q
z,t

P ⇒ Q
w

(¬P ∨Q)⇒ (P ⇒ Q)

Here is a classical proof of (P ⇒ Q)⇒ (¬P ∨Q).
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(¬(¬P ∨Q))y

(P ⇒ Q)z

(¬(¬P ∨Q))y
¬P x

¬P ∨Q
⊥

x RAA
P

Q

¬P ∨Q
⊥

y RAA
¬P ∨Q

z

(P ⇒ Q)⇒ (¬P ∨Q)

The other proofs are left as exercises.

Propositions 2.2 and 2.4 show a property that is very specific to classical logic, namely,
that the logical connectives ⇒,∧,∨,¬ are not independent. For example, we have P ∧Q ≡
¬(¬P ∨ ¬Q), which shows that ∧ can be expressed in terms of ∨ and ¬. In intuitionistic
logic, ∧ and ∨ cannot be expressed in terms of each other via negation.

The fact that the logical connectives ⇒,∧,∨,¬ are not independent in classical logic
suggests the following question. Are there propositions, written in terms of⇒ only, that are
provable classically but not provable intuitionistically?

The answer is yes. For instance, the proposition ((P ⇒ Q) ⇒ P ) ⇒ P (known as
Peirce’s law) is provable classically (do it), but it can be shown that it is not provable
intuitionistically.

On the other hand, if we add all instances ((P ⇒ Q) ⇒ P ) ⇒ P of Peirce’s law as
axioms to intuitionictic logic, then (RAA) is derivable. In fact, it suffices to add the special
case of Peirce’s law with Q =⊥, namely

((P ⇒⊥)⇒ P )⇒ P ≡ (¬P ⇒ P )⇒ P.

Assume, as we do when we use the proof-by-contradiction rule (RAA) that we have a
deduction

Γ,¬P
D
⊥

Here is the deduction tree demonstrating that RAA is a derived rule, where the leftmost leaf
is the axiom

(¬P ⇒ P )⇒ P.
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(¬P ⇒ P )⇒ P

Γ,¬P y

D
⊥

(⊥-elim)
P

x (⇒-intro)
¬P ⇒ P

(⇒-elim)
P

In addition to the proof-by-cases method and the proof-by-contradiction method, we also
have the proof-by-contrapositive method valid in classical logic:

Proof-by-contrapositive rule:

Γ,¬Qx

D
¬P

x

P ⇒ Q

This rule says that in order to prove an implication P ⇒ Q (from Γ), one may assume
¬Q as proven, and then deduce that ¬P is provable from Γ and ¬Q. This inference rule is
valid in classical logic because we can construct the following deduction.

Γ,¬Qx

D
¬P P y

⊥
x (RAA)

Q
y

P ⇒ Q

As as example of the proof-by-contrapositive method, we prove that if an integer n2 is
even, then n must be even.

Observe that if an integer is not even, then it is odd (and vice versa). This fact may seem
quite obvious but to prove it actually requires using induction (which we haven’t officially
met yet). A rigorous proof is given in Section 2.19.

Now the contrapositive of our statement is: if n is odd, then n2 is odd. Here P is “n2

si even” and Q is n is even. But to say that n is odd is to say that n = 2k + 1 and then
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, which shows that n2 is odd.

As it is, because the above proof uses the proof-by-contrapositive method, it is not
constructive. Thus, the question arises, is there a constructive proof of the above fact?

Indeed there is a constructive proof if we observe that every integer n is either even or
odd but not both. Now one might object that we just relied on the law of the excluded
middle but there is a way to circumvent this problem by using induction; see Section 2.19
for a rigorous proof.
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Now because an integer is odd iff it is not even, we may proceed to prove that if n2

is even, then n is not odd , by using our constructive version of the proof-by-contradiction
principle, namely, ¬-introduction.

Proof. Therefore, assume that n2 is even and that n is odd. Then n = 2k+ 1, which implies
that n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, an odd number, contradicting the fact that n2 is
assumed to be even.

The next proposition collects a list of equivalences involving conjunction and disjunction
that are used all the time. Proofs of these propositions are left as exercises (see the problems).

Proposition 2.5. All the propositions below are provable intuitionistically:

P ∨ P ≡ P

P ∧ P ≡ P

P ∨Q ≡ Q ∨ P
P ∧Q ≡ Q ∧ P.

The last two assert the commutativity of ∨ and ∧. We have distributivity of ∧ over ∨ and
of ∨ over ∧:

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R).

We have associativity of ∧ and ∨:

P ∧ (Q ∧R) ≡ (P ∧Q) ∧R
P ∨ (Q ∨R) ≡ (P ∨Q) ∨R.

2.10 Formal Versus Informal Proofs

As we said before, it is practically impossible to write formal proofs (i.e., proofs written
as proof trees using the rules of one of the systems presented earlier) of “real” statements
that are not “toy propositions.” This is because it would be extremely tedious and time-
consuming to write such proofs and these proofs would be huge and thus very hard to read.

What we do instead is to construct “informal” proofs in which we still make use of the
logical rules that we have presented but we take shortcuts and sometimes we even omit
proof steps (some elimination rules, such as ∧-elimination and some introduction rules, such
as ∨-introduction) and we use a natural language (here, presumably, English) rather than
formal symbols (we say “and” for ∧, “or” for ∨, etc.). We refer the readetr to Section 1.8
for a discussion of these issues. We also urge our reader to read Chapter 3 of Gowers [28]
which contains very illuminating remarks about the notion of proof in mathematics.
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Here is a concrete example illustrating the usefulnes of auxiliary lemmas in constructing
informal proofs.

Say we wish to prove the implication

¬(P ∧Q)⇒
(
(¬P ∧ ¬Q) ∨ (¬P ∧Q) ∨ (P ∧ ¬Q)

)
. (∗)

It can be shown that the above proposition is not provable intuitionistically, so we have to
use the proof-by-contradiction method in our proof. One quickly realizes that any proof ends
up re-proving basic properties of ∧ and ∨, such as associativity, commutativity, idempotence,
distributivity, and so on, some of the de Morgan laws, and that the complete proof is very
large. However, if we allow ourselves to use the de Morgan laws as well as various basic
properties of ∧ and ∨, such as distributivity,

(A ∧B) ∨ C ≡ (A ∧ C) ∨ (B ∧ C),

commutativity of ∧ and ∨ (A ∧ B ≡ B ∧ A, A ∨ B ≡ B ∨ A), associativity of ∧ and ∨
(A∧ (B ∧C) ≡ (A∧B)∧C, A∨ (B ∨C) ≡ (A∨B)∨C), and the idempotence of ∧ and ∨
(A ∧ A ≡ A, A ∨ A ≡ A), then we get

(¬P ∧ ¬Q) ∨ (¬P ∧Q) ∨ (P ∧ ¬Q)

≡ (¬P ∧ ¬Q) ∨ (¬P ∧ ¬Q) ∨ (¬P ∧Q) ∨ (P ∧ ¬Q)

≡ (¬P ∧ ¬Q) ∨ (¬P ∧Q) ∨ (¬P ∧ ¬Q) ∨ (P ∧ ¬Q)

≡ (¬P ∧ (¬Q ∨Q)) ∨ (¬P ∧ ¬Q) ∨ (P ∧ ¬Q)

≡ ¬P ∨ (¬P ∧ ¬Q) ∨ (P ∧ ¬Q) ≡ ¬P ∨ ((¬P ∨ P ) ∧ ¬Q) ≡ ¬P ∨ ¬Q,

where we make implicit uses of commutativity and associativity, and the fact that R∧ (P ∨
¬P ) ≡ R, and by de Morgan,

¬(P ∧Q) ≡ ¬P ∨ ¬Q,
using auxiliary lemmas, we end up proving (∗) without too much pain.

2.11 Truth Value Semantics for Classical Logic

Soundness and Completeness

In Section 1.9 we introduced the truth value semantics for classical propositional logic. The
logical connectives ⇒, ∧, ∨, ¬ and ≡ can be interpreted as Boolean functions, that is,
functions whose arguments and whose values range over the set of truth values ,

BOOL = {true, false}.

These functions are given by the following truth tables .
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P Q P ⇒ Q P ∧Q P ∨Q ¬P P ≡ Q
true true true true true false true
true false false false true false false
false true true false true true false
false false true false false true true

Now any proposition P built up over the set of atomic propositions PS (our propositional
symbols) contains a finite set of propositional letters, say

{P1, . . . , Pm}.

If we assign some truth value (from BOOL) to each symbol Pi then we can “compute” the
truth value of P under this assignment by using recursively using the truth tables above.

For example, the proposition P1 ⇒ (P1 ⇒ P2), under the truth assignment v given by

P1 = true, P2 = false,

evaluates to false; see Section 1.9.
The values of a proposition can be determined by creating a truth table, in which a

proposition is evaluated by computing recursively the truth values of its subexpressions. See
Section 1.9.

The truth table of a proposition containing m variables has 2m rows. When m is large,
2m is very large, and computing the truth table of a proposition P may not be practically
feasible. Even the problem of finding whether there is a truth assignment that makes P true
is hard.

Definition 2.9. We say that a proposition P is satisfiable iff it evaluates to true for some
truth assignment (taking values in BOOL) of the propositional symbols occurring in P ,
and otherwise we say that it is unsatisfiable. A proposition P is valid (or a tautology) iff it
evaluates to true for all truth assignments of the propositional symbols occurring in P .

Observe that a proposition P is valid if in the truth table for P all the entries in the
column corresponding to P have the value true. The proposition P is satisfiable if some
entry in the column corresponding to P has the value true.

The problem of deciding whether a proposition is satisfiable is called the satisfiability
problem and is sometimes denoted by SAT. The problem of deciding whether a proposition
is valid is called the validity problem.

Example 2.3. For example, the proposition

P = (P1 ∨ ¬P2 ∨ ¬P3) ∧ (¬P1 ∨ ¬P3) ∧ (P1 ∨P2 ∨P4) ∧ (¬P3 ∨P4) ∧ (¬P1 ∨P4)

is satisfiable because it evaluates to true under the truth assignment P1 = true, P2 = false,
P3 = false, and P4 = true.
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Example 2.4. On the other hand, the proposition

Q = (P1 ∨P2 ∨P3) ∧ (¬P1 ∨P2) ∧ (¬P2 ∨P3) ∧ (P1 ∨ ¬P3) ∧ (¬P1 ∨ ¬P2 ∨ ¬P3)

is unsatisfiable as one can verify by trying all eight truth assignments for P1, P2, P3.

The reader should also verify that the proposition

R = (¬P1 ∧ ¬P2 ∧ ¬P3) ∨ (P1 ∧ ¬P2) ∨ (P2 ∧ ¬P3) ∨ (¬P1 ∧P3) ∨ (P1 ∧P2 ∧P3)

is valid (observe that the proposition R is the negation of the proposition Q).
The satisfiability problem is a famous problem in computer science because of its com-

plexity. Try it; solving it is not as easy as you think. The difficulty is that if a proposition
P contains n distinct propositional letters, then there are 2n possible truth assignments and
checking all of them is practically impossible when n is large.

In fact, the satisfiability problem turns out to be an NP-complete problem, a very im-
portant concept that you will learn about in a course on the theory of computation and
complexity. Very good expositions of this kind of material are found in Hopcroft, Motwani,
and Ullman [33] and Lewis and Papadimitriou [42]. The validity problem is also important
and it is related to SAT. Indeed, it is easy to see that a proposition P is valid iff ¬P is
unsatisfiable.

What’s the relationship between validity and provability in the system N⇒,∧,∨,⊥c (or
NG⇒,∧,∨,⊥c )?

Remarkably, in classical logic, validity and provability are equivalent .
In order to prove the above claim, we need to do two things:

(1) Prove that if a proposition P is provable in the system N⇒,∧,∨,⊥c (or the system
NG⇒,∧,∨,⊥c ), then it is valid. This is known as soundness or consistency (of the proof
system).

(2) Prove that if a proposition P is valid, then it has a proof in the system N⇒,∧,∨,⊥c (or
NG⇒,∧,∨,⊥c ). This is known as the completeness (of the proof system).

In general, it is relatively easy to prove (1). but proving (2) can be quite complicated. In
fact, some proof systems are not complete with respect to certain semantics. For instance,
the proof system for intuitionistic logic N⇒,∧,∨,⊥i (or NG⇒,∧,∨,⊥i ) is not complete with respect
to truth value semantics. As an example, ((P ⇒ Q)⇒ P )⇒ P (known as Peirce’s law), is
valid but it can be shown that it cannot be proven in intuitionistic logic.

In this book we content ourselves with soundness.

Proposition 2.6. (Soundness of N⇒,∧,∨,⊥c and NG⇒,∧,∨,⊥c ) If a proposition P is provable in
the system N⇒,∧,∨,⊥c (or NG⇒,∧,∨,⊥c ), then it is valid (according to the truth value semantics).

Sketch of Proof. It is enough to prove that if there is a deduction of a proposition P from a
set of premises Γ then for every truth assignment for which all the propositions in Γ evaluate
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to true, then P evaluates to true. However, this is clear for the axioms and every inference
rule preserves that property.

Now if P is provable, a proof of P has an empty set of premises and so P evaluates to
true for all truth assignments, which means that P is valid.

Theorem 2.7. (Completeness of N⇒,∧,∨,⊥c and NG⇒,∧,∨,⊥c ) If a proposition P is valid
(according to the truth value semantics), then P is provable in the system N⇒,∧,∨,⊥c (or
NG⇒,∧,∨,⊥c ).

Proofs of completeness for classical logic can be found in van Dalen [62] or Gallier [21]
(but for a different proof system).

Soundness (Proposition 2.6) has a very useful consequence: in order to prove that a
proposition P is not provable, it is enough to find a truth assignment for which P evaluates
to false. We say that such a truth assignment is a counterexample for P (or that P can be
falsified). For example, no propositional symbol Pi is provable because it is falsified by the
truth assignment Pi = false.

The soundness of the proof system N⇒,∧,∨,⊥c (or NG⇒,∧,∨,⊥c ) also has the extremely im-
portant consequence that ⊥ cannot be proven in this system, which means that contradictory
statements cannot be derived.

This is by no means obvious at first sight, but reassuring. It is also possible to prove that
the proof system N⇒,∧,∨,⊥c is consistent (i.e., ⊥ cannot be proven) by purely proof-theoretic
means involving proof normalization (See Section 2.13), but this requires a lot more work.

Note that completeness amounts to the fact that every unprovable formula has a coun-
terexample. Also, in order to show that a proposition is classically provable, it suffices to
compute its truth table and check that the proposition is valid. This may still be a lot of
work, but it is a more “mechanical” process than attempting to find a proof.

Example 2.5. For example, here is a truth table showing that
(P1 ⇒ P2) ≡ (¬P1 ∨P2) is valid.

P1 P2 P1 ⇒ P2 ¬P1 ∨P2 (P1 ⇒ P2) ≡ (¬P1 ∨P2)
true true true true true
true false false false true
false true true true true
false false true true true

Remark: Truth value semantics is not the right kind of semantics for intuitionistic logic; it
is too coarse. A more subtle kind of semantics is required. Among the various semantics for
intuitionistic logic, one of the most natural is the notion of the Kripke model . Then again,
soundness and completeness hold for intuitionistic proof systems (see Section 2.12 and van
Dalen [62]).
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2.12 Kripke Models for Intuitionistic Logic; Soundness

and Completeness

In this section, we briefly describe the semantics of intuitionistic propositional logic in terms
of Kripke models.

This section has been included to quench the thirst of those readers who can’t wait to
see what kind of decent semantics can be given for intuitionistic propositional logic and it
can be safely omitted.

In classical truth value semantics based on BOOL = {true, false}, we might say that
truth is absolute. The idea of Kripke semantics is that there is a set of worlds (or states)
W together with a partial ordering ≤ on W , and that truth depends on which world we are
in. Furthermore, as we “go up” from a world u to a world v with u ≤ v, truth “can only
increase,” that is, whatever is true in world u remains true in world v. Also, the truth of
some propositions, such as P ⇒ Q or ¬P , depends on “future worlds.” With this type of
semantics, which is no longer absolute, we can capture exactly the essence of intuitionistic
logic. We now make these ideas precise.

Figure 2.3: Saul Kripke, 1940–

Definition 2.10. A Kripke model for intuitionistic propositional logic is a pair K = (W,ϕ),
where W is a partially ordered (nonempty) set called a set of worlds and ϕ is a function
ϕ : W → BOOLPS such that for every u ∈ W , the function ϕ(u) : PS → BOOL is an as-
signment of truth values to the propositional symbols in PS satisfying the following property.
For all u, v ∈ W , for all Pi ∈ PS,

if u ≤ v and ϕ(u)(Pi) = true, then ϕ(v)(Pi) = true.

As we said in our informal comments, truth can’t decrease when we move from a world
u to a world v with u ≤ v but truth can increase; it is possible that ϕ(u)(Pi) = false and
yet ϕ(v)(Pi) = true.

Example 2.6. If W = {0, 1} ordered so that 0 ≤ 1 and if ϕ is given by

ϕ(0)(Pi) = false

ϕ(1)(Pi) = true,

then Kbad = (W,ϕ) is a Kripke structure.
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We use Kripke models to define the semantics of propositions as follows.

Definition 2.11. Given a Kripke model K = (W,ϕ), for every u ∈ W and for every
proposition P we say that P is satisfied by K at u and we write ϕ(u)(P ) = true iff

(a) If P = Pi ∈ PS, then ϕ(u)(Pi) = true.

(b) If P = Q ∧R, then ϕ(u)(Q) = true and ϕ(u)(R) = true.

(c) If P = Q ∨R, then ϕ(u)(Q) = true or ϕ(u)(R) = true.

(d) If P = Q⇒ R, then for all v such that u ≤ v, if ϕ(v)(Q) = true,
then ϕ(v)(R) = true.

(e) If P = ¬Q, then for all v such that u ≤ v, ϕ(v)(Q) = false,

(f) ϕ(u)(⊥) = false; that is, ⊥ is not satisfied by K at u (for any K and any u).

In the above definition, “and” and “or” have their standard classical meaning as specified
in the truth table given in Section 2.11. We say that P is valid in K (or that K is a model of
P ) iff P is satisfied by K = (W,ϕ) at u for all u ∈ W , and we say that P is intuitionistically
valid iff P is valid in every Kripke model K. When P is satisfied by K at u ∈ W we also say
that P is true at u in K.

Note that the truth at u ∈ W of a proposition of the form Q ⇒ R or ¬Q depends on
the truth of Q and R at all “future worlds” v ∈ W , with u ≤ v. In the special case of
(d) where R =⊥, namely P = Q ⇒⊥, we see that for any u ∈ W , ϕ(u)(Q ⇒⊥) = true
iff ϕ(u)(¬Q) = true, so ¬Q and Q ⇒⊥ are indeed semantically equivalent. In particular,
for any u ∈ W , we have ϕ(u)(¬Q) = false iff there is some v ∈ W such that u ≤ v and
ϕ(v)(Q) = true.

Also observe that classical truth value semantics corresponds to the special case where
W consists of a single element (a single world).

Example 2.7. Given the Kripke structure Kbad defined earlier, the reader should check
that the proposition P = (Pi ∨¬Pi) has the value false at 0 because ϕ(0)(Pi) = false, but
ϕ(1)(Pi) = true, so Clause (e) fails for ¬Pi at u = 0. Therefore, P = (Pi ∨ ¬Pi) is not
valid in Kbad and thus, it is not intuitionistically valid. We escaped the classical truth value
semantics by using a universe with two worlds.

The reader should also check that

ϕ(u)(¬¬P ) = true iff for all v such that u ≤ v

there is some w with v ≤ w so that ϕ(w)(P ) = true.

This shows that in Kripke semantics, ¬¬P is weaker than P , in the sense that ϕ(u)(¬¬P ) =
true does not necessarily imply that ϕ(u)(P ) = true. The reader should also check that
the proposition ¬¬Pi ⇒ Pi is not valid in the Kripke structure Kbad.

As we said in the previous section, Kripke semantics is a perfect fit to intuitionistic
provability in the sense that soundness and completeness hold.
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Proposition 2.8. (Soundness of N⇒,∧,∨,⊥i and NG⇒,∧,∨,⊥i ) If a proposition P is provable
in the system N⇒,∧,∨,⊥i (or NG⇒,∧,∨,⊥i ), then it is valid in every Kripke model, that is, it is
intuitionistically valid.

Proposition 2.8 is not hard to prove. We consider any deduction of a proposition P from
a set of premises Γ and we prove that for every Kripke model K = (W,ϕ), for every u ∈ W ,
if every premise in Γ is satisfied by K at u, then P is also satisfied by K at u. This is obvious
for the axioms and it is easy to see that the inference rules preserve this property.

Completeness also holds, but it is harder to prove (see van Dalen [62]).

Theorem 2.9. (Completeness of N⇒,∧,∨,⊥i and NG⇒,∧,∨,⊥i ) If a proposition P is intuition-
istically valid, then P is provable in the system N⇒,∧,∨,⊥i (or NG⇒,∧,∨,⊥i ).

Another proof of completeness for a different proof system for propositional intuitionistic
logic (a Gentzen-sequent calculus equivalent to NG⇒,∧,∨,⊥i ) is given in Takeuti [60]. We
find this proof more instructive than van Dalen’s proof. This proof also shows that if a
proposition P is not intuitionistically provable, then there is a Kripke model K where W is
a finite tree in which P is not valid. Such a Kripke model is called a counterexample for P .

Several times in this chapter we have claimed that certain formulae are not provable in
some logical system. What kind of reasoning do we use to validate such claims? In the next
section we briefly address this question as well as related ones.

2.13 Decision Procedures, Proof Normalization

In the previous sections we saw how the rules of mathematical reasoning can be formalized
in various natural deduction systems and we defined a precise notion of proof. We observed
that finding a proof for a given proposition was not a simple matter, nor was it to acertain
that a proposition is unprovable. Thus, it is natural to ask the following question.

The Decision Problem: Is there a general procedure that takes any arbitrary proposition
P as input, always terminates in a finite number of steps, and tells us whether P is provable?

Clearly, it would be very nice if such a procedure existed, especially if it also produced a
proof of P when P is provable.

Unfortunately, for rich enough languages, such as first-order logic (discussed in Section
2.16) it is impossible to find such a procedure. This deep result known as the undecidability of
the decision problem or Church’s theorem was proven by A. Church in 1936 (actually, Church
proved the undecidability of the validity problem but, by Gödel’s completeness theorem,
validity and provability are equivalent).

Proving Church’s theorem is hard and a lot of work. One needs to develop a good deal of
what is called the theory of computation. This involves defining models of computation such
as Turing machines and proving other deep results such as the undecidability of the halting
problem and the undecidability of the Post correspondence problem, among other things; see
Hopcroft, Motwani, and Ullman [33] and Lewis and Papadimitriou [42].
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Figure 2.4: Alonzo Church, 1903–1995 (left) and Alan Turing, 1912–1954 (right)

So our hopes to find a “universal theorem prover” are crushed. However, if we restrict
ourselves to propositional logic, classical or intuitionistic, it turns out that procedures solving
the decision problem do exist and they even produce a proof of the input proposition when
that proposition is provable.

Unfortunately, proving that such procedures exist, and are correct in the propositional
case is rather difficult, especially for intuitionistic logic. The difficulties have a lot to do
with our choice of a natural deduction system. Indeed, even for the system N⇒m (or NG⇒m ),
provable propositions may have infinitely many proofs. This makes the search process impos-
sible; when do we know how to stop, especially if a proposition is not provable. The problem
is that proofs may contain redundancies (Gentzen said “detours”). A typical example of
redundancy is when an elimination immediately follows an introduction, as in the following
example in which we abbreviate (R⇒ R) as P .

y : (P ⇒ Q)→ (P ⇒ Q) x : P → P

x : (R⇒ R), y : ((R⇒ R)⇒ Q)→ Q

x : (R⇒ R)→ ((R⇒ R)⇒ Q)⇒ Q

→ (R⇒ R)⇒ (((R⇒ R)⇒ Q)⇒ Q)

z : R→ R

→ R⇒ R

→ ((R⇒ R)⇒ Q)⇒ Q

The blue deduction already has ((R⇒ R)⇒ Q)⇒ Q as conclusion but it is not a proof
because the assumption x : (R⇒ R) is present. However we have a proof of R⇒ R, namely

z : R→ R

→ R⇒ R

We can obtain a proof of ((R⇒ R)⇒ Q)⇒ Q from the blue deduction tree by replacing
the leaf labeled x : (R⇒ R)→ (R⇒ R) by the proof tree for R⇒ R, obtaining

y : ((R⇒ R)⇒ Q)→ ((R⇒ R)⇒ Q)

z : R→ R

→ R⇒ R

x : (R⇒ R), y : ((R⇒ R)⇒ Q)→ Q

x : (R⇒ R)→ ((R⇒ R)⇒ Q)⇒ Q
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The above is not quite a proof tree, but it becomes one if we delete the premise x : (R⇒
R) which is now redundant.

y : ((R⇒ R)⇒ Q)→ ((R⇒ R)⇒ Q)

z : R→ R

→ R⇒ R

y : ((R⇒ R)⇒ Q)→ Q

→ ((R⇒ R)⇒ Q)⇒ Q

The procedure that we just described for eliminating a redundancy can be general-
ized. Consider the deduction tree below in which D1 denotes a deduction with conclusion
Γ, x : A→ B and D2 denotes a deduction with conclusion ∆→ A.

D1

Γ, x : A→ B

Γ→ A⇒ B

D2

∆→ A

Γ ∪∆→ B

It should be possible to construct a deduction for Γ→ B from the two deductions D1

and D2 without using at all the hypothesis x : A. This is indeed the case. If we look closely
at the deduction D1, from the shape of the inference rules, assumptions are never created,
and the leaves must be labeled with expressions of the form either

(1) Γ,Λ, x : A→ A, or

(2) Γ′,Λ, x : A, y : C → C if Γ = Γ′, y : C and y 6= x, or

(3) Γ,Λ, x : A, y : C → C if y : C /∈ Γ and y 6= x.

We can form a new deduction for Γ→ B as follows. In D1, wherever a leaf of the form
Γ,Λ, x : A→ A occurs, replace it by the deduction obtained from D2 by adding Λ to the
premise of each sequent in D2.

In our previous example, we have A = (R⇒ R), B = ((R⇒ R)⇒ Q)⇒ Q, C = (R⇒
R)⇒ Q, Γ = ∆ = Λ = ∅.

Actually, one should be careful to first make a fresh copy of D2 by renaming all the
variables so that clashes with variables in D1 are avoided. Finally, delete the assumption
x : A from the premise of every sequent in the resulting proof. The resulting deduction is
obtained by a kind of substitution and may be denoted as D1[D2/x], with some minor abuse
of notation. Note that the assumptions x : A occurring in the leaves of type (2) or (3) were
never used anyway. The step that consists in transforming the above redundant proof figure
into the deduction D1[D2/x] is called a reduction step or normalization step.

The idea of proof normalization goes back to Gentzen ([22], 1935). Gentzen noted that
(formal) proofs can contain redundancies, or “detours,” and that most complications in the
analysis of proofs are due to these redundancies. Thus, Gentzen had the idea that the analysis
of proofs would be simplified if it were possible to show that every proof can be converted to
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Figure 2.5: Haskell B. Curry, 1900–1982

an equivalent irredundant proof, a proof in normal form. Gentzen proved a technical result
to that effect, the “cut-elimination theorem,” for a sequent-calculus formulation of first-order
logic [22]. Cut-free proofs are direct, in the sense that they never use auxiliary lemmas via
the cut rule.

Remark: It is important to note that Gentzen’s result gives a particular algorithm to pro-
duce a proof in normal form. Thus we know that every proof can be reduced to some normal
form using a specific strategy, but there may be more than one normal form, and certain
normalization strategies may not terminate.

About 30 years later, Prawitz ([50], 1965) reconsidered the issue of proof normalization,
but in the framework of natural deduction rather than the framework of sequent calculi.1

Prawitz explained very clearly what redundancies are in systems of natural deduction, and
he proved that every proof can be reduced to a normal form. Furthermore, this normal
form is unique. A few years later, Prawitz ([51], 1971) showed that in fact, every reduction
sequence terminates, a property also called strong normalization.

A remarkable connection between proof normalization and the notion of computation
must also be mentioned. Curry (1958) made the remarkably insightful observation that
certain typed combinators can be viewed as representations of proofs (in a Hilbert system)
of certain propositions. (See in Curry and Feys [7] (1958), Chapter 9E, Pages 312–315.)

Building up on this observation, Howard ([34], 1969) described a general correspon-
dence among propositions and types, proofs in natural deduction and certain typed λ-terms,
and proof normalization and β-reduction (The simply typed λ-calculus was invented by
Church, 1940). This correspondence, usually referred to as the Curry–Howard isomorphism
or formulae-as-types principle, is fundamental and very fruitful.

Let us elaborate on this correspondence.

1This is somewhat ironical, inasmuch as Gentzen began his investigations using a natural deduction
system, but decided to switch to sequent calculi (known as Gentzen systems) for technical reasons.
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2.14 The Simply-Typed λ-Calculus

First we need to define the simply-typed λ-calculus and the first step is to define simple types.
We assume that we have a countable set {T0,T1, . . . ,Tn, . . .} of base types (or atomic types).

For example, the base types may include types such as Nat for the natural numbers, Bool
for the booleans, String for strings, Tree for trees, etc. In the Curry–Howard isomorphism
they correspond to the propositional symbols {P0,P1, . . . ,Pn, . . .}.

Definition 2.12. The simple types σ are defined inductively as follows.

(1) If Ti is a base type, then Ti is a simple type.

(2) If σ and τ are simple types, then (σ → τ) is a simple type.

Thus (T1 → T1), (T1 → (T2 → T1)), ((T1 → T2)→ T1), are simple types.
The standard abbreviation for (σ1 → (σ2 → (· · · → σn))) is σ1 → σ2 → · · · → σn.
There is obviously a bijection between propositions and simple types. Every propositional

symbol Pi can be viewed as a base type, and the proposition (P ⇒ Q) corresponds to the
simple type (P → Q). The only difference is that the custom is to use ⇒ to denote logical
implication and → for simple types. The reason is that intuitively a simple type (σ → τ)
corresponds to a set of functions from a domain of type σ to a range of type τ .

The next crucial step is to define simply-typed λ-terms. This is done in two stages. First
we define raw simply-typed λ-terms . They have a simple inductive definition but they do not
necessarily type-check so we define some type-checking rules that turn out to be the Gentzen-
style deduction proof rules annotated with simply-typed λ-terms . These simply-typed λ-terms
are representations of natural deductions.

We have a countable set of variables {x0, x1, . . . , xn . . .} that correspond to the atomic
raw λ-terms. These are also the variables that are used for tagging assumptions when
constructing deductions.

Definition 2.13. The raw simply-typed λ-terms (for short raw terms or λ-terms) M are
defined inductively as follows.

(1) If xi is a variable, then xi is a raw term.

(2) If M and N are raw terms, then (MN) is a raw term called an application.

(3) If M is a raw term, σ is a simple type, and x is a variable, then the expression
(λx : σ.M) is a raw term called a λ-abstraction.

Matching parentheses may be dropped or added for convenience.

Definition 2.14. In a raw λ-term M , a variable x appearing in an expression λx : σ is said
to be bound in M . The other variables in M (if any) are said to be free in M . A λ-term M
is closed if it has no free variables.
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Example 2.8. For example, in the term λx : σ. (yx), the variable x is bound and the variable
y is free. This term is not closed.

The term λy : σ → σ. (λx : σ. (yx)) is closed.

The intuition is that a term of the form λx : σ.M represents a function. How such a
function operates will be defined in terms of β-reduction.

Definition 2.15. The depth d(M) of a raw λ-term M is defined inductively as follows.

1. If M is a variable x, then d(x) = 0.

2. If M is an application (M1M2), then d(M) = max{d(M1), d(M2)}+ 1.

3. If M is a λ-abstraction (λx : σ.M1), then d(M) = d(M1) + 1.

It is pretty clear that raw λ-terms have representations as (ordered) labeled trees.

Definition 2.16. Given a raw λ-term M , the tree tree(M) representing M is defined induc-
tively as follows.

1. If M is a variable x, then tree(M) is the one-node tree labeled x.

2. If M is an application (M1M2), then tree(M) is the tree with a binary root node labeled
. and with a left subtree tree(M1) and a right subtree tree(M2).

3. If M is a λ-abstraction (λx : σ.M1), then tree(M) is the tree with a unary root node
labeled λx : σ and with one subtree tree(M1).

Definition 2.16 is illustrated in Figure 2.6.
Obviously, the depth d(M) of raw λ-term is the depth of its tree representation tree(M).
Definition 2.16 could be used to deal with bound variables. For every leaf labeled with a

bound variable x, we draw a backpointer to an ancestor of x determined as follows. Given
a leaf labeled with a bound variable x, climb up to the closest ancestor labeled λx : σ, and
draw a backpointer to this node. Then all bound variables can be erased. See Figure 2.7 for
an example.

Definition 2.13 allows the construction of undesirable terms such as (xx) or
(λx : σ. (xx))(λx : σ. (xx)) because no type-checking is done. Part of the problem is that the
variables occurring in a raw term have not been assigned types. This can be done using a
context (or type assignment).

Definition 2.17. A context (or type assignment) is a set of pairs Γ = {x1 : σ1, . . . , xn : σn},
where the σi are simple types and the variables xi are pairwise distinct.

Once a type assignment has been provided, the type-checking rules are basically the proof
rules of natural deduction in Gentzen-style.
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x
M = x

tree (M)
1 2M = ( M  M  ) •

M1
M2

tree(M)
M = λx:σ • M λx: σ

tree(M)

M1

tree(    )
tree(     )

tree(      )

1

Figure 2.6: The tree tree(M) associated with a raw λ-term M .

Definition 2.18. The fact that a raw term M has type σ given a type assignment Γ that
assigns types to all the free variables in M is written as

Γ . M : σ.

Such an expression is called a judgement . The symbol . is used instead of the symbol →
because → occurs in simple types.

Here are the typing-checking rules.

Definition 2.19. The type-checking rules of the simply-typed λ-calculus λ→ are listed below:

Γ, x : σ . x : σ (axioms)

Γ, x : σ . M : τ

Γ . (λx : σ.M) : σ → τ
(abstraction)

Γ . M : σ → τ ∆ . N : σ

Γ ∪∆ . (MN) : τ
(application)

In the axioms and in the (abstraction) rule, it is assumed that x : σ /∈ Γ. In the (appli-
cation) rule, it is assumed that Γ and ∆ are consistent, which means that if x : σ1 ∈ Γ and
x : σ2 ∈ ∆, then σ1 = σ2. We write ` Γ . M : σ to express that the judgement Γ . M : σ is
provable. Given a raw simply-typed λ-term M , if there is a type-assigment Γ and a simple
type σ such that the judgement Γ . M : σ is provable, we say that M type-checks with type
σ.
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λx: σ

x

x

Figure 2.7: Using backpointers to deal with bound variables.

It can be shown by induction on the depth of raw terms that for a fixed type-assigment
Γ, if a raw simply-typed λ-term M type-checks with some simple type σ, then σ is unique.

The correspondence between proofs in natural deduction and simply-typed λ-terms (the
Curry/Howard isomorphism) is now clear: the abstraction rule corresponds to implication-
introduction, the application rule corresponds to implication elimination, and the blue term
is a representation of the deduction of the sequents Γ, x : σ → σ, Γ→ σ ⇒ τ , and Γ ∪∆→ τ ,
with the types σ, σ ⇒ τ and τ viewed as propositions. Note that proofs correspond to closed
λ-terms.

Example 2.9. For example, we have the type-checking proof

y : ((R⇒ R)⇒ Q) . y : ((R⇒ R)⇒ Q)

z : R . z : R

. λz : R. z : R⇒ R

y : ((R⇒ R)⇒ Q) . y(λz : R. z) : Q

. λy : ((R⇒ R)⇒ Q). y(λz : R. z) : ((R⇒ R)⇒ Q)⇒ Q

which shows that the simply-typed λ-term

M = λy : ((R⇒ R)⇒ Q). y(λz : R. z)

represents the proof

y : ((R⇒ R)⇒ Q)→ ((R⇒ R)⇒ Q)

z : R→ R

→ R⇒ R

y : ((R⇒ R)⇒ Q)→ Q

→ ((R⇒ R)⇒ Q)⇒ Q

The proposition ((R⇒ R)⇒ Q)⇒ Q being proven is the type of the λ-term M .
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The tree representing the λ-term M = λy : ((R ⇒ R) ⇒ Q). y(λz : R. z) is shown in
Figure 2.8.

λy: ( (R0R)0Q)

•

y
λz : R

z

Tree(M)

Figure 2.8: The tree representation of the λ-term M .

Furthermore, and this is the deepest aspect of the Curry/Howard isomorphism, proof
normalization corresponds to β-reduction in the simply-typed λ-calculus.

The notion of β-reduction is defined in terms of substitutions.

Definition 2.20. A substitution ϕ is a finite set of pairs ϕ = {(x1, N1), . . . , (xn, Nn)}, where
the xi are distinct variables and the Ni are raw λ-terms. We write

ϕ = [N1/x1, . . . , Nn/xn] or ϕ = [x1 := N1, . . . , xn := Nn].

The second notation indicates more clearly that each term Ni is substituted for the variable
xi and it seems to have been almost universally adopted.

Given a substitution ϕ = [x1 := N1, . . . , xn := Nn], for any variable xi, we denote by
ϕ−xi the new substitution where the pair (xi, Ni) is replaced by the pair (xi, xi) (that is, the
new substitution leaves xi unchanged).

Definition 2.21. Given any raw λ-term M and any substitution ϕ = [x1 := N1, . . . , xn :=
Nn], we define the raw λ-term M [ϕ], the result of applying the substitution ϕ to M , as
follows:

(1) If M = y, with y 6= xi for i = 1, . . . , n, then M [ϕ] = y = M .

(2) If M = xi for some i ∈ {1, . . . , n}, then M [ϕ] = Ni.

(3) If M = (PQ), then M [ϕ] = (P [ϕ]Q[ϕ]).

(4) If M = λx : σ.N and x 6= xi for i = 1, . . . , n, then M [ϕ] = λx : σ.N [ϕ].
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(5) If M = λx : σ.N and x = xi for some i ∈ {1, . . . , n}, then
M [ϕ] = λx : σ.N [ϕ]−xi .

There is a problem with the present definition of a substitution in Cases (4) and (5),
which is that the result of substituting a term Ni containing the free variable x causes this
variable to become bound after the substitution. We say that x is captured .

To remedy this problem, Church defined α-conversion.

Definition 2.22. The idea of α-conversion is that in a raw term M , any subterm of the
form λx : σ. P can be replaced by the subterm λz : σ. P [x := z] where z is a new variable not
occurring at all (free or bound) in M to obtain a new term M ′. We write M ≡α M ′ and we
view M and M ′ as equivalent.

Example 2.10. For example, λx : σ. yx ≡α λz : σ. yz and

λy : σ → σ. (λx : σ. yx) ≡α λw : σ → σ. (λz : σ.wz).

The variables x and y are just place-holders.

Then given a raw λ-term M and a substitution ϕ = [x1 := N1 . . ., xn := Nn], before
applying ϕ to M we first apply some α-conversion to rename all bound variables in M
obtaining M ′ ≡α M so that they do not occur in any of the Ni, and then safely apply the
substitution ϕ to M ′ without any capture of variables. We say that the term M ′ is safe for
the substitution ϕ.

The details are a bit tedious and we omit them. We refer the interested reader to Gallier
[19] for a comprehensive discussion.

The following result shows that substitutions behave well with respect to type-checking.
Given a context Γ = {x1 : σ1, . . . , xn : σn}, we let Γ(xi) = σi.

Proposition 2.10. For any raw λ-term M and any substitution ϕ = [x1 := N1, . . ., xn :=
Nn], whose domain contains the set of free variables of M , if the judgement Γ . M : τ is
provable for some context Γ and some simple type τ , and if there is some context ∆ such that
for every free variable xj in M the judgement ∆ . Nj : Γ(xj) is provable, then there some
M ′ ≡α M such that the judgment ∆ . M ′[ϕ] : τ is provable.

Finally we define β-reduction and β-conversion as follows.

Definition 2.23. The relation −→β, called immediate β-reduction, is the smallest relation
satisfying the following properties for all raw λ-terms M,N,P,Q:

(λx : σ.M)N −→β M [x := N ]

provided that M is safe for [x := N ];

M −→β N

MQ −→β NQ

M −→β N

PM −→β PN
, for all P,Q (congruence)
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M −→β N

λx : σ.M −→β λx : σ.N
, for all σ. (ξ)

The transitive closure of −→β is denoted by
+−→β, the reflexive and transitive closure of

−→β is denoted by
∗−→β, and we define β-conversion, denoted by

∗←→β, as the smallest

equivalence relation
∗←→β = (−→β ∪ −→−1

β )∗ containing −→β.

Example 2.11. For example, we have

(λu : σ. (vu))
(
(λx : σ → σ. (xy))(λz : σ. z)

)
−→β

(λu : σ. (vu))(λx : σ → σ. (xy))[x := (λz : σ. z)] = (λu : σ. (vu))
(
(λz : σ. z)y

)
−→β (λu : σ. (vu))z[z := y] = (λu : σ. (vu))y −→β (vu)[u := y] = vy.

In the above, β-reduction steps are applied to the blue subterms.

The following result shows that β-reduction (and β-conversion) behave well with respect
to type-checking.

Proposition 2.11. For any two raw λ-terms M and N , if there is a proof of the judgement

Γ . M : σ for some context Γ and some simple type σ, and if M
+−→β N (or M

∗←→β N),
then the judgement Γ . N : σ is provable. Thus β-reduction and β-conversion preserve type-
checking.

Definition 2.24. We say that a λ-term M is β-irreducible or a β-normal form if there is
no term N such that M −→β N .

The fundamental result about the simply-typed λ-calculus is this.

Theorem 2.12. For every raw λ-term M , if M type-checks, which means that there a
provable judgement Γ . M : σ for some context Γ and some simple type σ, then the following
results hold.

(1) If M
∗−→β M1 and M

∗−→β M2, then there is some M3 such that M1
∗−→β M3 and

M2
∗−→β M3. We say that

∗−→β is confluent.

(2) Every reduction sequence M
+−→βN is finite. We that that the simply-typed λ-calculus

is strongly normalizing (for short, SN ).

As a consequence of (1) and (2), there is a unique β-irreducible term N (called a β-normal

form) such that M
∗−→β N .

A proof of Theorem 2.12 can be found in Gallier [17]. See also Gallier [19] which contains
a thorough discussion of the techniques involved in proving these results.

In Theorem 2.12, the fact that the term M type-checks is crucial. Indeed the term

(λx. (xx))(λx. (xx)),
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which does not type-check (we omitted the type tags σ of the variable x since they do not
play any role), gives rise to an infinite β-reduction sequence!

In summary, the correspondence between proofs in intuitionistic logic and typed λ-terms
on one hand and between proof normalization and β-reduction, can be used to translate
results about typed λ-terms into results about proofs in intuitionistic logic. These results
can be generalized to typed λ-calculi with product types and union types; see Gallier [17].

Since certain raw terms type check but others do no, three natural questions arise:

(1) Given a raw term M and a simple type σ, is there a type assigment Γ = {x1 : σ1, . . .,
xn : σn} of the set {x1, . . . , xn} of free variables in M such that Γ . M : σ is provable,
that is, M type checks with type σ. This is the type checking problem.

(2) Given a raw term M , is there a type assigment Γ = {x1 : σ1, . . . , xn : σn} of the set
{x1, . . . , xn} of free variables in M and some type σ such that Γ . M : σ is provable.
This is the typability problem (or type inferencing problem).

(3) Given a type σ, is there a closed term M such that . M : σ is provable. This is the
inhabitation problem.

Observe that the inhabitation problem is equivalent to deciding whether a proposition
is provable in propositional intuitionistic logic. Using some suitable intuitionistic sequent
calculi and Gentzen’s cut elimination theorem or some suitable typed λ-calculi and (strong)
normalization results about them, it is possible to prove that there is a decision procedure
for propositional intuitionistic logic. However, it can also be shown that the time-complexity
of any such procedure is very high. As a matter of fact, it was shown by Statman (1979) that
deciding whether a proposition is intuitionisticaly provable is P-space complete; see [57] and
Section 14.4. Here, we are alluding to complexity theory , another active area of computer
science, Hopcroft, Motwani, and Ullman [33] and Lewis and Papadimitriou [42].

There is an algorithm to solve the typability problem that makes use of well-known
concepts of theorem-proving, namely unification and most general unifiers ; see Selinger [55]
and Gallier [21]. To understand where this comes from, consider typing the raw term

λx : σ1. λy : σ2. yx,

where σ1 and σ2 are unknown types. To deduce a proof of λx : σ1. λy : σ2. yx : τ where σ1, σ2, τ
are unknown types, in order to respect the type checking rules, the derivation constructed
from the bottom-up must be of the following form:

y : σ2 . y : X → Y x : σ1 . x : X

x : σ1, y : σ2 . yx : Y

x : σ1 . λy : σ2. yx : Z = (σ2 → Y )

. λx : σ1. λy : σ2. yx : τ = (σ1 → Z)
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for some unknown types X, Y, Z. For the leaf nodes to be axioms, we must have σ1 = X,
σ2 = (X → Y ), which implies that Z = ((X → Y )→ Y ) and

τ =
(
X →

(
(X → Y )→ Y

))
.

So we have an infinite number of solutions, among which we have

σ1 →
(
(σ1 → σ1)→ σ1

)
(σ1 → σ2)→

(
((σ1 → σ2)→ σ2)→ σ2

)
σ1 →

(
(σ1 → (σ1 → σ2))→ (σ1 → σ2)

)
.

The most general solution is X →
(
(X → Y )→ Y

)
, where X and Y are variables ranging

over all types. To make all this precise, we allow type variables in the construction of simple
types and we introduce type substitutions of the form ϕ = {X1 := σ1, . . . , Xn := σn},
where X1, . . . , Xn are type variables and σ1, . . . , σn are simple types possibly containing
type variables. Technically, a type substitution is a map ϕ from the countable set of all
type variables to the set of simple types built up from base types and type variables using
→, such that ϕ(Xi) 6= Xi for only finitely many variables. A substitution ϕ has a unique
extension ϕ̂ to all simple types, and we denote ϕ̂(σ) as σ[ϕ]. Given two substitutions ϕ and

ψ, the substitution ψ̂ ◦ϕ is denoted ϕψ, so for any simple type σ, ψ̂(σ[ϕ]) is denoted σ[ϕψ].
Note that ϕψ is not the composition ψ ◦ ϕ, which does not make any sense.

Given two types σ1 and σ2, a unifier of σ1 and σ2 is a substitution ϕ defined on the type
variables in σ1 and σ2 such that

σ1[ϕ] = σ2[ϕ].

It turns out that if two types σ1 and σ2 are unifiable, then there is some most general
unifier (or mgu) ϕ, which means that every other unifier ψ of σ1 and σ2 there is some other
substitution θ such that ψ = ϕθ. Note that mgu’s are not unique, but they are up to a
bijective substitution that renames variables.

Using an algorithm mgu(σ1, σ2) to find a most general unifiers of σ1 and σ2 it it exists
(and return failure otherwise), an algorithm typesub deciding whether a raw term M is
typable can be designed. We biefly describe the method presented in Selinger [55] (Section
9.5). Other methods can be foumd in Hindley [32] and Milner [45]. This algorithm takes as
input a judgement Γ . M : τ where Γ = {x1 : σ1, . . . , xn : σn} is a type assignment of the free
variables in M . The types σi, τ and the types of the bound variables in M , may contain
type variables. Given a type substitution ϕ, we denote by Γ[ϕ] the type assignment

Γ[ϕ] = {x1 : σ1[ϕ], . . . , xn : σn[ϕ]}.

Given Γ.M : τ , the algorithm either returns failure if M is not typable, or typesub returns a
substitution ϕ of the type variables occurring in the types σi, τ , and the types of the bound
variables in M , denoted typesub(Γ. M : τ), such that Γ[ϕ] . M [ϕ] : τ [ϕ] is provable and ϕ is
a most general substitution, which means that for any other substitution ψ with the above
property, we have ψ = ϕθ for some substitution θ. The algorithm typesub has three cases.
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(1) If M = xi, then

typesub(x1 : σ1, . . . , xn : σn . xi : τ) = mgu(σi, τ).

(2) If M = M1N1, then in order to compute typesub(Γ . (M1N1) : τ), first we find ϕ1 =
typesub(Γ . M1 : X → τ) for some new type variable X, then we find the substitution
ϕ2 = typesub(Γ[ϕ1] . N1[ϕ1] : X[ϕ1]), and then typesub(Γ . (M1N1) : τ) = ϕ1ϕ2.

(3) If M = (λx : σ.M1), then in order to compute typesub(Γ . (λx : σ.M1) : τ), first
we find ϕ1 = mgu(τ, σ → X), where X is a new type variable, then we find ϕ2 =
typesub(Γ[ϕ1], x : σ[ϕ1].M1[ϕ1] : X[ϕ1]), and then typesub(Γ.(λx : σ.M1) : τ) = ϕ1ϕ2.

Peter Selinger explained to me that in the case of an application M1N1, all we know is
that M1 must have an arrow type of the form X → τ for some new type variable X, and
no other candidate for the type of M1 is provided. However, in the case of a λ-abstraction
λx : σ.M1, the term λx : σ.M1 must have an arrow type of the form σ → X for some new
type variable X, and since it already has the type τ , it is natural to unify τ and σ → X.

If the algorithm succeeds, it returns a type substitution ϕ = typesub(Γ . M : τ) such
that τ [ϕ] is a type of M [ϕ] with respect to the type assignment Γ[ϕ] of the free variables in
M that we call a principal type (also known as principal type scheme).

The reader should run the above algorithm on the judgement

. λx : X1. λy : (X1 → X2). yx : ((U → U)→ V ),

where X1, X2, U, V are type variables.

The type-checking problem reduces to the typability problem. First we use the algorithm
to decide whether M is typable. If so, we find a principal type τ , and then we check that τ
and σ (which has no type variables) are unifiable.

Readers who wish to learn more about these topics can read Selinger [55], Pierce [48], and
the two survey papers Gallier [17] (On the Correspondence Between Proofs and λ-Terms)
and Gallier [16] (A Tutorial on Proof Systems and Typed λ-Calculi), both available on the
website
http://www.cis.upenn.edu/̃ jean/gbooks/logic.html and the excellent introduction to proof
theory by Troelstra and Schwichtenberg [61].

Anybody who really wants to understand logic should of course take a look at Kleene
[36] (the famous “I.M.”), but this is not recommended to beginners.

2.15 Completeness and Counter-Examples

Let us return to the question of deciding whether a proposition is not provable. To simplify
the discussion, let us restrict our attention to propositional classical logic. So far, we have
presented a very proof-theoretic view of logic, that is, a view based on the notion of prov-
ability as opposed to a more semantic view of based on the notions of truth and models. A
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Figure 2.9: Stephen C. Kleene, 1909–1994

possible excuse for our bias is that, as Peter Andrews (from CMU) puts it, “truth is elusive.”
Therefore, it is simpler to understand what truth is in terms of the more “mechanical” notion
of provability. (Peter Andrews even gave the subtitle To Truth Through Proof to his logic
book Andrews [1].)

Figure 2.10: Peter Andrews, 1937–

However, mathematicians are not mechanical theorem provers (even if they prove lots of
stuff). Indeed, mathematicians almost always think of the objects they deal with (functions,
curves, surfaces, groups, rings, etc.) as rather concrete objects (even if they may not seem
concrete to the uninitiated) and not as abstract entities solely characterized by arcane axioms.

It is indeed natural and fruitful to try to interpret formal statements semantically. For
propositional classical logic, this can be done quite easily if we interpret atomic propositional
letters using the truth values true and false, as explained in Section 2.11. Then, the crucial
point is that every provable proposition (say in NG⇒,∨,∧,⊥c ) has the value true no matter
how we assign truth values to the letters in our proposition. In this case, we say that P is
valid.

The fact that provability implies validity is called soundness or consistency of the proof
system. The soundness of the proof system NG⇒,∨,∧,⊥c is easy to prove, as sketched in Section
2.11.

We now have a method to show that a proposition P is not provable: find some truth
assignment that makes P false.

Such an assignment falsifying P is called a counterexample. If P has a counterexample,
then it can’t be provable because if it were, then by soundness it would be true for all
possible truth assignments.

But now, another question comes up. If a proposition is not provable, can we always find
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a counterexample for it? Equivalently, is every valid proposition provable? If every valid
proposition is provable, we say that our proof system is complete (this is the completeness
of our system).

The system NG⇒,∨,∧,⊥c is indeed complete. In fact, all the classical systems that we
have discussed are sound and complete. Completeness is usually a lot harder to prove than
soundness. For first-order classical logic, this is known as Gödel’s completeness theorem
(1929). Again, we refer our readers to Gallier [21], van Dalen [62], or Huth and Ryan [35] for
a thorough discussion of these matters. In the first-order case, one has to define first-order
structures (or first-order models).

What about intuitionistic logic?

Well, one has to come up with a richer notion of semantics because it is no longer true
that if a proposition is valid (in the sense of our two-valued semantics using true, false),
then it is provable. Several semantics have been given for intuitionistic logic. In our opinion,
the most natural is the notion of the Kripke model , presented in Section 2.12. Then, again,
soundness and completeness hold for intuitionistic proof systems, even in the first-order case
(see Section 2.12 and van Dalen [62]).

In summary, semantic models can be used to provide counterexamples of unprovable
propositions. This is a quick method to establish that a proposition is not provable.

We close this section by repeating something we said earlier: there isn’t just one logic but
instead, many logics. In addition to classical and intuitionistic logic (propositional and first-
order), there are modal logics, higher-order logics, and linear logic, a logic due to Jean-Yves
Girard, attempting to unify classical and intuitionistic logic (among other goals).

Figure 2.11: Jean-Yves Girard, 1947–

An excellent introduction to these logics can be found in Troelstra and Schwichtenberg
[61]. We warn our readers that most presentations of linear logic are (very) difficult to follow.
This is definitely true of Girard’s seminal paper [26]. A more approachable version can be
found in Girard, Lafont, and Taylor [23], but most readers will still wonder what hit them
when they attempt to read it.

In computer science, there is also dynamic logic, used to prove properties of programs
and temporal logic and its variants (originally invented by A. Pnueli), to prove properties of
real-time systems. So logic is alive and well.

We now add quantifiers to our language and give the corresponding inference rules.
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2.16 Adding Quantifiers; First-Order Languages

As we mentioned in Section 2.1, atomic propositions may contain variables. The intention
is that such variables correspond to arbitrary objects. An example is

human(x)⇒ needs-to-drink(x).

Now in mathematics, we usually prove universal statements, that is statements that hold for
all possible “objects,” or existential statements, that is, statements asserting the existence
of some object satisfying a given property. As we saw earlier, we assert that every human
needs to drink by writing the proposition

∀x(human(x)⇒ needs-to-drink(x)).

Observe that once the quantifier ∀ (pronounced “for all” or “for every”) is applied to the
variable x, the variable x becomes a placeholder and replacing x by y or any other variable
does not change anything . What matters is the locations to which the outer x points in the
inner proposition. We say that x is a bound variable (sometimes a “dummy variable”).

If we want to assert that some human needs to drink we write

∃x(human(x)⇒ needs-to-drink(x));

again, once the quantifier ∃ (pronounced “there exists”) is applied to the variable x, the
variable x becomes a placeholder. However, the intended meaning of the second proposition
is very different and weaker than the first. It only asserts the existence of some object
satisfying the statement

human(x)⇒ needs-to-drink(x).

Statements may contain variables that are not bound by quantifiers.

Example 2.12. For example, in
∃x parent(x, y)

the variable x is bound but the variable y is not. Here the intended meaning of parent(x, y)
is that x is a parent of y, and the intended meaning of ∃x parent(x, y) is that any given y
has some parent x.

Variables that are not bound are called free. The proposition

∀y∃x parent(x, y),

which contains only bound variables is meant to assert that every y has some parent x. Typi-
cally, in mathematics, we only prove statements without free variables. However, statements
with free variables may occur during intermediate stages of a proof.

The intuitive meaning of the statement ∀xP is that P holds for all possible objects x,
and the intuitive meaning of the statement ∃xP is that P holds for some object x. Thus,
we see that it would be useful to use symbols to denote various objects.
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Example 2.13. For example, if we want to assert some facts about the “parent” predicate,
we may want to introduce some constant symbols (for short, constants) such as “Jean,”
“Mia,” and so on and write

parent(Jean,Mia)

to assert that Jean is a parent of Mia.

Often we also have to use function symbols (or operators, constructors), for instance,
to write a statement about numbers: +, ∗, and so on. Using constant symbols, function
symbols, and variables, we can form terms , such as

(x ∗ x+ 1) ∗ (3 ∗ y + 2).

In addition to function symbols, we also use predicate symbols , which are names for atomic
properties. We have already seen several examples of predicate symbols: “human,” “parent.”
So, in general, when we try to prove properties of certain classes of objects (people, numbers,
strings, graphs, and so on), we assume that we have a certain alphabet consisting of constant
symbols, function symbols, and predicate symbols. Using these symbols and an infinite
supply of variables (assumed distinct from the variables we use to label premises) we can
form terms and predicate terms . We say that we have a (logical) language. Using this
language, we can write compound statements.

Let us be a little more precise.

Definition 2.25. In a first-order language L in addition to the logical connectives ⇒
,∧,∨,¬,⊥, ∀, and ∃, we have a set L of nonlogical symbols consisting of

(i) A set CS of constant symbols , c1, c2, . . . ,.

(ii) A set FS of function symbols , f1, f2, . . . ,. Each function symbol f has a rank nf ≥ 1,
which is the number of arguments of f .

(iii) A set PS of predicate symbols , P1, P2, . . . ,. Each predicate symbol P has a rank nP ≥ 0,
which is the number of arguments of P . Predicate symbols of rank 0 are propositional
symbols as in earlier sections.

(iv) The equality predicate = is added to our language when we want to deal with equations.

(v) First-order variables t1, t2, . . . used to form quantified formulae.

The difference between function symbols and predicate symbols is that function symbols
are interpreted as functions defined on a structure (e.g., addition, +, on N), whereas predicate
symbols are interpreted as properties of objects, that is, they take the value true or false.

Example 2.14. An example is the language of Peano arithmetic, L = {0, S,+, ∗,=}, where
0 is a constant symbol, S is a function symbol with one argument, and +, ∗ are function
symbols with two arguments. Here, the intended structure is N, 0 is of course zero, S is
interpreted as the function S(n) = n+ 1, the symbol + is addition, ∗ is multiplication, and
= is equality.
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Using a first-order language L, we can form terms, predicate terms, and formulae.

Definition 2.26. The terms over L are the following expressions.

(i) Every variable t is a term.

(ii) Every constant symbol c ∈ CS, is a term.

(iii) If f ∈ FS is a function symbol taking n arguments and τ1, . . . , τn are terms already
constructed, then f(τ1, . . . , τn) is a term.

Definition 2.27. The predicate terms over L are the following expressions.

(i) If P ∈ PS is a predicate symbol taking n arguments and τ1, . . . , τn are terms already
constructed, then P (τ1, . . . , τn) is a predicate term. When n = 0, the predicate symbol
P is a predicate term called a propositional symbol.

(ii) When we allow the equality predicate, for any two terms τ1 and τ2, the expression
τ1 = τ2 is a predicate term. It is usually called an equation.

Definition 2.28. The (first-order) formulae over L are the following expressions.

(i) Every predicate term P (τ1, . . . , τn) is an atomic formula. This includes all propositional
letters. We also view ⊥ (and sometimes >) as an atomic formula.

(ii) When we allow the equality predicate, every equation τ1 = τ2 is an atomic formula.

(iii) If P and Q are formulae already constructed, then P ⇒ Q, P ∧ Q, P ∨ Q, ¬P are
compound formulae. We treat P ≡ Q as an abbreviation for (P ⇒ Q) ∧ (Q⇒ P ), as
before.

(iv) If P is a formula already constructed and t is any variable, then ∀tP and ∃tP are
quantified compound formulae.

All this can be made very precise but this is quite tedious. Our primary goal is to explain
the basic rules of logic and not to teach a full-fledged logic course. We hope that our intuitive
explanations will suffice, and we now come to the heart of the matter, the inference rules for
the quantifiers. Once again, for a complete treatment, readers are referred to Gallier [21],
van Dalen [62], or Huth and Ryan [35].

Unlike the rules for ⇒,∨,∧ and ⊥, which are rather straightforward, the rules for quan-
tifiers are more subtle due to the presence of variables (occurring in terms and predicates).
We have to be careful to forbid inferences that would yield “wrong” results and for this we
have to be very precise about the way we use free variables . More specifically, we have to
exercise care when we make substitutions of terms for variables in propositions.

Example 2.15. For example, say we have the predicate “odd,” intended to express that a
number is odd. Now we can substitute the term (2y + 1)2 for x in odd(x) and obtain

odd((2y + 1)2).
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Definition 2.29. More generally, if P (t1, t2, . . . , tn) is a statement containing the free vari-
ables t1, . . . , tn and if τ1, . . . , τn are terms, we can form the new statement

P [τ1/t1, . . . , τn/tn]

obtained by substituting the term τi for all free occurrences of the variable ti, for i = 1, . . . , n.

By the way, we denote terms by the Greek letter τ because we use the letter t for a
variable and using t for both variables and terms would be confusing.

However, if P (t1, t2, . . . , tn) contains quantifiers, some bad things can happen; namely,
some of the variables occurring in some term τi may become quantified when τi is substituted
for ti.

Example 2.16. For example, consider

∀x∃y P (x, y, z)

which contains the free variable z and substitute the term x+ y for z; we get

∀x∃y P (x, y, x+ y).

We see that the variables x and y occurring in the term x+ y become bound variables after
substitution. We say that there is a “capture of variables.”

This is not what we intended to happen. To fix this problem, we recall that bound vari-
ables are really place holders, so they can be renamed without changing anything. Therefore,
we can rename the bound variables x and y in ∀x∃y P (x, y, z) to u and v, getting the state-
ment ∀u∃v P (u, v, z) and now, the result of the substitution is

∀u∃v P (u, v, x+ y).

Again, all this needs to be explained very carefuly but this can be done.
Finally, here are the inference rules for the quantifiers, first stated in a natural deduction

style and then in sequent style.

2.17 The Proof Systems N⇒,∧,∨,∀,∃,⊥c and NG⇒,∧,∨,∀,∃,⊥c

It is assumed that we use two disjoint sets of variables for labeling premises (x, y, . . .) and
free variables (t, u, v, . . .). As we show, the ∀-introduction rule and the ∃-elimination rule
involve a crucial restriction on the occurrences of certain variables. Remember, variables
are terms .

Definition 2.30. The inference rules for the quantifiers are

∀-introduction:
If D is a deduction tree for P [u/t] from the premises Γ, then
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Γ

D
P [u/t]

∀tP
is a deduction tree for ∀tP from the premises Γ. Here, u must be a variable that does not
occur free in any of the propositions in Γ or in ∀tP . The notation P [u/t] stands for the
result of substituting u for all free occurrences of t in P .

Recall that Γ denotes the multiset of premises of the deduction tree D, so if D only has
one node, then Γ = {P [u/t]} and t should not occur in P . See Example 2.18 which illustrates
why this restriction is necessary.

∀-elimination:

If D is a deduction tree for ∀tP from the premises Γ, then

Γ

D
∀tP
P [τ/t]

is a deduction tree for P [τ/t] from the premises Γ. Here τ is an arbitrary term and it is
assumed that bound variables in P have been renamed so that none of the variables in τ are
captured after substitution.

∃-introduction:

If D is a deduction tree for P [τ/t] from the premises Γ, then

Γ

D
P [τ/t]

∃tP
is a deduction tree for ∃tP from the premises Γ. As in ∀-elimination, τ is an arbitrary term
and the same proviso on bound variables in P applies (no capture of variables when τ is
substituted).

∃-elimination:

If D1 is a deduction tree for ∃tP from the premises Γ, and if D2 is a deduction tree for
C from the premises in the multiset ∆ and one or more occurrences of P [u/t], then

Γ

D1

∃tP

∆, P [u/t]x

D2

C
x

C
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is a deduction tree of C from the set of premises in the multiset Γ,∆. Here, u must be a
variable that does not occur free in any of the propositions in ∆, ∃tP , or C, and all premises
P [u/t] labeled x are discharged.

In the ∀-introduction and the ∃-elimination rules, the variable u is called the eigenvariable
of the inference.

In the above rules, Γ or ∆ may be empty; P,C denote arbitrary propositions constructed
from a first-order language L; D,D1,D2 are deductions, possibly a one-node tree; and t is
any variable.

Definition 2.31. The system of first-order classical logic N⇒,∨,∧,⊥,∀,∃c is obtained by adding
the above rules to the system of propositional classical logic N⇒,∨,∧,⊥c . The system of first-
order intuitionistic logic N⇒,∨,∧,⊥,∀,∃i is obtained by adding the above rules to the system of
propositional intuitionistic logic N⇒,∨,∧,⊥i . Deduction trees and proof trees are defined as in
the propositional case except that the quantifier rules are also allowed.

Using sequents, the quantifier rules in first-order logic are expressed as follows:

Definition 2.32. The inference rules for the quantifiers in Gentzen-sequent style are

Γ→ P [u/t]

Γ→ ∀tP (∀-intro)
Γ→ ∀tP

Γ→ P [τ/t]
(∀-elim),

where in (∀-intro), u does not occur free in Γ or ∀tP ;

Γ→ P [τ/t]

Γ→ ∃tP (∃-intro)
Γ→ ∃tP z : P [u/t],∆→ C

Γ ∪∆→ C
(∃-elim),

where in (∃-elim), z : P [u/t] /∈ ∆, and u does not occur free in Γ, ∃tP , or C. Again, t is any
variable.

The variable u is called the eigenvariable of the inference.

Definition 2.33. The systems NG⇒,∨,∧,⊥,∀,∃c and NG⇒,∨,∧,⊥,∀,∃i are defined from the systems
NG⇒,∨,∧,⊥c and NG⇒,∨,∧,⊥i , respectively, by adding the above rules. As usual, a deduction
tree is a either a one-node tree or a tree constructed using the above rules and a proof tree
is a deduction tree whose conclusion is a sequent with an empty set of premises (a sequent
of the form ∅ → P ).

When we say that a proposition P is provable from Γ we mean that we can construct
a proof tree whose conclusion is P and whose set of premises is Γ in one of the systems
N⇒,∧,∨,⊥,∀,∃c or NG⇒,∧,∨,⊥,∀,∃c . Therefore, as in propositional logic, when we use the word
“provable” unqualified, we mean provable in classical logic. Otherwise, we say intuitionisti-
cally provable.

It is not hard to show that the proof systemsN⇒,∧,∨,⊥,∀,∃c andNG⇒,∧,∨,⊥,∀,∃c are equivalent
(and similarly for N⇒,∧,∨,⊥,∀,∃i and NG⇒,∧,∨,⊥,∀,∃i ). We leave the details as Problem 2.16.

A first look at the above rules shows that universal formulae ∀tP behave somewhat
like infinite conjunctions and that existential formulae ∃tP behave somewhat like infinite
disjunctions.
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The ∀-introduction rule looks a little strange but the idea behind it is actually very
simple: because u is totally unconstrained, if P [u/t] is provable (from Γ), then intuitively
P [u/t] holds of any arbitrary object, and so, the statement ∀tP should also be provable
(from Γ). Note that the tree

P [u/t]

∀tP
is generally not a deduction, because the deduction tree above ∀tP is a one-node tree con-
sisting of the single premise P [u/t], and u occurs in P [u/t] unless t does not occur in P .

The meaning of the ∀-elimination is that if ∀tP is provable (from Γ), then P holds for
all objects and so, in particular for the object denoted by the term τ ; that is, P [τ/t] should
be provable (from Γ).

The ∃-introduction rule is dual to the ∀-elimination rule. If P [τ/t] is provable (from Γ),
this means that the object denoted by τ satisfies P , so ∃tP should be provable (this latter
formula asserts the existence of some object satisfying P , and τ is such an object).

The ∃-elimination rule is reminiscent of the ∨-elimination rule and is a little more tricky.
It goes as follows. Suppose that we proved ∃tP (from Γ). Moreover, suppose that for every
possible case P [u/t] we were able to prove C (from Γ). Then as we have “exhausted” all
possible cases and as we know from the provability of ∃tP that some case must hold, we can
conclude that C is provable (from Γ) without using P [u/t] as a premise.

Like the ∨-elimination rule, the ∃-elimination rule is not very constructive. It allows
making a conclusion (C) by considering alternatives without knowing which one actually
occurs .

Remark: Analogously to disjunction, in (first-order) intuitionistic logic, if an existential
statement ∃tP is provable, then from any proof of ∃tP , some term τ can be extracted so
that P [τ/t] is provable. Such a term τ is called a witness . The witness property is not easy
to prove. It follows from the fact that intuitionistic proofs have a normal form (see Section
2.13). However, no such property holds in classical logic.

We can illustrate, again, the fact that classical logic allows for nonconstructive proofs by
re-examining the example at the end of Section 2.6.

There we proved that if
√

2
√

2
is rational, then a =

√
2 and b =

√
2 are both irrational

numbers such that ab is rational, and if
√

2
√

2
is irrational, then a =

√
2
√

2
and b =

√
2 are

both irrational numbers such that ab is rational. By ∃-introduction, we deduce that if
√

2
√

2

is rational, then there exist some irrational numbers a, b so that ab is rational, and if
√

2
√

2

is irrational, then there exist some irrational numbers a, b so that ab is rational. In classical
logic, as P ∨¬P is provable, by ∨-elimination, we just proved that there exist some irrational
numbers a and b so that ab is rational.

However, this argument does not give us explicitly numbers a and b with the required

properties. It only tells us that such numbers must exist. Now it turns out that
√

2
√

2

is indeed irrational (this follows from the Gel’fond–Schneider theorem, a hard theorem in
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number theory). Furthermore, there are also simpler explicit solutions such as a =
√

2 and
b = log2 9, as the reader should check.

The following proposition lists some basic properties of substitutions. The easy proof is
left as an exercise.

Proposition 2.13. The following properties of substitution in a first-order formula hold.

(P ∧Q)[τ/t] = P [τ/t] ∧Q[τ/t]

(P ∨Q)[τ/t] = P [τ/t] ∨Q[τ/t]

(P ⇒ Q)[τ/t] = P [τ/t]⇒ Q[τ/t]

(¬P )[τ/t] = ¬P [τ/t]

(∀sP )[τ/t] = ∀sP [τ/t]

(∃sP )[τ/t] = ∃sP [τ/t],

for any term τ such that no variable in τ is captured during the substitution (in particular,
in the last two cases, the variable s does not occur in τ).

Example 2.17. Here is an example of a proof in the system N⇒,∨,∧,⊥,∀,∃c (actually, in the
system N⇒,∨,∧,⊥,∀,∃i ) of the formula ∀t(P ∧Q)⇒ ∀tP ∧ ∀tQ.

∀t(P ∧Q)x

P [u/t] ∧Q[u/t]

P [u/t]

∀tP

∀t(P ∧Q)x

P [u/t] ∧Q[u/t]

Q[u/t]

∀tQ
∀tP ∧ ∀tQ

x

∀t(P ∧Q)⇒ ∀tP ∧ ∀tQ
In the above proof, u is a new variable, that is, a variable that does not occur free in P or
Q.

The reader should show that ∀tP ∧ ∀tQ ⇒ ∀t(P ∧ Q) is also provable in the system
N⇒,∨,∧,⊥,∀,∃i . However, in general, one can’t just replace ∀ by ∃ (or ∧ by ∨) and still obtain
provable statements. For example, ∃tP ∧ ∃tQ⇒ ∃t(P ∧Q) is not provable at all. We leave
it as an exercise to find an interpretation of the predicate symbols P and Q that yields a
counter-example.

Example 2.18. Here is an example in which the ∀-introduction rule is applied illegally, and
thus, yields a statement that is actually false (not provable). In the incorrect “proof” below,
P is an atomic predicate symbol taking two arguments (e.g., “parent”) and 0 is a constant
denoting zero.
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P (u, 0)x
illegal step!

∀tP (t, 0)
Implication-Intro x

P (u, 0)⇒ ∀tP (t, 0)
Forall-Intro

∀s(P (s, 0)⇒ ∀tP (t, 0))
Forall-Elim

P (0, 0)⇒ ∀tP (t, 0)

The problem is that the variable u occurs free in the premise P [u/t, 0] = P (u, 0) and
therefore, the application of the ∀-introduction rule in the first step is illegal. However,
note that this premise is discharged in the second step and so, the application of the ∀-
introduction rule in the third step is legal. The (false) conclusion of this faulty proof is that
P (0, 0) ⇒ ∀tP (t, 0) is provable. Indeed, there are plenty of properties such that the fact
that the single instance P (0, 0) holds does not imply that P (t, 0) holds for all t.

Remark: The above example shows why it is desirable to have premises that are universally
quantified . A premise of the form ∀tP can be instantiated to P [u/t], using ∀-elimination,
where u is a brand new variable. Later on, it may be possible to use ∀-introduction without
running into trouble with free occurrences of u in the premises. But we still have to be very
careful when we use ∀-introduction or ∃-elimination.

Here are some useful equivalences involving quantifiers. The first two are analogous to
the de Morgan laws for ∧ and ∨.

Proposition 2.14. The following equivalences are provable in classical first-order logic.

¬∀tP ≡ ∃t¬P
¬∃tP ≡ ∀t¬P

∀t(P ∧Q) ≡ ∀tP ∧ ∀tQ
∃t(P ∨Q) ≡ ∃tP ∨ ∃tQ.

In fact, the last three and ∃t¬P ⇒ ¬∀tP are provable intuitionistically. Moreover, the
formulae

∃t(P ∧Q)⇒ ∃tP ∧ ∃tQ and ∀tP ∨ ∀tQ⇒ ∀t(P ∨Q)

are provable in intuitionistic first-order logic (and thus, also in classical first-order logic).

Proof. Left as an exercise to the reader.

Before concluding this section, let us give a few more examples of proofs using the rules
for the quantifiers.
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2.18 Examples of First-Order Proof Trees

Example 2.19. First let us prove that

∀tP ≡ ∀uP [u/t],

where u is any variable not free in ∀tP and such that u is not captured during the substitution.
This rule allows us to rename bound variables (under very mild conditions). We have the
proofs

(∀tP )α

P [u/t]

∀uP [u/t]
α

∀tP ⇒ ∀uP [u/t]

and

(∀uP [u/t])α

P [u/t]

∀tP
α

∀uP [u/t]⇒ ∀tP

Example 2.20. Next, we give intuitionistic proofs of

(∃tP ∧Q)⇒ ∃t(P ∧Q)

and
∃t(P ∧Q)⇒ (∃tP ∧Q),

where t does not occur (free or bound) in Q.
Here is an intuitionistic proof of the first implication.

(∃tP ∧Q)x

∃tP

P [u/t]y

(∃tP ∧Q)x

Q

P [u/t] ∧Q
∃t(P ∧Q)

y (∃-elim)
∃t(P ∧Q)

x

(∃tP ∧Q)⇒ ∃t(P ∧Q)

In the above proof, u is a new variable that does not occur in ∃tP or Q. Because t does
not occur in Q, we have

(P ∧Q)[u/t] = P [u/t] ∧Q.
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Here is an intuitionistic proof of the converse in which (P ∧Q) is abbreviated as A.

(∃tA)x

(P [u/t] ∧Q)y

P [u/t]

∃tP
y (∃-elim)

∃tP

(∃tA)x

(P [u/t] ∧Q)z

Q
z (∃-elim)

Q

∃tP ∧Q
x

∃t(P ∧Q)⇒ (∃tP ∧Q)

Example 2.21. Here is now a proof (intuitionistic) of

∃t(P ⇒ Q)⇒ (∀tP ⇒ Q),

where t does not occur (free or bound) in Q.

(∃t(P ⇒ Q))z

(P [u/t]⇒ Q)x

(∀tP )y

P [u/t]

Q
x (∃-elim)

Q
y

∀tP ⇒ Q
z

∃t(P ⇒ Q)⇒ (∀tP ⇒ Q)

In the above proof, u is a new variable that does not occur in Q, ∀tP , or ∃t(P ⇒ Q).
Because t does not occur in Q, we have

(P ⇒ Q)[u/t] = P [u/t]⇒ Q.

The converse requires (RAA) and is a bit more complicated.

Example 2.22. Here is a classical proof in which (P ⇒ Q) is abbreviated as A.
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(¬∃tA)y

P [u/t]α, Qβ

Q
α

P [u/t]⇒ Q

∃t(P ⇒ Q)

⊥
β

¬Q
(∀tP ⇒ Q)x

(¬∃tA)y

¬P [u/t]δ P [u/t]γ

⊥
Q

γ

P [u/t]⇒ Q

∃t(P ⇒ Q)

⊥
δ (RAA)

P [u/t]

∀tP
Q

⊥
y (RAA)

∃t(P ⇒ Q)
x

(∀tP ⇒ Q)⇒ ∃t(P ⇒ Q)

Example 2.23. Finally, we give a proof (intuitionistic) of

(∀tP ∨Q)⇒ ∀t(P ∨Q),

where t does not occur (free or bound) in Q.

(∀tP ∨Q)z

(∀tP )x

P [u/t]

P [u/t] ∨Q
∀t(P ∨Q)

Qy

P [u/t] ∨Q
∀t(P ∨Q)

x,y (∨-elim)
∀t(P ∨Q)

z

(∀tP ∨Q)⇒ ∀t(P ∨Q)

In the above proof, u is a new variable that does not occur in ∀tP or Q. Because t does
not occur in Q, we have

(P ∨Q)[u/t] = P [u/t] ∨Q.

The converse requires (RAA).

The useful above equivalences (and more) are summarized in the following propositions.

Proposition 2.15. (1) The following equivalences are provable in classical first-order logic,
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provided that t does not occur (free or bound) in Q.

∀tP ∧Q ≡ ∀t(P ∧Q)

∃tP ∨Q ≡ ∃t(P ∨Q)

∃tP ∧Q ≡ ∃t(P ∧Q)

∀tP ∨Q ≡ ∀t(P ∨Q).

Furthermore, the first three are provable intuitionistically and so is (∀tP ∨Q)⇒ ∀t(P ∨Q).
(2) The following equivalences are provable in classical logic, provided that t does not

occur (free or bound) in P .

∀t(P ⇒ Q) ≡ (P ⇒ ∀tQ)

∃t(P ⇒ Q) ≡ (P ⇒ ∃tQ).

Furthermore, the first one is provable intuitionistically and so is ∃t(P ⇒ Q)⇒ (P ⇒ ∃tQ).
(3) The following equivalences are provable in classical logic, provided that t does not

occur (free or bound) in Q.

∀t(P ⇒ Q) ≡ (∃tP ⇒ Q)

∃t(P ⇒ Q) ≡ (∀tP ⇒ Q).

Furthermore, the first one is provable intuitionistically and so is ∃t(P ⇒ Q)⇒ (∀tP ⇒ Q).

Proofs that have not been supplied are left as exercises.
Obviously, every first-order formula that is provable intuitionistically is also provable

classically and we know that there are formulae that are provable classically but not provable
intuitionistically. Therefore, it appears that classical logic is more general than intuitionistic
logic. However, this is not quite so because there is a way of translating classical logic
into intuitionistic logic. To be more precise, every classical formula A can be translated
into a formula A∗, where A∗ is classically equivalent to A and A is provable classically
iff A∗ is provable intuitionistically. Various translations are known, all based on a “trick”
involving double-negation (This is because ¬¬¬A and ¬A are intuitionistically equivalent).
Translations were given by Kolmogorov (1925), Gödel (1933), and Gentzen (1933).

For example, Gödel used the following translation.

A∗ = ¬¬A, if A is atomic

(¬A)∗ = ¬A∗
(A ∧B)∗ = (A∗ ∧B∗)

(A⇒ B)∗ = ¬(A∗ ∧ ¬B∗)
(A ∨B)∗ = ¬(¬A∗ ∧ ¬B∗)

(∀xA)∗ = ∀xA∗
(∃xA)∗ = ¬∀x¬A∗.
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Figure 2.12: Andrey N. Kolmogorov, 1903–1987 (left) and Kurt Gödel, 1906–1978 (right)

Actually, if we restrict our attention to propositions (i.e., formulae without quantifiers),
a theorem of V. Glivenko (1929) states that if a proposition A is provable classically, then
¬¬A is provable intuitionistically. In view of these results, the proponents of intuitionistic
logic claim that classical logic is really a special case of intuitionistic logic. However, the
above translations have some undesirable properties, as noticed by Girard. For more details
on all this; see Gallier [16].

2.19 First-Order Theories; Peano Arithmetic

The way we presented deduction trees and proof trees may have given our readers the
impression that the set of premises Γ was just an auxiliary notion. Indeed, in all of our
examples, Γ ends up being empty. However, nonempty Γs are crucially needed if we want to
develop theories about various kinds of structures and objects, such as the natural numbers,
groups, rings, fields, trees, graphs, sets, and the like. Indeed, we need to make definitions
about the objects we want to study and we need to state some axioms asserting the main
properties of these objects. We do this by putting these definitions and axioms in Γ.

Actually, we have to allow Γ to be infinite but we still require that our deduction trees
be finite; they can only use finitely many of the formulae in Γ.

Definition 2.34. Given a (possibly infinite) set of premises Γ, the set of all formulae P such
that ∆→ P is provable, where ∆ is any finite subset of Γ, is called a theory (or first-order
theory).

Of course we have the usual problem of consistency: if we are not careful, our theory
may be inconsistent, that is, it may consist of all formulae.

Let us give two examples of theories.

Example 2.24. Our first example is the theory of equality . Indeed, our readers may have
noticed that we have avoided dealing with the equality relation. In practice, we can’t do
that.

Given a language L with a given supply of constant, function, and predicate symbols,
the theory of equality consists of the following formulae taken as axioms.
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∀x(x = x)

∀x1 · · · ∀xn∀y1 · · · ∀yn[(x1 = y1 ∧ · · · ∧ xn = yn)

⇒ f(x1, . . . , xn) = f(y1, . . . , yn)]

∀x1 · · · ∀xn∀y1 · · · ∀yn[(x1 = y1 ∧ · · · ∧ xn = yn) ∧ P (x1, . . . , xn)

⇒ P (y1, . . . , yn)],

for all function symbols (of n arguments) and all predicate symbols (of n arguments), in-
cluding the equality predicate, =, itself.

It is not immediately clear from the above axioms that = is symmetric and transitive
but this can be shown easily.

Example 2.25. Our second example is the first-order theory of the natural numbers known
as Peano arithmetic (for short, PA). In this case the language L consists of the nonlogical
symbols {0, S,+, ∗,=}. Here, we have the constant 0 (zero), the unary function symbol
S (for successor function; the intended meaning is S(n) = n + 1) and the binary function
symbols + (for addition) and ∗ (for multiplication). In addition to the axioms for the theory
of equality we have the following axioms:

∀x¬(S(x) = 0)

∀x∀y(S(x) = S(y)⇒ x = y)

∀x(x+ 0 = x)

∀x∀y(x+ S(y) = S(x+ y))

∀x(x ∗ 0 = 0)

∀x∀y(x ∗ S(y) = x ∗ y + x)

[A(0) ∧ ∀x(A(x)⇒ A(S(x)))]⇒ ∀nA(n),

where A is any first-order formula with one free variable.

Figure 2.13: Giuseppe Peano, 1858–1932

This last axiom is the induction axiom. Observe how + and ∗ are defined recursively in
terms of 0 and S and that there are infinitely many induction axioms (countably many).
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Figure 2.14: Kurt Gödel with Albert Einstein

Many properties that hold for the natural numbers (i.e., are true when the symbols
0, S,+, ∗ have their usual interpretation and all variables range over the natural numbers)
can be proven in this theory (Peano arithmetic), but not all . This is another very famous
result of Gödel known as Gödel’s incompleteness theorem (1931). However, the topic of
incompleteness is definitely outside the scope in this book, so we do not say any more about
it.

However, we feel that it should be intructive for the reader to see how simple properties
of the natural numbers can be derived (in principle) in Peano arithmetic.

First it is convenient to introduce abbreviations for the terms of the form Sn(0) (where
Sn denotes the n-fold composition of S with itself) which represent the natural numbers.
Thus, we add a countable supply of constants, 0, 1, 2, 3, . . . , to denote the natural numbers
and add the axioms

n = Sn(0),

for all natural numbers n. We also write n+ 1 for S(n).
Let us illustrate the use of the quantifier rules involving terms (∀-introduction, ∀-elimination

and ∃-introduction) by proving some simple properties of the natural numbers, namely, be-
ing even or odd. We also prove a property of the natural number that we used before (in
the proof that

√
2 is irrational), namely, that every natural number is either even or odd .

For this, we add the predicate symbols “even” and “odd” to our language, and assume the
following axioms defining these predicates:

∀n(even(n) ≡ ∃k(n = 2 ∗ k))

∀n(odd(n) ≡ ∃k(n = 2 ∗ k + 1)).

Consider the term, 2 ∗ (m+ 1) ∗ (m+ 2) + 1, where m is any given natural number. We
need a few preliminary results.

Proposition 2.16. The statement odd(2 ∗ (m + 1) ∗ (m + 2) + 1) is provable in Peano
arithmetic.

As an auxiliary lemma, we first prove
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Proposition 2.17. The formula

∀x odd(2 ∗ x+ 1)

is provable in Peano arithmetic.

Proof. Let p be a variable not occurring in any of the axioms of Peano arithmetic (the
variable p stands for an arbitrary natural number). From the axiom,

∀n(odd(n) ≡ ∃k(n = 2 ∗ k + 1)),

by ∀-elimination where the term 2 ∗ p+ 1 is substituted for the variable n we get

odd(2 ∗ p+ 1) ≡ ∃k(2 ∗ p+ 1 = 2 ∗ k + 1). (∗)

Now we can think of the provable equation 2 ∗ p+ 1 = 2 ∗ p+ 1 as

(2 ∗ p+ 1 = 2 ∗ k + 1)[p/k],

so by ∃-introduction, we can conclude that

∃k(2 ∗ p+ 1 = 2 ∗ k + 1),

which, by (∗), implies that
odd(2 ∗ p+ 1).

But now, because p is a variable not occurring free in the axioms of Peano arithmetic, by
∀-introduction, we conclude that

∀x odd(2 ∗ x+ 1),

as claimed.

Proof of Proposition 2.16. If we use ∀-elimination in the formula of Proposition 2.17 where
we substitute the term τ = (m+ 1) ∗ (m+ 2) for x, we get

odd(2 ∗ (m+ 1) ∗ (m+ 2) + 1),

as claimed

Now we wish to prove

Proposition 2.18. The formula

∀n(even(n) ∨ odd(n))

is provable in Peano arithmetic.
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Proof. We use the induction principle of Peano arithmetic with

A(n) = even(n) ∨ odd(n).

For the base case, n = 0, because 0 = 2∗0 (which can be proven from the Peano axioms),
we see that even(0) holds and so even(0) ∨ odd(0) is proven.

For n = 1, because 1 = 2 ∗ 0 + 1 (which can be proven from the Peano axioms), we see
that odd(1) holds and so even(1) ∨ odd(1) is proven.

For the induction step, we may assume that A(n) has been proven and we need to prove
that A(n+ 1) holds.

So, assume that even(n) ∨ odd(n) holds. We do a proof by cases.
(a) If even(n) holds, by definition this means that n = 2k for some k and then, n + 1 =

2k+1, which again, by definition means that odd(n+1) holds and thus, even(n+1)∨odd(n+1)
holds.

(b) If odd(n) holds, by definition this means that n = 2k + 1 for some k and then,
n+ 1 = 2k+ 2 = 2(k+ 1), which again, by definition means that even(n+ 1) holds and thus,
even(n+ 1) ∨ odd(n+ 1) holds.

By ∨-elimination, we conclude that even(n + 1) ∨ odd(n + 1) holds, establishing the
induction step.

Therefore, using induction, we have proven that

∀n(even(n) ∨ odd(n)),

as claimed.

Actually, we can show that even(n) and odd(n) are mutually exclusive as we now prove.

Proposition 2.19. The formula

∀n¬(even(n) ∧ odd(n))

is provable in Peano arithmetic.

Proof. We prove this by induction. For n = 0, the statement odd(0) means that 0 = 2k+1 =
S(2k), for some k. However, the first axiom of Peano arithmetic states that S(x) 6= 0 for all
x, so we get a contradiction.

For the induction step, assume that ¬(even(n) ∧ odd(n)) holds. We need to prove that
¬(even(n + 1) ∧ odd(n + 1)) holds, and we can do this by using our constructive proof-by-
contradiction rule. So, assume that even(n+ 1)∧ odd(n+ 1) holds. At this stage, we realize
that if we could prove that

∀n(even(n+ 1)⇒ odd(n)) (∗)
and

∀n(odd(n+ 1)⇒ even(n)), (∗∗)
then even(n+ 1) ∧ odd(n+ 1) would imply even(n) ∧ odd(n), contradicting the assumption
¬(even(n) ∧ odd(n)). Therefore, the proof is complete if we can prove (∗) and (∗∗).



138 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Let’s consider the implication (∗) leaving the proof of (∗∗) as an exercise.
Assume that even(n+ 1) holds. Then n+ 1 = 2k, for some natural number k. We can’t

have k = 0 because otherwise we would have n + 1 = 0, contradicting one of the Peano
axioms. But then k is of the form k = h+ 1 for some natural number h, so

n+ 1 = 2k = 2(h+ 1) = 2h+ 2 = (2h+ 1) + 1.

By the second Peano axiom, we must have

n = 2h+ 1,

which proves that n is odd, as desired.
In that last proof, we made implicit use of the fact that every natural number n different

from zero is of the form n = m+ 1, for some natural number m which is formalized as

∀n((n 6= 0)⇒ ∃m(n = m+ 1)).

This is easily proven by induction.
Having done all this work, we have finally proven (∗) and after proving (∗∗), we will have

proven that
∀n¬(even(n) ∧ odd(n)),

as claimed.

It is also easy to prove that

∀n(even(n) ∨ odd(n))

and
∀n¬(even(n) ∧ odd(n))

together imply that

∀n(even(n) ≡ ¬odd(n)) and ∀n(odd(n) ≡ ¬even(n))

are provable, facts that we used several times in Section 2.10. This is because, if

∀x(P ∨Q) and ∀x¬(P ∧Q)

can be deduced intuitionistically from a set of premises Γ, then

∀x(P ≡ ¬Q) and ∀x(Q ≡ ¬P )

can also be deduced intuitionistically from Γ. In this case it also follows that ∀x(¬¬P ≡ P )
and ∀x(¬¬Q ≡ Q) can be deduced intuitionistically from Γ.

Remark: Even though we proved that every nonzero natural number n is of the form
n = m + 1, for some natural number m, the expression n − 1 does not make sense because
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the predecessor function n 7→ n− 1 has not been defined yet in our logical system. We need
to define a function symbol “pred” satisfying the axioms

pred(0) = 0

∀n(pred(n+ 1) = n).

For simplicity of notation, we write n − 1 instead of pred(n). Then we can prove that if
k 6= 0, then 2k−1 = 2(k−1)+1 (which really should be written as pred(2k) = 2pred(k)+1).
This can indeed be done by induction; we leave the details as an exercise. We can also define
substraction, −, as a function sastisfying the axioms

∀n(n− 0 = n)

∀n∀m(n− (m+ 1) = pred(n−m)).

It is then possible to prove the usual properties of subtraction (by induction).
These examples of proofs in the theory of Peano arithmetic illustrate the fact that con-

structing proofs in an axiomatized theory is a very laborious and tedious process. Many
small technical lemmas need to be established from the axioms, which renders these proofs
very lengthy and often unintuitive. It is therefore important to build up a database of useful
basic facts if we wish to prove, with a certain amount of comfort, properties of objects whose
properties are defined by an axiomatic theory (such as the natural numbers). However, when
in doubt, we can always go back to the formal theory and try to prove rigorously the facts
that we are not sure about, even though this is usually a tedious and painful process. Human
provers navigate in a “spectrum of formality,” most of the time constructing informal proofs
containing quite a few (harmless) shortcuts, sometimes making extra efforts to construct
more formalized and rigorous arguments if the need arises.

Now what if the theory of Peano arithmetic were inconsistent! How do know that Peano
arithmetic does not imply any contradiction? This is an important and hard question that
motivated a lot of the work of Gentzen. An easy answer is that the standard model N of
the natural numbers under addition and multiplication validates all the axioms of Peano
arithmetic. Therefore, if both P and ¬P could be proven from the Peano axioms, then both
P and ¬P would be true in N, which is absurd. To make all this rigorous, we need to define
the notion of truth in a structure, a notion explained in every logic book. It should be noted
that the constructivists will object to the above method for showing the consistency of Peano
arithmetic, because it assumes that the infinite set N exists as a completed entity. Until
further notice, we have faith in the consistency of Peano arithmetic (so far, no inconsistency
has been found).

Another very interesting theory is set theory . There are a number of axiomatizations of
set theory and we discuss one of them (ZFC) briefly in Section 2.20.

2.20 Basics Concepts of Set Theory

This section takes the very “naive” point of view that a set is an unordered collection of
objects, without duplicates, the collection being regarded as a single object. Having first-
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Figure 2.15: Ernst F. Zermelo, 1871–1953 (left), Adolf A. Fraenkel, 1891–1965 (middle left),
John von Neumann, 1903–1957 (middle right) and Paul I. Bernays, 1888–1977 (right)

Figure 2.16: Georg F. L. P. Cantor, 1845–1918

order logic at our disposal, we could formalize set theory very rigorously in terms of axioms.
This was done by Zermelo first (1908) and in a more satisfactory form by Zermelo and
Fraenkel in 1921, in a theory known as the “Zermelo–Fraenkel” (ZF) axioms. Another
axiomatization was given by John von Neumann in 1925 and later improved by Bernays in
1937. A modification of Bernay’s axioms was used by Kurt Gödel in 1940. This approach
is now known as “von Neumann–Bernays” (VNB) or “Gödel–Bernays” (GB) set theory.
There are many books that give an axiomatic presentation of set theory. Among them we
recommend Enderton [13], which we find remarkably clear and elegant, Suppes [59] (a little
more advanced), and Halmos [29], a classic (at a more elementary level).

However, it must be said that set theory was first created by Georg Cantor (1845–1918)
between 1871 and 1879. However, Cantor’s work was not unanimously well received by all
mathematicians.

Cantor regarded infinite objects as objects to be treated in much the same way as finite
sets, a point of view that was shocking to a number of very prominent mathematicians who
bitterly attacked him (among them, the powerful Kronecker). Also, it turns out that some
paradoxes in set theory popped up in the early 1900s, in particular, Russell’s paradox.

Russell’s paradox (found by Russell in 1902) has to to with the
“set of all sets that are not members of themselves,”

which we denote by

R = {x | x /∈ x}.
(In general, the notation {x | P} stand for the set of all objects satisfying the property P .)
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Figure 2.17: Bertrand A. W. Russell, 1872–1970

Now classically, either R ∈ R or R /∈ R. However, if R ∈ R, then the definition of R says
that R /∈ R; if R /∈ R, then again, the definition of R says that R ∈ R.

So we have a contradiction and the existence of such a set is a paradox. The problem
is that we are allowing a property (here, P (x) = x /∈ x), which is “too wild” and circular
in nature. As we show, the way out, as found by Zermelo, is to place a restriction on the
property P and to also make sure that P picks out elements from some already given set
(see the subset axioms below).

The apparition of these paradoxes prompted mathematicians, with Hilbert among its
leaders, to put set theory on firmer ground. This was achieved by Zermelo, Fraenkel, von
Neumann, Bernays, and Gödel, to name only the major players.

In what follows, we are assuming that we are working in classical logic. The language L
of set theory consists of the symbols {∅,∈,=}, where ∅ is a constant symbol (corresponding
to the empty set) and ∈ is binary predicate symbol (denoting set membership).

In set theory formalized in first-order logic, every object is a set . Instead of writing the
membership relation as ∈ (X, Y ), we write X ∈ Y , which expresses that the set X belongs
to the set Y . To reduce the level of formality, we often denote sets using capital letters and
members of sets using lower-case letters, and so we wite a ∈ A for a belongs to the set A
(even though a is also a set). Instead of ¬(a ∈ A), we write

a /∈ A.

We introduce various operations on sets using definitions involving the logical connectives
∧, ∨, ¬, ∀, and ∃.

In order to ensure the existence of some of these sets requires some of the axioms of set
theory , but we are rather casual about that.

When are two sets A and B equal? This corresponds to the first axiom of set theory,
called the

Extensionality Axiom
Two sets A and B are equal iff they have exactly the same elements; that is,

∀x(x ∈ A⇒ x ∈ B) ∧ ∀x(x ∈ B ⇒ x ∈ A).

The above says: every element of A is an element of B and conversely.
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There is a special set having no elements at all, the empty set , denoted ∅. This is the
following.

Empty Set Axiom
There is a set having no members. This set is denoted ∅ and it is characterized by the
property

∀x(x /∈ ∅).

Remark: Beginners often wonder whether there is more than one empty set. For example,
is the empty set of professors distinct from the empty set of potatoes?

The answer is, by the extensionality axiom, there is only one empty set.
Given any two objects a and b, we can form the set {a, b} containing exactly these two

objects. Amazingly enough, this must also be an axiom.

Pairing Axiom
Given any two objects a and b (think sets), there is a set {a, b} having as members just a
and b.

Observe that if a and b are identical, then we have the set {a, a}, which is denoted by
{a} and is called a singleton set (this set has a as its only element).

To form bigger sets, we use the union operation. This too requires an axiom.

Union Axiom (Version 1)
For any two sets A and B, there is a set A ∪B called the union of A and B defined by

x ∈ A ∪B iff (x ∈ A) ∨ (x ∈ B).

This reads x is a member of A∪B if either x belongs to A or x belongs to B (or both). We
also write

A ∪B = {x | x ∈ A or x ∈ B}.
Using the union operation, we can form bigger sets by taking unions with singletons. For
example, we can form

{a, b, c} = {a, b} ∪ {c}.

Remark: We can systematically construct bigger and bigger sets by the following method.
Given any set A let

A+ = A ∪ {A}.
If we start from the empty set, we obtain sets that can be used to define the natural numbers
and the + operation corresponds to the successor function on the natural numbers (i.e.,
n 7→ n+ 1).

Another operation is the power set formation. It is indeed a “powerful” operation, in the
sense that it allows us to form very big sets. For this, it is helpful to define the notion of
inclusion between sets.
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Definition 2.35. Given any two sets A and B, we say that A is a subset of B (or that A
is included in B), denoted A ⊆ B, iff every element of A is also an element of B, that is,

∀x(x ∈ A⇒ x ∈ B).

We say that A is a proper subset of B iff A ⊆ B and A 6= B. This implies that that there is
some b ∈ B with b /∈ A. We usually write A ⊂ B.

Observe that the equality of two sets can be expressed by

A = B iff A ⊆ B and B ⊆ A.

Power Set Axiom
Given any set A, there is a set P(A) (also denoted 2A), called the power set of A whose
members are exactly the subsets of A; that is,

X ∈ P(A) iff X ⊆ A.

For example, if A = {a, b, c}, then

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}},

a set containing eight elements. Note that the empty set and A itself are always members
of P(A).

Remark: If A has n elements, it is not hard to show that P(A) has 2n elements. For this
reason, many people, including us, prefer the notation 2A for the power set of A.

At this stage, we define intersection and complementation. For this, given any set A and
given a property P (specified by a first-order formula) we need to be able to define the subset
of A consisting of those elements satisfying P . This subset is denoted by

{x ∈ A | P}.

Unfortunately, there are problems with this construction. If the formula P is somehow a
circular definition and refers to the subset that we are trying to define, then some paradoxes
may arise.

The way out is to place a restriction on the formula used to define our subsets, and
this leads to the subset axioms, first formulated by Zermelo. These axioms are also called
comprehension axioms or axioms of separation.

Subset Axioms
For every first-order formula P we have the axiom

∀A∃X∀x(x ∈ X iff (x ∈ A) ∧ P ),

where P does not contain X as a free variable. (However, P may contain x free.)
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The subset axioms says that for every set A, there is a set X consisting exactly of those
elements of A so that P holds. For short, we usually write

X = {x ∈ A | P}.

As an example, consider the formula

P (B, x) = x ∈ B.
Then the subset axiom says

∀A∃X∀x(x ∈ A ∧ x ∈ B),

which means that X is the set of elements that belong both to A and B.
This is called the intersection of A and B, denoted by A ∩B. Note that

A ∩B = {x | x ∈ A and x ∈ B}.
We can also define the relative complement of B in A, denoted A − B, given by the

formula P (B, x) = x /∈ B, so that

A−B = {x | x ∈ A and x /∈ B}.
In particular, if A is any given set and B is any subset of A, the set A− B is also denoted
B and is called the complement of B.

The algebraic properties of union, intersection, and complementation are inherited from
the properties of disjunction, conjunction, and negation. The following proposition lists some
of the most important properties of union, intersection, and complementation.

Proposition 2.20. The following equations hold for all sets A,B,C.

A ∪ ∅ = A

A ∩ ∅ = ∅
A ∪ A = A

A ∩ A = A

A ∪B = B ∪ A
A ∩B = B ∩ A.

The last two assert the commutativity of ∪ and ∩. We have distributivity of ∩ over ∪ and
of ∪ over ∩.

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

We have associativity of ∩ and ∪.

A ∩ (B ∩ C) = (A ∩B) ∩ C
A ∪ (B ∪ C) = (A ∪B) ∪ C.
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Proof. Use Proposition 2.5.

Because ∧,∨, and ¬ satisfy the de Morgan laws (remember, we are dealing with classical
logic), for any set X, the operations of union, intersection, and complementation on subsets
of X satisfy the de Morgan laws.

Proposition 2.21. For every set X and any two subsets A,B of X, the following identities
(de Morgan laws) hold.

A = A

(A ∩B) = A ∪B
(A ∪B) = A ∩B.

So far, the union axiom only applies to two sets but later on we need to form infinite
unions. Thus, it is necessary to generalize our union axiom as follows.

Union Axiom (Final Version)
Given any set X (think of X as a set of sets), there is a set

⋃
X defined so that

x ∈
⋃

X iff ∃B(B ∈ X ∧ x ∈ B).

This says that
⋃
X consists of all elements that belong to some member of X.

If we take X = {A,B}, where A and B are two sets, we see that⋃
{A,B} = A ∪B,

and so, our final version of the union axiom subsumes our previous union axiom which we
now discard in favor of the more general version.

Observe that ⋃
{A} = A,

⋃
{A1, . . . , An} = A1 ∪ · · · ∪ An.

and in particular,
⋃ ∅ = ∅.

Using the subset axioms, we can also define infinite intersections. For every nonempty
set X, there is a set

⋂
X defined by

x ∈
⋂

X iff ∀B(B ∈ X ⇒ x ∈ B).

The existence of
⋂
X is justified as follows. Because X is nonempty, it contains some

set, A; let
P (X, x) = ∀B(B ∈ X ⇒ x ∈ B).

Then, the subset axioms asserts the existence of a set Y so that for every x,

x ∈ Y iff x ∈ A and P (X, x),
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which is equivalent to
x ∈ Y iff P (X, x).

Therefore, the set Y is our desired set,
⋂
X.

Observe that ⋂
{A,B} = A ∩B,

⋂
{A1, . . . , An} = A1 ∩ · · · ∩ An.

Note that
⋂ ∅ is not defined. Intuitively, it would have to be the set of all sets, but such a

set does not exist, as we now show. This is basically a version of Russell’s paradox.

Theorem 2.22. (Russell) There is no set of all sets, that is, there is no set to which every
other set belongs.

Proof. Let A be any set. We construct a set B that does not belong to A. If the set of all
sets existed, then we could produce a set that does not belong to it, a contradiction. Let

B = {a ∈ A | a /∈ a}.

We claim that B /∈ A. We proceed by contradiction, so assume B ∈ A. However, by the
definition of B, we have

B ∈ B iff B ∈ A and B /∈ B.

Because B ∈ A, the above is equivalent to

B ∈ B iff B /∈ B,

which is a contradiction. Therefore, B /∈ A and we deduce that there is no set of all sets.

Remarks:

(1) We should justify why the equivalence B ∈ B iff B /∈ B is a contradiction. What we
mean by “a contradiction” is that if the above equivalence holds, then we can derive ⊥
(falsity) and thus, all propositions become provable. This is because we can show that
for any proposition P if P ≡ ¬P is provable, then every proposition is provable. We
leave the proof of this fact as an easy exercise for the reader. By the way, this holds
classically as well as intuitionistically.

(2) We said that in the subset axioms, the variable X is not allowed to occur free in
P . A slight modification of Russell’s paradox shows that allowing X to be free in
P leads to paradoxical sets. For example, pick A to be any nonempty set and set
P (X, x) = x /∈ X. Then, look at the (alleged) set

X = {x ∈ A | x /∈ X}.

As an exercise, the reader should show that X is empty iff X is nonempty,
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Figure 2.18: John von Neumann

This is as far as we can go with the elementary notions of set theory that we have
introduced so far. In order to proceed further, we need to define relations and functions, as
we did in Chapter 11.3.

The reader may also wonder why we have not yet discussed infinite sets. This is because
we don’t know how to show that they exist. Again, perhaps surprisingly, this takes another
axiom, the axiom of infinity . We also have to define when a set is infinite. However, we
do not go into this right now. Instead, we accept that the set of natural numbers N exists
and is infinite. Once we have the notion of a function, we are able to show that other sets
are infinite by comparing their “size” with that of N. (This is also the purpose of cardinal
numbers , but this would lead us too far afield).

Remark: In an axiomatic presentation of set theory, the natural numbers can be defined
from the empty set using the operation A 7→ A+ = A ∪ {A} introduced just after the union
axiom. The idea due to von Neumann is that the natural numbers, 0, 1, 2, 3, . . . , can be
viewed as concise notations for the following sets.

0 = ∅
1 = 0+ = {∅} = {0}
2 = 1+ = {∅, {∅}} = {0, 1}
3 = 2+ = {∅, {∅}, {∅, {∅}}} = {0, 1, 2}
...

n+ 1 = n+ = {0, 1, 2, . . . , n}
...

However, the above subsumes induction. Thus, we have to proceed in a different way to
avoid circularities.

Definition 2.36. We say that a set X is inductive iff

(1) ∅ ∈ X.

(2) For every A ∈ X, we have A+ ∈ X.
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Axiom of Infinity
There is some inductive set.

Having done this, we make the following.

Definition 2.37. A natural number is a set that belongs to every inductive set.

Using the subset axioms, we can show that there is a set whose members are exactly
the natural numbers. The argument is very similar to the one used to prove that arbitrary
intersections exist. By the axiom of infinity, there is some inductive set, say A. Now consider
the property P (x) which asserts that x belongs to every inductive set. By the subset axioms
applied to P , there is a set N, such that

x ∈ N iff x ∈ A and P (x),

and because A is inductive and P says that x belongs to every inductive set, the above is
equivalent to

x ∈ N iff P (x);

that is, x ∈ N iff x belongs to every inductive set. Therefore, the set of all natural numbers
N does exist. The set N is also denoted ω. We can now easily show the following.

Theorem 2.23. The set N is inductive and it is a subset of every inductive set.

Proof. Recall that ∅ belongs to every inductive set; so ∅ is a natural number (0). As N is the
set of natural numbers, ∅ (= 0) belongs to N. Secondly, if n ∈ N, this means that n belongs
to every inductive set (n is a natural number), which implies that n+ = n + 1 belongs to
every inductive set, which means that n+ 1 is a natural number, that is, n+ 1 ∈ N. Because
N is the set of natural numbers and because every natural number belongs to every inductive
set, we conclude that N is a subset of every inductive set.

� It would be tempting to view N as the intersection of the family of inductive sets, but
unfortunately this family is not a set; it is too “big” to be a set.

As a consequence of the above fact, we obtain the following.

Induction Principle for N: Any inductive subset of N is equal to N itself.
Now, in our setting, 0 = ∅ and n+ = n + 1, so the above principle can be restated as

follows.

Induction Principle for N (Version 2): For any subset, S ⊆ N, if 0 ∈ S and n + 1 ∈ S
whenever n ∈ S, then S = N.

This induction principle can be restated a little more conveniently in terms of the notion
of function.

Remark: Zermelo–Fraenkel set theory (+ Choice) has three more axioms. The axiom of
choice, the replacement axioms , and the regularity axiom. For our purposes, only the axiom
of choice is needed, and we introduced it in Chapter 11.3.

The replacement axioms are needed to deal with ordinals and cardinals. The intuition
behind these axioms is that the image of a set under a functional relation should be a set.
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Definition 2.38. Given any set A, if ϕ(x, y) is a first-order formula, we say that ϕ is
functional on A if

(∀x ∈ A)∀y1∀y2

(
ϕ(x, y1) ∧ ϕ(x, y2)⇒ y1 = y2

)
.

The following question arises: is

B = {y | (∃x ∈ A)ϕ(x, y)},

intuitively the image of A by ϕ, a set?

With the axioms introduced so far, it can be proven that the answer is no; see Enderton
[13], Chapter 9.

The axioms of replacement fix this problem by declaring that B is a set. This implies
that

H = {(x, y) | (x ∈ A) ∧ ϕ(x, y)}

is a subset of A×B. Without these axioms, this can’t be proven.

The replacement axioms are used to prove the validity of transfinite recursion. In turn,
transfinite recursion is used to define the ordinals; see Enderton [13], Chapter 7.

The regularity axiom (also known as foundation axiom) states that for any nonempty set
A, there is some element m ∈ A such that m ∩ A = ∅.

The regularity axiom prevents certain undesirable properties. Among other things, no
set can be a member of itself, and there are no sets A and B such that A ∈ B and B ∈ A.

But this axiom goes beyond. It is possible to define a hierarchy of sets Vα indexed by the
ordinals, and the axiom of regularity is equivalent to the fact that for every set A, there is
some α such that A ⊆ Vα. We say that every set is grounded . See Enderton [13], Chapter 7.

As we said at the beginning of this section, set theory can be axiomatized in first-order
logic. To illustrate the generality and expressiveness of first-order logic, we conclude this
section by stating nine (out of ten) of the axioms of Zermelo–Fraenkel set theory (for short,
ZFC ) as first-order formulae. The language of Zermelo–Fraenkel set theory consists of the
constant ∅ (for the empty set), the equality symbol, and of the binary predicate symbol ∈
for set membership. It is convenient to abbreviate ¬(x = y) as x 6= y and ¬(x ∈ y) as x /∈ y.
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The axioms are the equality axioms, the axiom of choice, and the following nine axioms.

(1) ∀A∀B(∀x(x ∈ A ≡ x ∈ B)⇒ A = B)

(2) ∀x(x /∈ ∅)
(3) ∀a∀b∃Z∀x(x ∈ Z ≡ (x = a ∨ x = b))

(4) ∀X∃Y ∀x(x ∈ Y ≡ ∃B(B ∈ X ∧ x ∈ B))

(5) ∀A∃Y ∀X(X ∈ Y ≡ ∀z(z ∈ X ⇒ z ∈ A))

(6) ∀A∃X∀x(x ∈ X ≡ (x ∈ A) ∧ P )

(7) ∃X(∅ ∈ X ∧ ∀y(y ∈ X ⇒ y ∪ {y} ∈ X))

(8) ∀t1 · · · ∀tk∀A[(∀x ∈ A)∀y1∀y2

(
ϕ(x, y1) ∧ ϕ(x, y2)⇒ y1 = y2

)
⇒ ∃B∀y(y ∈ B ≡ (∃x ∈ A)ϕ(x, y))]

(9) (∀A)
(
(A 6= ∅)⇒ (∃m ∈ A)(m ∩ A = ∅)

)
,

where P is any first-order formula that does not contain X free and ϕ(x, y) is any first-order
formula whose free variables are x, y, t1, . . . , tk and does not contain B free.

• Axiom (1) is the extensionality axiom.

• Axiom (2) is the empty set axiom.

• Axiom (3) asserts the existence of a set Y whose only members are a and b. By
extensionality, this set is unique and it is denoted {a, b}. We also denote {a, a} by {a}.

• Axiom (4) asserts the existence of set Y which is the union of all the sets that belong
to X. By extensionality, this set is unique and it is denoted

⋃
X. When X = {A,B},

we write
⋃{A,B} = A ∪B.

• Axiom (5) asserts the existence of set Y which is the set of all subsets of A (the power
set of A). By extensionality, this set is unique and it is denoted P(A) or 2A.

• Axioms (6) are the subset axioms (or axioms of separation).

• Axiom (7) is the infinity axiom, stated using the abbreviations introduced above.

• Axioms (8) are replacement axioms.

• Axiom (9) is the regularity (or foundation) axiom.

For a comprehensive treatment of axiomatic set theory, see Enderton [13] and Suppes
[59].
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2.21 Summary

The main goal of this chapter is to describe precisely the logical rules used in mathematical
reasoning and the notion of a mathematical proof. A brief introduction to set theory is
also provided. We decided to describe the rules of reasoning in a formalism known as a
natural deduction system because the logical rules of such a system mimic rather closely
the informal rules that (nearly) everybody uses when constructing a proof in everyday life.
Another advantage of natural deduction systems is that it is very easy to present various
versions of the rules involving negation and thus, to explain why the “proof-by-contradiction”
proof rule or the “law of the excluded middle” allow for the derivation of “nonconstructive”
proofs. This is a subtle point often not even touched in traditional presentations of logic.
However, inasmuch as most of our readers write computer programs and expect that their
programs will not just promise to give an answer but will actually produce results, we feel
that they will grasp rather easily the difference between constructive and nonconstructive
proofs and appreciate the former, even if they are harder to find.

• We describe the syntax of propositional logic.

• The proof rules for implication are defined in a natural deduction system
(Prawitz-style).

• Deductions proceed from assumptions (or premises) using inference rules .

• The process of discharging (or closing) a premise is explained. A proof is a deduction
in which all the premises have been discharged.

• We explain how we can search for a proof using a combined bottom-up and top-down
process.

• We propose another mechanism for decribing the process of discharging a premise and
this leads to a formulation of the rules in terms of sequents and to a Gentzen system.

• We introduce falsity ⊥ and negation ¬P as an abbrevation for P ⇒⊥. We describe
the inference rules for conjunction, disjunction, and negation, in both Prawitz style
and Gentzen-sequent style natural deduction systems

• One of the rules for negation is the proof-by-contradiction rule (also known as RAA).

• We define intuitionistic and classical logic.

• We introduce the notion of a constructive (or intuitionistic) proof and discuss the two
nonconstructive culprits: P ∨ ¬P (the law of the excluded middle) and ¬¬P ⇒ P
(double-negation rule).

• We show that P ∨ ¬P and ¬¬P ⇒ P are provable in classical logic
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• We clear up some potential confusion involving the various versions of the rules re-
garding negation.

1. RAA is not a special case of ¬-introduction.

2. RAA is not equivalent to ⊥-elimination; in fact, it implies it.

3. Not all propositions of the form P ∨¬P are provable in intuitionistic logic. How-
ever, RAA holds in intuitionistic logic plus all propositions of the form P ∨ ¬P .

4. We define double-negation elimination.

• We present the de Morgan laws and prove their validity in classical logic.

• We present the proof-by-contrapositive rule and show that it is valid in classical logic.

• We give some examples of proofs of “real” statements.

• We give an example of a nonconstructive proof of the statement: there are two irrational
numbers, a and b, so that ab is rational.

• We explain the truth-value semantics of propositional logic.

• We define the truth tables for the propositional connectives

• We define the notions of satisfiability , unsatisfiability , validity , and tautology .

• We define the satisfiability problem and the validity problem (for classical propositional
logic).

• We mention the NP-completeness of satisfiability.

• We discuss soundness (or consistency) and completeness .

• We state the soundness and completeness theorems for propositional classical logic
formulated in natural deduction.

• We explain how to use counterexamples to prove that certain propositions are not
provable.

• We give a brief introduction to Kripke semantics for propositional intuitionistic logic.

• We define Kripke models (based on a set of worlds).

• We define validity in a Kripke model.

• We state the the soundness and completeness theorems for propositional intuitionistic
logic formulated in natural deduction.
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• We add first-order quantifiers (“for all” ∀ and “there exists” ∃) to the language of
propositional logic and define first-order logic.

• We describe free and bound variables.

• We give inference rules for the quantifiers in Prawitz-style and Gentzen sequent-style
natural deduction systems .

• We explain the eigenvariable restriction in the ∀-introduction and ∃-elimination rules.

• We prove some “de Morgan”-type rules for the quantified formulae valid in classical
logic.

• We discuss the nonconstructiveness of proofs of certain existential statements.

• We explain briefly how classical logic can be translated into intuitionistic logic (the
Gödel translation).

• We define first-order theories and give the example of Peano arithmetic.

• We revisit the decision problem and mention the undecidability of the decision problem
for first-order logic (Church’s theorem).

• We discuss the notion of detours in proofs and the notion of proof normalization.

• We mention strong normalization.

• We mention the correspondence between propositions and types and proofs and typed
λ-terms (the Curry–Howard isomorphism).

• We mention Gödel’s completeness theorem for first-order logic.

• Again, we mention the use of counterexamples .

• We mention Gödel’s incompleteness theorem.

• We present informally the axioms of Zermelo–Fraenkel set theory (ZFC).

• We present Russell’s paradox , a warning against “self-referential” definitions of sets.

• We define the empty set ∅, the set {a, b} whose elements are a and b, the union A∪B
of two sets A and B, and the power set 2A of A.

• We state carefully Zermelo’s subset axioms for defining the subset {x ∈ A | P} of
elements of a given set A satisfying a property P .

• Then, we define the intersection A∩B and the relative complement A−B of two sets
A and B.
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• We also define the union
⋃
A and the intersection

⋂
A of a set of sets A.

• We show that one should avoid sets that are “too big”; in particular, we prove that
there is no set of all sets .

• We define the natural numbers “a la Von Neumann.”

• We define inductive sets and state the axiom of infinity .

• We show that the natural numbers form an inductive set N, and thus, obtain an
induction principle for N.

• We summarize the axioms of Zermelo–Fraenkel set theory in first-order logic.

2.22 Problems

Problem 2.1. (a) Give a proof of the proposition P ⇒ (Q⇒ P ) in the system N⇒m .
(b) Prove that if there are deduction trees of P ⇒ Q and Q⇒ R from the set of premises

Γ in the system N⇒m , then there is a deduction tree for P ⇒ R from Γ in N⇒m .

Problem 2.2. Give a proof of the proposition (P ⇒ Q)⇒ ((P ⇒ (Q⇒ R))⇒ (P ⇒ R))
in the system N⇒m .

Problem 2.3. (a) Prove the “de Morgan” laws in classical logic.

¬(P ∧Q) ≡ ¬P ∨ ¬Q
¬(P ∨Q) ≡ ¬P ∧ ¬Q.

(b) Prove that ¬(P ∨Q) ≡ ¬P ∧ ¬Q is also provable in intuitionistic logic.
(c) Prove that the proposition (P ∧ ¬Q)⇒ ¬(P ⇒ Q) is provable in intuitionistic logic

and ¬(P ⇒ Q)⇒ (P ∧ ¬Q) is provable in classical logic.

Problem 2.4. (a) Show that P ⇒ ¬¬P is provable in intuitionistic logic.
(b) Show that ¬¬¬P and ¬P are equivalent in intuitionistic logic.

Problem 2.5. Recall that an integer is even if it is divisible by 2, that is, if it can be written
as 2k, where k ∈ Z. An integer is odd if it is not divisible by 2, that is, if it can be written
as 2k + 1, where k ∈ Z. Prove the following facts.

(a) The sum of even integers is even.

(b) The sum of an even integer and of an odd integer is odd.

(c) The sum of two odd integers is even.

(d) The product of odd integers is odd.
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(e) The product of an even integer with any integer is even.

Problem 2.6. (a) Show that if we assume that all propositions of the form

P ⇒ (Q⇒ R)

are axioms (where P,Q,R are arbitrary propositions), then every proposition is provable.
(b) Show that if P is provable (intuitionistically or classically), then Q ⇒ P is also

provable for every proposition Q.

Problem 2.7. (a) Give intuitionistic proofs for the equivalences listed below.

P ∨ P ≡ P

P ∧ P ≡ P

P ∨Q ≡ Q ∨ P
P ∧Q ≡ Q ∧ P.

(b) Give intuitionistic proofs for the equivalences listed below.

P ∧ (P ∨Q) ≡ P

P ∨ (P ∧Q) ≡ P.

Problem 2.8. Give intuitionistic proofs for the propositions listed below.

P ⇒ (Q⇒ (P ∧Q))

(P ⇒ Q)⇒ ((P ⇒ ¬Q)⇒ ¬P )

(P ⇒ R)⇒ ((Q⇒ R)⇒ ((P ∨Q)⇒ R)).

Problem 2.9. Prove that the following equivalences are provable intuitionistically.

P ∧ (P ⇒ Q) ≡ P ∧Q
Q ∧ (P ⇒ Q) ≡ Q(
P ⇒ (Q ∧R)

)
≡

(
(P ⇒ Q) ∧ (P ⇒ R)

)
.

Problem 2.10. Give intuitionistic proofs for

(P ⇒ Q)⇒ ¬¬(¬P ∨Q)

¬¬(¬¬P ⇒ P ).

Problem 2.11. Give an intuitionistic proof for ¬¬(P ∨ ¬P ).

Problem 2.12. Give intuitionistic proofs for the propositions

(P ∨ ¬P )⇒ (¬¬P ⇒ P ) and (¬¬P ⇒ P )⇒ (P ∨ ¬P ).

Hint . For the second implication, you may want to use Problem 2.11.
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Problem 2.13. Give intuitionistic proofs for the propositions

(P ⇒ Q)⇒ ¬¬(¬P ∨Q) and (¬P ⇒ Q)⇒ ¬¬(P ∨Q).

Problem 2.14. (1) Design an algorithm for converting a deduction of a proposition P in
the system N⇒,∧,∨,⊥i into a deduction in the system NG⇒,∧,∨,⊥i .

(2) Design an algorithm for converting a deduction of a proposition P in the system
N⇒,∧,∨,⊥c into a deduction in the system NG⇒,∧,∨,⊥c .

(3) Design an algorithm for converting a deduction of a proposition P in the system
NG⇒,∧,∨,⊥i into a deduction in the system N⇒,∧,∨,⊥i .

(4) Design an algorithm for converting a deduction of a proposition P in the system
NG⇒,∧,∨,⊥c into a deduction in the system N⇒,∧,∨,⊥c .

Hint . Use induction on deduction trees.

Problem 2.15. Prove that the following version of the ∨-elimination rule formulated in
Gentzen-sequent style is a consequence of the rules of intuitionistic logic.

Γ, x : P → R Γ, y : Q→ R

Γ, z : P ∨Q→ R

Conversely, if we assume that the above rule holds, then prove that the ∨-elimination
rule

Γ→ P ∨Q Γ, x : P → R Γ, y : Q→ R

Γ→ R
(∨-elim)

follows from the rules of intuitionistic logic (of course, excluding the ∨-elimination rule).

Problem 2.16. (1) Give algorithms for converting a deduction inN⇒,∧,∨,⊥,∀,∃c to a deduction
in NG⇒,∧,∨,⊥,∀,∃c and vice-versa.

(2) Give algorithms for converting a deduction inN⇒,∧,∨,⊥,∀,∃i to a deduction inNG⇒,∧,∨,⊥,∀,∃i

and vice-versa.

Problem 2.17. (a) Give intuitionistic proofs for the distributivity of ∧ over ∨ and of ∨ over
∧:

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R).

(b) Give intuitionistic proofs for the associativity of ∧ and ∨:

P ∧ (Q ∧R) ≡ (P ∧Q) ∧R
P ∨ (Q ∨R) ≡ (P ∨Q) ∨R.
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Problem 2.18. Recall that in Problem 2.1 we proved that if P ⇒ Q and Q ⇒ R are
provable, then P ⇒ R is provable. Deduce from this fact that if P ≡ Q and Q ≡ R hold,
then P ≡ R holds (intuitionistically or classically).

Prove that if P ≡ Q holds, then Q ≡ P holds (intuitionistically or classically). Finally,
check that P ≡ P holds (intuitionistically or classically).

Problem 2.19. Prove (intuitionistically or classically) that if P1 ⇒ Q1 and P2 ⇒ Q2, then

1. (P1 ∧ P2)⇒ (Q1 ∧Q2)

2. (P1 ∨ P2)⇒ (Q1 ∨Q2).

(b) Prove (intuitionistically or classically) that if Q1 ⇒ P1 and P2 ⇒ Q2, then

1. (P1 ⇒ P2)⇒ (Q1 ⇒ Q2)

2. ¬P1 ⇒ ¬Q1.

(c) Prove (intuitionistically or classically) that if P ⇒ Q, then

1. ∀tP ⇒ ∀tQ

2. ∃tP ⇒ ∃tQ.

(d) Prove (intuitionistically or classically) that if P1 ≡ Q1 and P2 ≡ Q2, then

1. (P1 ∧ P2) ≡ (Q1 ∧Q2)

2. (P1 ∨ P2) ≡ (Q1 ∨Q2)

3. (P1 ⇒ P2) ≡ (Q1 ⇒ Q2)

4. ¬P1 ≡ ¬Q1

5. ∀tP1 ≡ ∀tQ1

6. ∃tP1 ≡ ∃tQ1.

Problem 2.20. Show that the following are provable in classical first-order logic:

¬∀tP ≡ ∃t¬P
¬∃tP ≡ ∀t¬P

∀t(P ∧Q) ≡ ∀tP ∧ ∀tQ
∃t(P ∨Q) ≡ ∃tP ∨ ∃tQ.

(b) Moreover, show that the propositions ∃t(P ∧Q)⇒ ∃tP ∧ ∃tQ and
∀tP ∨ ∀tQ ⇒ ∀t(P ∨ Q) are provable in intuitionistic first-order logic (and thus, also in
classical first-order logic).
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(c) Prove intuitionistically that

∃x∀yP ⇒ ∀y∃xP.

Give an informal argument to the effect that the converse, ∀y∃xP ⇒ ∃x∀yP , is not
provable, even classically.

Problem 2.21. (a) Assume that Q is a formula that does not contain the variable t (free
or bound). Give a classical proof of

∀t(P ∨Q)⇒ (∀tP ∨Q).

(b) If P is a proposition, write P (x) for P [x/t] and P (y) for P [y/t], where x and y are
distinct variables that do not occur in the orginal proposition P . Give an intuitionistic proof
for

¬∀x∃y(¬P (x) ∧ P (y)).

(c) Give a classical proof for

∃x∀y(P (x) ∨ ¬P (y)).

Hint . Negate the above, then use some identities we’ve shown (such as de Morgan) and
reduce the problem to Part (b).

Problem 2.22. (a) Let X = {Xi | 1 ≤ i ≤ n} be a finite family of sets. Prove that if
Xi+1 ⊆ Xi for all i, with 1 ≤ i ≤ n− 1, then⋂

X = Xn.

Prove that if Xi ⊆ Xi+1 for all i, with 1 ≤ i ≤ n− 1, then⋃
X = Xn.

(b) Recall that N+ = N−{0} = {1, 2, 3, . . . , n, . . .}. Give an example of an infinite family
of sets X = {Xi | i ∈ N+}, such that

1. Xi+1 ⊆ Xi for all i ≥ 1.

2. Xi is infinite, for every i ≥ 1.

3.
⋂
X has a single element.

(c) Give an example of an infinite family of sets, X = {Xi | i ∈ N+}, such that

1. Xi+1 ⊆ Xi for all i ≥ 1.

2. Xi is infinite, for every i ≥ 1.
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3.
⋂
X = ∅.

Problem 2.23. Prove that the following propositions are provable intuitionistically:

(P ⇒ ¬P ) ≡ ¬P, (¬P ⇒ P ) ≡ ¬¬P.

Use these to conlude that if the equivalence P ≡ ¬P is provable intuitionistically, then every
proposition is provable (intuitionistically).

Problem 2.24. (1) Prove that if we assume that all propositions of the form

((P ⇒ Q)⇒ P )⇒ P

are axioms (Peirce’s law), then ¬¬P ⇒ P becomes provable in intuitionistic logic. Thus, an-
other way to get classical logic from intuitionistic logic is to add Peirce’s law to intuitionistic
logic.
Hint . Pick Q in a suitable way and use Problem 2.23.

(2) Prove ((P ⇒ Q)⇒ P )⇒ P in classical logic.
Hint . Use the de Morgan laws.

Problem 2.25. Let A be any nonempty set. Prove that the definition

X = {a ∈ A | a /∈ X}

yields a “set” X, such that X is empty iff X is nonempty and therefore does not define a
set, after all.

Problem 2.26. Prove the following fact: if

Γ

D1

P ∨Q
and

Γ, R

D2

Q

are deduction trees provable intuitionistically, then there is a deduction tree

Γ, P ⇒ R

D
Q

for Q from the premises in Γ ∪ {P ⇒ S}.

Problem 2.27. Recall that the constant > stands for true. So, we add to our proof systems
(intuitionistic and classical) all axioms of the form

k1︷ ︸︸ ︷
P1, . . . , P1, . . . ,

ki︷ ︸︸ ︷
Pi, . . . , Pi, . . . ,

kn︷ ︸︸ ︷
Pn, . . . , Pn

>
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where ki ≥ 1 and n ≥ 0; note that n = 0 is allowed, which amounts to the one-node tree >.
(a) Prove that the following equivalences hold intuitionistically.

P ∨ > ≡ >
P ∧ > ≡ P.

Prove that if P is intuitionistically (or classically) provable, then P ≡ > is also provable
intuitionistically (or classically). In particular, in classical logic, P ∨ ¬P ≡ >. Also prove
that

P ∨ ⊥ ≡ P

P ∧ ⊥ ≡⊥

hold intuitionistically.
(b) In the rest of this problem, we are dealing only with classical logic. The connective

exclusive or , denoted ⊕, is defined by

P ⊕Q ≡ (P ∧ ¬Q) ∨ (¬P ∧Q).

In solving the following questions, you will find that constructing proofs using the rules of
classical logic is very tedious because these proofs are very long. Instead, use some identities
from previous problems.

Prove the equivalence
¬P ≡ P ⊕>.

(c) Prove that

P ⊕ P ≡⊥
P ⊕Q ≡ Q⊕ P

(P ⊕Q)⊕R ≡ P ⊕ (Q⊕R).

(d) Prove the equivalence

P ∨Q ≡ (P ∧Q)⊕ (P ⊕Q).

Problem 2.28. Give a classical proof of

¬(P ⇒ ¬Q)⇒ (P ∧Q).

Problem 2.29. (a) Prove that the rule

Γ

D1

P ⇒ Q

∆

D2

¬Q
¬P
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can be derived from the other rules of intuitionistic logic.
(b) Give an intuitionistic proof of ¬P from Γ = {¬(¬P ∨ Q), P ⇒ Q} or equivalently,

an intuitionistic proof of (
¬(¬P ∨Q) ∧ (P ⇒ Q)

)
⇒ ¬P.

Problem 2.30. (a) Give intuitionistic proofs for the equivalences

∃x∃yP ≡ ∃y∃xP and ∀x∀yP ≡ ∀y∀xP.

(b) Give intuitionistic proofs for

(∀tP ∧Q)⇒ ∀t(P ∧Q) and ∀t(P ∧Q)⇒ (∀tP ∧Q),

where t does not occur (free or bound) in Q.
(c) Give intuitionistic proofs for

(∃tP ∨Q)⇒ ∃t(P ∨Q) and ∃t(P ∨Q)⇒ (∃tP ∨Q),

where t does not occur (free or bound) in Q.

Problem 2.31. An integer n ∈ Z is divisible by 3 iff n = 3k, for some k ∈ Z. Thus (by the
division theorem), an integer n ∈ Z is not divisible by 3 iff it is of the form n = 3k+1, 3k+2,
for some k ∈ Z (you don’t have to prove this).

Prove that for any integer n ∈ Z, if n2 is divisible by 3, then n is divisible by 3.

Hint . Prove the contrapositive. If n of the form n = 3k + 1, 3k + 2, then so is n2 (for a
different k).

Problem 2.32. Use Problem 2.31 to prove that
√

3 is irrational, that is,
√

3 can’t be written
as
√

3 = p/q, with p, q ∈ Z and q 6= 0.

Problem 2.33. Give an intuitionistic proof of the proposition(
(P ⇒ R) ∧ (Q⇒ R)

)
≡
(
(P ∨Q)⇒ R

)
.

Problem 2.34. Give an intuitionistic proof of the proposition(
(P ∧Q)⇒ R

)
≡
(
P ⇒ (Q⇒ R)

)
.

Problem 2.35. (a) Give an intuitionistic proof of the proposition
(P ∧Q)⇒ (P ∨Q).

(b) Prove that the proposition (P ∨Q)⇒ (P ∧Q) is not valid, where P,Q, are proposi-
tional symbols.

(c) Prove that the proposition (P ∨ Q) ⇒ (P ∧ Q) is not provable in general and that
if we assume that all propositions of the form (P ∨ Q) ⇒ (P ∧ Q) are axioms, then every
proposition becomes provable intuitionistically.



162 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Problem 2.36. Give the details of the proof of Proposition 2.6; namely, if a proposition P
is provable in the system N⇒,∧,∨,⊥c (or NG⇒,∧,∨,⊥c ), then it is valid (according to the truth
value semantics).

Problem 2.37. Give the details of the proof of Theorem 2.8; namely, if a proposition P is
provable in the system N⇒,∧,∨,⊥i (or NG⇒,∧,∨,⊥i ), then it is valid in every Kripke model; that
is, it is intuitionistically valid.

Problem 2.38. Prove that b = log2 9 is irrational. Then prove that a =
√

2 and b = log2 9
are two irrational numbers such that ab is rational.

Problem 2.39. (1) Prove that if ∀x¬(P ∧ Q) can be deduced intuitionistically from a set
of premises Γ, then ∀x(P ⇒ ¬Q) and ∀x(Q ⇒ ¬P ) can also be deduced intuitionistically
from Γ.

(2) Prove that if ∀x(P ∨ Q) can be deduced intuitionistically from a set of premises Γ,
then ∀x(¬P ⇒ Q) and ∀x(¬Q⇒ P ) can also be deduced intuitionistically from Γ.

Conclude that if
∀x(P ∨Q) and ∀x¬(P ∧Q)

can be deduced intuitionistically from a set of premises Γ, then

∀x(P ≡ ¬Q) and ∀x(Q ≡ ¬P )

can also be deduced intuitionistically from Γ.
(3) Prove that if ∀x(P ⇒ Q) can be deduced intuitionistically from a set of premises Γ,

then ∀x(¬Q⇒ ¬P ) can also be deduced intuitionistically from Γ. Use this to prove that if

∀x(P ≡ ¬Q) and ∀x(Q ≡ ¬P )

can be deduced intuitionistically from a set of premises Γ, then the formulae ∀x(¬¬P ≡ P )
and ∀x(¬¬Q ≡ Q) can be deduced intuitionistically from Γ.

Problem 2.40. Prove that the formula

∀x even(2 ∗ x)

is provable in Peano arithmetic. Prove that

even(2 ∗ (n+ 1) ∗ (n+ 3))

is provable in Peano arithmetic for any natural number n.

Problem 2.41. A first-order formula A is said to be in prenex-form if either

(1) A is a quantifier-free formula.

(2) A = ∀tB or A = ∃tB, where B is in prenex-form.
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In other words, a formula is in prenex form iff it is of the form

Q1t1Q2t2 · · ·Qmtm P,

where P is quantifier-free and where Q1Q2 · · ·Qm is a string of quantifiers, Qi ∈ {∀,∃}.
Prove that every first-order formula A is classically equivalent to a formula B in prenex

form.

Problem 2.42. Let A and be B be any two sets of sets.
(1) Prove that (⋃

A
)
∪
(⋃

B
)

=
⋃

(A ∪B).

(2) Assume that A and B are nonempty. Prove that(⋂
A
)
∩
(⋂

B
)

=
⋂

(A ∪B).

(3) Assume that A and B are nonempty. Prove that⋃
(A ∩B) ⊆

(⋃
A
)
∩
(⋃

B
)
,

and give a counterexample of the inclusion(⋃
A
)
∩
(⋃

B
)
⊆
⋃

(A ∩B).

Hint . Reduce the above questions to the provability of certain formulae that you have already
proved in a previous assignment (you need not re-prove these formulae).

Problem 2.43. A set A is said to be transitive iff for all a ∈ A and all x ∈ a, then x ∈ A,
or equivalently, for all a ∈ A,

a ∈ A⇒ a ⊆ A.

(1) Check that a set A is transitive iff⋃
A ⊆ A

iff
A ⊆ 2A.

(2) Recall the definition of the von Neumann successor of a set A given by

A+ = A ∪ {A}.

Prove that if A is a transitive set, then⋃
(A+) = A.
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(3) Recall the von Neumann definition of the natural numbers. Check that for every
natural number m

m ∈ m+ and m ⊆ m+.

Prove that every natural number is a transitive set.

Hint . Use induction.

(4) Prove that for any two von Neumann natural numbers m and n, if m+ = n+, then
m = n.

(5) Prove that the set N of natural numbers is a transitive set.

Hint . Use induction.

Problem 2.44. Even though natural deduction proof systems for classical propositional logic
are complete (with respect to the truth value semantics), they are not adequate for designing
algorithms searching for proofs (because of the amount of nondeterminism involved).

Gentzen designed a different kind of proof system using sequents (later refined by Kleene,
Smullyan, and others) that is far better suited for the design of automated theorem provers.
Using such a proof system (a sequent calculus), it is relatively easy to design a procedure
that terminates for all input propositions P and either certifies that P is (classically) valid
or else returns some (or all) falsifying truth assignment(s) for P . In fact, if P is valid, the
tree returned by the algorithm can be viewed as a proof of P in this proof system.

For this miniproject, we describe a Gentzen sequent-calculus G′ for propositional logic
that lends itself well to the implementation of algorithms searching for proofs or falsifying
truth assignments of propositions.

Such algorithms build trees whose nodes are labeled with pairs of sets called sequents. A
sequent is a pair of sets of propositions denoted by

P1, . . . , Pm → Q1, . . . , Qn,

with m,n ≥ 0. Symbolically, a sequent is usally denoted Γ→ ∆, where Γ and ∆ are two
finite sets of propositions (not necessarily disjoint).

For example,

→ P ⇒ (Q⇒ P ), P ∨Q→, P,Q→ P ∧Q

are sequents. The sequent →, where both Γ = ∆ = ∅ corresponds to falsity.

The choice of the symbol→ to separate the two sets of propositions Γ and ∆ is commonly
used and was introduced by Gentzen but there is nothing special about it. If you don’t like
it, you may replace it by any symbol of your choice as long as that symbol does not clash
with the logical connectives (⇒,∧,∨,¬). For example, you could denote a sequent

P1, . . . , Pm;Q1, . . . , Qn,

using the semicolon as a separator.
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Given a truth assignment v to the propositional letters in the propositions Pi and Qj, we
say that v satisfies the sequent P1, . . . , Pm → Q1, . . . , Qn iff

v((P1 ∧ · · · ∧ Pm)⇒ (Q1 ∨ · · · ∨Qn)) = true,

or equivalently, v falsifies the sequent P1, . . . , Pm → Q1, . . . , Qn iff

v(P1 ∧ · · · ∧ Pm ∧ ¬Q1 ∧ · · · ∧ ¬Qn) = true,

iff
v(Pi) = true, 1 ≤ i ≤ m, and v(Qj) = false, 1 ≤ j ≤ n.

A sequent is valid iff it is satisfied by all truth assignments iff it cannot be falsified.
Note that a sequent P1, . . . , Pm → Q1, . . . , Qn can be falsified iff some truth assignment

satisfies all of P1, . . . , Pm and falsifies all of Q1, . . . , Qn. In particular, if {P1, . . . , Pm} and
{Q1, . . . , Qn} have some common proposition (they have a nonempty intersection), then the
sequent P1, . . . , Pm → Q1, . . . , Qn is valid. On the other hand if all the Pis and Qjs are
propositional letters and {P1, . . . , Pm} and {Q1, . . . , Qn} are disjoint (they have no symbol
in common), then the sequent P1, . . . , Pm → Q1, . . . , Qn is falsified by the truth assignment
v where v(Pi) = true, for i = 1, . . .m, and v(Qj) = false, for j = 1, . . . , n.

The main idea behind the design of the proof system G′ is to systematically try to falsify
a sequent . If such an attempt fails, the sequent is valid and a proof tree is found. Otherwise,
all falsifying truth assignments are returned. In some sense

failure to falsify is success (in finding a proof).

The rules of G′ are designed so that the conclusion of a rule is falsified by a truth
assignment v iff its single premise of one of its two premises is falsified by v. Thus, these
rules can be viewed as two-way rules that can either be read bottom-up or top-down.

Here are the axioms and the rules of the sequent calculus G′:
Axioms: Γ, P → P,∆
Inference rules:

Γ, P,Q,∆→ Λ

Γ, P ∧Q,∆→ Λ
∧: left

Γ→ ∆, P,Λ Γ→ ∆, Q,Λ

Γ→ ∆, P ∧Q,Λ ∧: right

Γ, P,∆→ Λ Γ, Q,∆→ Λ

Γ, P ∨Q,∆→ Λ
∨: left

Γ→ ∆, P,Q,Λ

Γ→ ∆, P ∨Q,Λ ∨: right

Γ,∆→ P,Λ Q,Γ,∆→ Λ

Γ, P ⇒ Q,∆→ Λ
⇒: left

P,Γ→ Q,∆,Λ

Γ→ ∆, P ⇒ Q,Λ
⇒: right

Γ,∆→ P,Λ

Γ,¬P,∆→ Λ
¬: left

P,Γ→ ∆,Λ

Γ→ ∆,¬P,Λ ¬: right
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where Γ,∆,Λ are any finite sets of propositions, possibly the empty set.
A deduction tree is either a one-node tree labeled with a sequent or a tree constructed

according to the rules of system G′. A proof tree (or proof ) is a deduction tree whose leaves
are all axioms. A proof tree for a proposition P is a proof tree for the sequent → P (with
an empty left-hand side).

For example,
P,Q→ P

is a proof tree.
Here is a proof tree for (P ⇒ Q)⇒ (¬Q⇒ ¬P ):

P,¬Q→ P

¬Q→ ¬P, P
→ P, (¬Q⇒ ¬P )

Q→ Q,¬P
¬Q,Q→ ¬P

Q→ (¬Q⇒ ¬P )

(P ⇒ Q)→ (¬Q⇒ ¬P )

→ (P ⇒ Q)⇒ (¬Q⇒ ¬P )

The following is a deduction tree but not a proof tree

P,R→ P

R→ ¬P, P
→ P, (R⇒ ¬P )

R,Q, P →
R,Q→ ¬P

Q→ (R⇒ ¬P )

(P ⇒ Q)→ (R⇒ ¬P )

→ (P ⇒ Q)⇒ (R⇒ ¬P )

because its rightmost leaf, R,Q, P →, is falsified by the truth assignment v(P ) = v(Q) =
v(R) = true, which also falsifies (P ⇒ Q)⇒ (R⇒ ¬P ).

Let us call a sequent P1, . . . , Pm → Q1, . . . , Qn finished if either it is an axiom (Pi = Qj

for some i and some j) or all the propositions Pi and Qj are atomic and {P1, . . . , Pm} ∩
{Q1, . . . , Qn} = ∅. We also say that a deduction tree is finished if all its leaves are finished
sequents.

The beauty of the system G′ is that for every sequent

P1, . . . , Pm → Q1, . . . , Qn,

the process of building a deduction tree from this sequent always terminates with a tree where
all leaves are finished independently of the order in which the rules are applied . Therefore,
we can apply any strategy we want when we build a deduction tree and we are sure that we
will get a deduction tree with all its leaves finished. If all the leaves are axioms, then we
have a proof tree and the sequent is valid, or else all the leaves that are not axioms yield a
falsifying assignment, and all falsifying assignments for the root sequent are found this way.

If we only want to know whether a proposition (or a sequent) is valid, we can stop as soon
as we find a finished sequent that is not an axiom because in this case, the input sequent is
falsifiable.
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(1) Prove that for every sequent P1, . . . , Pm → Q1, . . . , Qn, any sequence of applications
of the rules of G′ terminates with a deduction tree whose leaves are all finished sequents (a
finished deduction tree).
Hint . Define the number of connectives c(P ) in a proposition P as follows.

(1) If P is a propositional symbol, then

c(P ) = 0.

(2) If P = ¬Q, then
c(¬Q) = c(Q) + 1.

(3) If P = Q ∗R, where ∗ ∈ {⇒,∨,∧}, then

c(Q ∗R) = c(Q) + c(R) + 1.

Given a sequent,
Γ→ ∆ = P1, . . . , Pm → Q1, . . . , Qn,

define the number of connectives, c(Γ→ ∆), in Γ→ ∆ by

c(Γ→ ∆) = c(P1) + · · ·+ c(Pm) + c(Q1) + · · ·+ c(Qn).

Prove that the application of every rule decreases the number of connectives in the premise(s)
of the rule.

(2) Prove that for every sequent P1, . . . , Pm → Q1, . . . , Qn, for every finished deduction
tree T constructed from P1, . . . , Pm → Q1, . . . , Qn using the rules of G′, every truth assign-
ment v satisfies P1, . . . , Pm → Q1, . . . , Qn iff v satisfies every leaf of T . Equivalently, a truth
assignment v falsifies P1, . . . , Pm → Q1, . . . , Qn iff v falsifies some leaf of T .

Deduce from the above that a sequent is valid iff all leaves of every finished deduction tree
T are axioms. Furthermore, if a sequent is not valid, then for every finished deduction tree
T , for that sequent, every falsifying assignment for that sequent is a falsifying assignment of
some leaf of the tree T .

(3) Programming Project:
Design an algorithm taking any sequent as input and constructing a finished deduction tree.
If the deduction tree is a proof tree, output this proof tree in some fashion (such a tree can
be quite big so you may have to find ways of “flattening” these trees). If the sequent is
falsifiable, stop when the algorithm encounters the first leaf that is not an axiom and output
the corresponding falsifying truth assignment.

I suggest using a depth-first expansion strategy for constructing a deduction tree. What
this means is that when building a deduction tree, the algorithm will proceed recursively as
follows. Given a nonfinished sequent

A1, . . . , Ap → B1, . . . , Bq,

if Ai is the leftmost nonatomic proposition if such proposition occurs on the left, or if Bj is
the leftmost nonatomic proposition if all the Ais are atomic, then
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(1) The sequent is of the form

Γ, Ai,∆→ Λ,

with Ai the leftmost nonatomic proposition. Then either

(a) Ai = Ci∧Di or Ai = ¬Ci, in which case either we recursively construct a (finished)
deduction tree

D1

Γ, Ci, Di,∆→ Λ

to get the deduction tree

D1

Γ, Ci, Di,∆→ Λ
,

Γ, Ci ∧Di,∆→ Λ

or we recursively construct a (finished) deduction tree

D1

Γ,∆→ Ci,Λ

to get the deduction tree

D1

Γ,∆→ Ci,Λ
,

Γ,¬Ci,∆→ Λ

or

(b) Ai = Ci ∨Di or Ai = Ci ⇒ Di, in which case either we recursively construct two
(finished) deduction trees

D1

Γ, Ci,∆→ Λ and

D2

Γ, Di,∆→ Λ

to get the deduction tree

D1

Γ, Ci,∆→ Λ

D2

Γ, Di,∆→ Λ
,

Γ, Ci ∨Di,∆→ Λ

or we recursively construct two (finished) deduction trees

D1

Γ,∆→ Ci,Λ and

D2

Di,Γ,∆→ Λ

to get the deduction tree
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D1

Γ,∆→ Ci,Λ

D2

Di,Γ,∆→ Λ
.

Γ, Ci ⇒ Di,∆→ Λ

(2) The nonfinished sequent is of the form

Γ→ ∆, Bj,Λ,

with Bj the leftmost nonatomic proposition. Then either

(a) Bj = Cj ∨Dj or Bj = Cj ⇒ Dj, or Bj = ¬Cj, in which case either we recursively
construct a (finished) deduction tree

D1

Γ→ ∆, Cj, Dj,Λ

to get the deduction tree

D1

Γ→ ∆, Cj, Dj,Λ
,

Γ→ ∆, Cj ∨Dj,Λ

or we recursively construct a (finished) deduction tree

D1

Cj,Γ→ Dj,∆,Λ

to get the deduction tree

D1

Cj,Γ→ Dj,∆,Λ
,

Γ→ ∆, Cj ⇒ Dj,Λ

or we recursively construct a (finished) deduction tree

D1

Cj,Γ→ ∆,Λ

to get the deduction tree

D1

Cj,Γ→ ∆,Λ
,

Γ→ ∆,¬Cj,Λ

or
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(b) Bj = Cj ∧ Dj, in which case we recursively construct two (finished) deduction
trees

D1

Γ→ ∆, Cj,Λ and

D2

Γ→ ∆, Dj,Λ

to get the deduction tree

D1

Γ→ ∆, Cj,Λ

D2

Γ→ ∆, Dj,Λ
.

Γ→ ∆, Cj ∧Dj,Λ

If you prefer, you can apply a breadth-first expansion strategy for constructing a deduction
tree.



Chapter 3

RAM Programs, Turing Machines,
and the Partial Computable Functions

In this chapter we address the fundamental question

What is a computable function?

Nowadays computers are so pervasive that such a question may seem trivial. Isn’t the
answer that a function is computable if we can write a program computing it!

This is basically the answer so what more can be said that will shed more light on the
question?

The first issue is that we should be more careful about the kind of functions that we
are considering. Are we restricting ourselves to total functions or are we allowing partial
functions that may not be defined for some of their inputs? It turns out that if we consider
functions computed by programs, then partial functions must be considered. In fact, we will
see that “deciding” whether a program terminates for all inputs is impossible. But what
does deciding mean?

To be mathematically precise requires a fair amount of work. One of the key technical
points is the ability to design a program U that takes other programs P as input, and then
executes P on any input x. In particular, U should be able to take U itself as input!

Of course a compiler does exactly the above task. But fully describing a compiler for
a “real” programming language such as JAVA, PYTHON, C++, etc. is a complicated and
lengthy task. So a simpler (still quite complicated) way to proceed is to develop a toy
programming language and a toy computation model (some kind of machine) capable of
executing programs written in our toy language. Then we show how programs in this toy
language can be coded so that they can be given as input to other programs. Having done
this we need to demonstrate that our language has universal computing power . This means
that we need to show that a “real” program, say written in JAVA, could be translated into
a possibly much longer program written in our toy language. This step is typically an act
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of faith, in the sense that the details that such a translation can be performed are usually
not provided.

A way to be precise regarding universal computing power is to define mathematically a
family of functions that should be regarded as “obviously computable,” and then to show that
the functions computed by the programs written either in our toy programming language
or in any modern progamming language are members of this mathematically defined family
of computable functions. This step is usually technically very involved, because one needs
to show that executing the instructions of a program can be mimicked by functions in our
family of computable functions. Conversely, we should prove that every computable function
in this family is indeed computable by a program written in our toy programming language
or in any modern progamming language. Then we will be have the assurance that we have
captured the notion of universal computing power.

Remarkably, Herbrand, Gödel, and Kleene defined such a family of functions in 1934-
1935. This is a family of numerical functions f : Nm → N containing a subset of very simple
functions called base functions, and this family is the smallest family containing the base
functions closed under three operations:

1. Composition

2. Primitive recursion

3. Minimization.

Historically, the first two models of computation are the λ-calculus of Church (1935)
and the Turing machine (1936) of Turing. Kleene proved that the λ-definable functions are
exactly the (total) computable functions in the sense of Herbrand–Gödel–Kleene in 1936, and
Turing proved that the functions computed by Turing machines are exactly the computable
functions in the sense of Herbrand–Gödel–Kleene in 1937. Therefore, the λ-calculus and
Turing machines have the same “computing power,” and both compute exactly the class of
computable functions in the sense of Herbrand–Gödel–Kleene. In those days these results
were considered quite surprising because the formalism of the λ-calculus has basically nothing
to do with the formalism of Turing machines.

Once again we should be more precise about the kinds of functions that we are dealing
with. Until Turing (1936), only numerical functions f : Nm → N were considered. In order to
compute numerical functions in the λ-calculus, Church had to encode the natural numbers
as certain λ-terms, which can be viewed as iterators.

Turing assumes that what he calls his a-machines (for automatic machines) make use of
the symbols 0 and 1 for the purpose of input and output, and if the machine stops, then
the output is a string of 0s and 1s. Thus a Turing machine can be viewed as computing a
function f : ({0, 1}∗)m → {0, 1}∗ on strings . By allowing a more general alphabet Σ, we see
that a Turing machine computes a function f : (Σ∗)m → Σ∗ on strings over Σ.
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At first glance it appears that Turing machines compute a larger class of functions, but
this is not so because there exist mutually invertible computable coding functions C : Σ∗ → N
and decoding functions D : N → Σ∗. Using these coding and decoding functions, it suffices
to consider numerical functions.

However, Turing machines can also very naturally be viewed as devices for defining
computable languages in terms of acceptance and rejection; some kinds of generalized DFA’s
or NFA’s. In this role, it would be very awkward to limit ourselves to sets of natural numbers,
although this is possible in theory.

We should also point out that the notion of computable language can be handled in terms
of a computation model for functions by considering the characteristic functions of languages.
Indeed, a language A is computable (we say decidable) iff its characteristic function χA is
computable.

The above considerations motivate the definition of the computable functions in the sense
of Herbrand–Gödel–Kleene to functions f : (Σ∗)m → Σ∗ operating on strings . However, it
is technically simpler to work out all the undecidability results for numerical functions or
for subsets of N. Since there is no loss of generally in doing so in view of the computable
bijections C : Σ∗ → N and D : N→ Σ∗, we will do so.

Nevertherless, in order to deal with languages, it is important to develop a fair amount
of computability theory about functions computing on strings, so we will present another
computation model, the RAM program model , which computes functions defined on strings.
This model was introduced around 1963 (although it was introduced earlier by Post in a
different format). It has the advantage of being closer to actual computer architecture,
because the RAM model consists of programs operating on a fixed set of registers. This
model is equivalent to the Turing machine model, and the translations, although tedious,
are not that bad.

The RAM program model also has the technical advantage that coding up a RAM pro-
gram as a natural number is not that complicated.

The λ-calculus is a very elegant model but it is more abstract than the RAM program
model and the Turing machine model so we postpone discussing it until Chapter 5.

Another very interesting computation model particularly well suited to deal with decid-
able sets of natural numbers is Diophantine definability . This model, arising from the work
involved in proving that Hilbert’s tenth problem is undecidable, will be discussed in Chapter
9.

In the following sections we will define the RAM program model, the Turing machine
model, and then argue without proofs (relegated to Chapter 4) that there are algorithms to
convert RAM programs into Turing machines, and conversely. Then we define the class of
computable functions in the sense of Herbrand–Gödel–Kleene, both for numerical functions
(defined on N) and functions defined on strings. This will require explaining what is primitive
recursion, which is a restricted form of recursion which guarantees that if it is applied to total
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functions, then the resulting function is total. Intuitively, primitive recursion corresponds
to writing programs that only use for loops (loops where the number of iterations is known
ahead of time and fixed).

3.1 Partial Functions and RAM Programs

In this section we define an abstract machine model for computing functions

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗,

where Σ = {a1, . . . , ak} is some input alphabet.

Numerical functions f : Nn → N can be viewed as functions defined over the one-letter
alphabet {a1}, using the bijection m 7→ am1 .

Since programs are not guaranteed to terminate for all inputs, we are forced to deal with
partial functions, so we recall their definition.

Definition 3.1. A binary relation R ⊆ A × B between two sets A and B is functional iff,
for all x ∈ A and y, z ∈ B,

(x, y) ∈ R and (x, z) ∈ R implies that y = z.

A partial function is a triple f = 〈A,G,B〉, where A and B are arbitrary sets (possibly
empty) and G is a functional relation (possibly empty) between A and B, called the graph
of f .

Hence, a partial function is a functional relation such that every argument has at most
one image under f .

The graph of a function f is denoted as graph(f). When no confusion can arise, a
function f and its graph are usually identified.

A partial function f = 〈A,G,B〉 is often denoted as f : A→ B.

The domain dom(f) of a partial function f = 〈A,G,B〉 is the set

dom(f) = {x ∈ A | ∃y ∈ B, (x, y) ∈ G}.

For every element x ∈ dom(f), the unique element y ∈ B such that (x, y) ∈ graph(f) is
denoted as f(x). We say that f(x) is defined , also denoted as f(x) ↓.

If x ∈ A and x /∈ dom(f), we say that f(x) is undefined , also denoted as f(x) ↑.
Intuitively, if a function is partial, it does not return any output for any input not in its

domain. This corresponds to an infinite computation.

It is important to define precisely the notion of equality of partial functions.
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Definition 3.2. Two partial functions f : A → B and f ′ : A′ → B′ are equal iff A = A′,
B = B′, and graph(f) = graph(f ′), which means that for all a ∈ A, either both f(a) and
f ′(a) are defined and f(a) = f ′(a), or both f(a) and f ′(a) are undefined.

This definition implies that when we write f(a) = f ′(a) for some a ∈ A, we mean that
either both f(a) and f ′(a) are defined and f(a) = f ′(a), or f and f ′ are both undefined at
a (equivalently, a /∈ dom(f) = dom(f ′)). There is a slight abuse of notation since f(a) (and
f ′(a)) may not be defined, but this is the customary notation.

Definition 3.3. A partial function f : A → B is a total function iff dom(f) = A. It is
customary to call a total function simply a function.

We now define a model of computation know as the RAM programs or Post machines .

RAM programs are written in a sort of assembly language involving simple instructions
manipulating strings stored into registers.

Every RAM program uses a fixed and finite number of registers denoted as R1, . . . , Rp,
with no limitation on the size of strings held in the registers.

RAM programs can be defined either in flowchart form or in linear form. Since the linear
form is more convenient for the purpose of encoding programs as numbers (a process known
as Gödel numbering), we focus primarily on RAM programs in linear form. However, the
flowchart form tends to be more intuitive and is useful to describe certain constructions (such
as primitive recursion and minimization) so we will also describe it.

A RAM program P (in linear form) consists of a finite sequence of instructions using a
finite number of registers R1, . . . , Rp.

Instructions may optionally be labeled with line numbers denoted as N1, . . . , Nq.

It is neither mandatory to label all instructions, nor to use distinct line numbers! Thus
the same line number can be used in more than one line. As we will see later on, this makes
it easier to concatenate two different programs without performing a renumbering of line
numbers.

Every instruction has four fields , not necessarily all used. The main field is the op-code.

Definition 3.4. RAM programs are constructed from seven types of instructions shown
below.

(1j) N addj Y
(2) N tail Y
(3) N clr Y
(4) N Y ← X
(5a) N jmp N1a
(5b) N jmp N1b
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue
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1. An instruction of type (1j) concatenates the letter aj to the right of the string held by
register Y (1 ≤ j ≤ k). The effect is the assignment

Y := Y aj.

2. An instruction of type (2) deletes the leftmost letter of the string held by the register
Y . This corresponds to the function tail, defined such that

tail(ε) = ε,

tail(aju) = u

for all u ∈ Σ∗. The effect is the assignment

Y := tail(Y ).

3. An instruction of type (3) clears register Y , i.e., sets its value to the empty string ε.
The effect is the assignment

Y := ε.

4. An instruction of type (4) assigns the value of register X to register Y . The effect is
the assignment

Y := X.

5. An instruction of type (5a) or (5b) is an unconditional jump.

The effect of (5a) is to jump to the closest line number N1 occurring above the in-
struction being executed, and the effect of (5b) is to jump to the closest line number
N1 occurring below the instruction being executed.

6. An instruction of type (6ja) or (6jb) is a conditional jump. Let head be the function
defined as follows:

head(ε) = ε,

head(aju) = aj

for all u ∈ Σ∗. The effect of (6ja) is to jump to the closest line number N1 occur-
ring above the instruction being executed iff head(Y ) = aj, else to execute the next
instruction (the one immediately following the instruction being executed).

The effect of (6jb) is to jump to the closest line number N1 occurring below the
instruction being executed iff head(Y ) = aj, else to execute the next instruction.

When computing over N, instructions of type (6ja) or (6jb) jump to the closest N1
above or below iff Y is nonnull.
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7. An instruction of type (7) is a no-op, i.e., the registers are unaffected. If there is a
next instruction, then it is executed, else the program stops.

When computing over N, which corresponds to the case where Σ = {a1}, an instruction of
type (1) computes the successor function S (or Succ) given by S(n) = n+1, an instruction of
type (2) computes the predecessor function pred given by pred(n+ 1) = n and pred(0) = 0,
and an instruction of type (3) computes the zero function Z given by Z(n) = 0.

Obviously, a program is syntactically correct only if certain conditions hold.

Definition 3.5. A RAM program P is a finite sequence of instructions as in Definition 3.4,
and satisfying the following conditions:

(1) For every jump instruction (conditional or not), the line number to be jumped to must
exist in P .

(2) The last instruction of a RAM program is a continue.

The reason for allowing multiple occurences of line numbers is to make it easier to con-
catenate programs without having to perform a renaming of line numbers.

The technical choice of jumping to the closest address N1 above or below comes from
the fact that it is easy to search up or down using primitive recursion, as we will see later
on.

For the purpose of computing a function f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗ using a RAM program

P , we assume that P has at least n registers called input registers , and that these registers
R1, . . . , Rn are initialized with the input values of the function f . We also assume that the
output is returned in register R1.

Example 3.1. The following RAM program concatenates two strings x1 and x2 held in
registers R1 and R2. Since Σ = {a, b}, for more clarity, we wrote jmpa instead of jmp1, jmpb
instead of jmp2, adda instead of add1, and addb instead of add2.

R3 ← R1
R4 ← R2

N0 R4 jmpa N1b
R4 jmpb N2b

jmp N3b
N1 adda R3

tail R4
jmp N0a

N2 addb R3
tail R4
jmp N0a

N3 R1 ← R3
continue
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The instructions of a RAM program in flowchart form are shown in Figure 3.1.

Schematic Representations of RAM Instructions

1. START

3.  Add statements y        y a j
(a    in  Σ )j

2.  Transfer statements y        x

4. Clear statements y        ε

5. Delete statements y        tail(y)

head(y)
a1

ai

a k

ε6. Test statements

7. STOP

Figure 3.1: RAM instructions in flowchart form.

They are all self-explanatory except perhaps the test statements which behave as follows.
If the leftmost symbol head(y) is the letter ai, then follow the arrow labeled ai (to the
instruction to be executed next). Otherwise y = ε and then follow the arrow labeled ε.

Remark: The instructions of a RAM program in flowchart form are very similar to the
instructions of the Post machines discussed in Manna [44]. However, Post machines use a
single register. Nevertheless, it can be shown that the two models are equivalent.

Definition 3.6. A RAM flowchart program is a directed graph obtained by interconnecting
statements in such a way that:

(1) There is a single START.

(2) There is a single STOP.
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(3) Every entry point of a statement is connected to an exit point of some statement and
every exit point of a statement is connected to the entry point of some statement.

As in the case of a RAM program in linear form, a RAM program in flowchart form is
assumed to have prescribed input variables. A flowchart form representation of the RAM
program of Example 3.1 is shown in Figure 3.2.

Concatenating two strings over {a,b}*

START

head(y)

x         x

y         x

1

2

x         xa

y         tail(y)

x         xb

y         tail(y)

a

b

ε

x         x1

STOP

Figure 3.2: A RAM program in flowchart form for computing concatenation.

Remark: The reader may have noticed that the definition of a RAM program, either in
flowchart form or linear form, does not exclude undesirable programs such as disconnected
programs consisting of several connected components. We could fix the definitions to avoid
such pathological cases, but they are exceptional and we will not go into such trouble now.
The reader is invited to think about pathological cases that should be ruled out and ways
of fixing the definitions to avoid them.

Definition 3.7. A RAM program P computes the partial function ϕ : (Σ∗)n → Σ∗ if the
following conditions hold: for every input (x1, . . . , xn) ∈ (Σ∗)n, having initialized the input
registers R1, . . . , Rn with x1, . . . , xn, the program eventually halts iff ϕ(x1, . . . , xn) is defined,
and if and when P halts, the value of R1 is equal to ϕ(x1, . . . , xn). A partial function ϕ is
RAM-computable iff it is computed by some RAM program.
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Example 3.2. The following program computes the erase function E defined such that

E(u) = ε

for all u ∈ Σ∗:
clr R1
continue

Example 3.3. The following program computes the jth successor function Sj defined such
that

Sj(u) = uaj

for all u ∈ Σ∗:
addj R1
continue

Example 3.4. The following program (with n input variables) computes the projection
function P n

i defined such that
P n
i (u1, . . . , un) = ui,

where n ≥ 1, and 1 ≤ i ≤ n:
R1 ← Ri

continue

Note that P 1
1 is the identity function.

The equivalence of the flowchart form and the linear form of RAM programs is straight-
forward. Translating a program in linear form to the flowchart form is almost immediate
and is left as an exercise. In the other direction, first we assign distinct labels to all the
statements in the flowchart except START. The only translation which is not immediately
obvious is the case of a test statement. If the target labels of the arrows labeled a1, . . . , ak, ε
are N1, . . . , Nk,N(k + 1), we create the following piece of code

Y jmp1 N1c
...

Y jmpk Nkc
Y jmp N(k + 1)c,

where c is a or b depending on the location of Ni in the linear RAM program. Extra
unconditional jumps may also be needed to mimic the flow of control of the program in
flowchart form. The details are left as an exercise.

Having a programming language, we would like to know how powerful it is, that is, we
would like to know what kind of functions are RAM-computable. At first glance, it seems
that RAM programs don’t do much, but this is not so. Indeed, we will see shortly that the
class of RAM-computable functions is quite extensive.
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One way of getting new programs from previous ones is via composition. Another one
is by primitive recursion. We will investigate these constructions after introducing another
model of computation, Turing machines .

Remarkably, the classes of (partial) functions computed by RAM programs and by Tur-
ing machines are identical. This is the class of partial computable functions in the sense of
Herbrand–Gödel–Kleene, also called partial recursive functions , a term which is now consid-
ered old-fashion. We will present the definition of the so-called µ-recursive functions (due
to Kleene).

The following proposition will be needed to simplify the encoding of RAM programs as
numbers.

Proposition 3.1. Every RAM program can be converted to an equivalent program only using
the following type of instructions.

(1j) N addj Y
(2) N tail Y
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue

The proof is fairly simple. For example, instructions of the form

Ri← Rj

can be eliminated by transferring the contents of Rj into an auxiliary register Rk, and then
by transferring the contents of Rk into Ri and Rj.

3.2 Definition of a Turing Machine

We define a Turing machine model for computing functions

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗,

where Σ = {a1, . . . , ak} is some input alphabet. In this section, since we are primarily
interested in computing functions we only consider deterministic Turing machines.

There are many variants of the Turing machine model. The main decision that needs to
be made has to do with the kind of tape used by the machine. We opt for a single finite
tape that is both an input and a storage mechanism. This tape can be viewed as a string
over tape alphabet Γ such that Σ ⊆ Γ. There is a read/write head pointing to some symbol
on the tape, symbols on the tape can be overwritten, and the read/write head can move
one symbol to the left or one symbol to the right, also causing a state transition. When the
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write/read head attempts to move past the rightmost or the leftmost symbol on the tape,
the tape is allowed to grow. To accomodate such a move, the tape alphabet contains some
special symbol B /∈ Σ, the blank , and this symbol is added to the tape as the new leftmost
or rightmost symbol on the tape.

A common variant uses a tape which is infinite at both ends, but only has finitely many
symbols not equal to B, so effectively it is equivalent to a finite tape allowed to grow at
either ends. Another variant uses a semi-infinite tape infinite to the right, but with a left
end. We find this model cumbersome because it requires shifting right the entire tape when
a left move is attempted from the left end of the tape.

Another decision that needs to be made is the format of the instructions. Does an
instruction cause both a state transition and a symbol overwrite, or do we have separate
instructions for a state transition and a symbol overwrite. In the first case, an instruction
can be specified as a quintuple, and in the second case by a quadruple. We opt for quintuples.
Here is our definition.

Definition 3.8. A (deterministic) Turing machine (or TM ) M is a sextuple M = (K,Σ,Γ,
{L,R}, δ, q0), where

• K is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite tape alphabet , s.t. Σ ⊆ Γ, K ∩ Γ = ∅, and with blank B /∈ Σ;

• q0 ∈ K is the start state (or initial state);

• δ is the transition function, a (finite) set of quintuples

δ ⊆ K × Γ× Γ× {L,R} ×K,

such that for all (p, a) ∈ K × Γ, there is at most one triple (b,m, q) ∈ Γ× {L,R} ×K
such that (p, a, b,m, q) ∈ δ.

A quintuple (p, a, b,m, q) ∈ δ is called an instruction. It is also denoted as

p, a→ b,m, q.

The effect of an instruction is to switch from state p to state q, overwrite the symbol
currently scanned a with b, and move the read/write head either left or right, according to
m.

Example 3.5. Here is an example of a Turing machine specified by

K = {q0, q1, q2, q3}; Σ = {a, b}; Γ = {a, b, B}.
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The instructions in δ are

q0, B → B,R, q3,

q0, a→ b, R, q1,

q0, b→ a,R, q1,

q1, a→ b, R, q1,

q1, b→ a,R, q1,

q1, B → B,L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B,R, q3.

3.3 Computations of Turing Machines

To explain how a Turing machine works, we describe its action on instantaneous descriptions .
We take advantage of the fact that K ∩ Γ = ∅ to define instantaneous descriptions.

Definition 3.9. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

an instantaneous description (for short an ID) is a (nonempty) string in Γ∗KΓ+, that is, a
string of the form

upav,

where u, v ∈ Γ∗, p ∈ K, and a ∈ Γ.

The intuition is that an ID upav describes a snapshot of a TM in the current state p,
whose tape contains the string uav, and with the read/write head pointing to the symbol
a. Thus, in upav, the state p is just to the left of the symbol presently scanned by the
read/write head.

We explain how a TM works by showing how it acts on ID’s.

Definition 3.10. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

the yield relation (or compute relation) ` is a binary relation defined on the set of ID’s as
follows. For any two ID’s ID1 and ID2, we have ID1 ` ID2 iff either

(1) (p, a, b, R, q) ∈ δ, and either

(a) ID1 = upacv, c ∈ Γ, and ID2 = ubqcv, or
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(b) ID1 = upa and ID2 = ubqB;

or

(2) (p, a, b, L, q) ∈ δ, and either

(a) ID1 = ucpav, c ∈ Γ, and ID2 = uqcbv, or

(b) ID1 = pav and ID2 = qBbv.

See Figure 3.3.

ID  = upacv

reading head

1
u va

u v

p

b

q

ID   = ubqcv2

(p,a,b,R,q)

ID  = upa
1

u a

u

p

b

q

ID   = ubqB2

(p,a,b,R,q)

B

ID  = ucpav
1

u va

u v

p

b

q

ID   = uqcbv2

(p,a,b,L,q)

ID  = pav
1

a

p

b

q

ID   = qBbv2

(p,a,b,L,q)

c

c

v

vB

(state)

c

c

Figure 3.3: Moves of a Turing machine.

Note how the tape is extended by one blank after the rightmost symbol in Case (1)(b),
and by one blank before the leftmost symbol in Case (2)(b).

As usual, we let `+ denote the transitive closure of `, and we let `∗ denote the reflexive
and transitive closure of `. We can now explain how a Turing machine computes a partial
function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗.

Since we allow functions taking n ≥ 1 input strings, we assume that Γ contains the
special delimiter , not in Σ, used to separate the various input strings.

It is convenient to assume that a Turing machine “cleans up” its tape when it halts before
returning its output. What this means is that when the Turing machine halts, the output
should be clearly identifiable, so all symbols not in Σ∪{B} that may have been used during
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the computation must be erased. Thus when the TM stops the tape must consist of a string
w ∈ Σ∗ possibly surrounded by blanks (the symbol B). Actually, if the output is ε, the tape
must contain a nonempty string of blanks. To achieve this technically, we define proper ID’s.

Definition 3.11. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

where Γ contains some delimiter , not in Σ in addition to the blank B, a starting ID is of
the form

q0w1,w2, . . . ,wn

where w1, . . . , wn ∈ Σ∗ and n ≥ 2, or q0w with w ∈ Σ+, or q0B.

A blocking (or halting) ID is an ID upav such that there are no instructions (p, a, b,m, q) ∈
δ for any (b,m, q) ∈ Γ× {L,R} ×K.

A proper ID is a halting ID of the form

BhpwBl,

where w ∈ Σ∗, and h, l ≥ 0 (with l ≥ 1 when w = ε).

Computation sequences are defined as follows.

Definition 3.12. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

a computation sequence (or computation) is a finite or infinite sequence of ID’s

ID0, ID1, . . . , IDi, IDi+1, . . . ,

such that IDi ` IDi+1 for all i ≥ 0.
A computation sequence halts iff it is a finite sequence of ID’s, so that

ID0 `∗ IDn,

and IDn is a halting ID.

A computation sequence diverges if it is an infinite sequence of ID’s.

We now explain how a Turing machine computes a partial function.

Definition 3.13. A Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0)

computes the partial function
f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸

n

→ Σ∗

iff the following conditions hold:
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(1) For every w1, . . . , wn ∈ Σ∗, given the starting ID

ID0 = q0w1,w2, . . . ,wn

or q0w with w ∈ Σ+, or q0B, the computation sequence of M from ID0 halts in a
proper ID iff f(w1, . . . , wn) is defined.

(2) If f(w1, . . . , wn) is defined, then M halts in a proper ID of the form

IDn = Bhpf(w1, . . . , wn)Bl,

which means that it computes the right value.

A function f (over Σ∗) is Turing computable iff it is computed by some Turing machine
M .

Note that by (1), the TM M may halt in an improper ID, in which case f(w1, . . . , wn)
must be undefined. This corresponds to the fact that we only accept to retrieve the output of
a computation if the TM has cleaned up its tape, i.e., produced a proper ID. In particular,
intermediate calculations have to be erased before halting.

Example 3.6. Consider the Turing machine of Example 3.5 specified by K = {q0, q1, q2, q3};
Σ = {a, b}; Γ = {a, b, B}.

The instructions in δ are

q0, B → B,R, q3,

q0, a→ b, R, q1,

q0, b→ a,R, q1,

q1, a→ b, R, q1,

q1, b→ a,R, q1,

q1, B → B,L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B,R, q3.

The reader can easily verify that this machine exchanges the a’s and b’s in a string. For
example, on input w = aaababb, the output is bbbabaa. The computation is given by the
following sequence of ID’s.

q0 aaababb ` b q1 aababb ` bb q1 ababb ` bbb q1 babb ` bbba q1 abb ` bbbab q1 bb

` bbbaba q1 b ` bbbabaa q1B ` bbbaba q2 aB ` bbbab q2 aaB ` bbba q2 baaB

` bbb q2 abaaB ` bb q2 babaaB ` b q2 bbabaaB ` q2 bbbabaaB ` q2BbbbabaaB

` B q3 bbbabaaB.

The last ID B q3 bbbabaaB is a proper ID and the output is bbbabaa.
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3.4 Equivalence of RAM Programs And Turing

Machines

Turing machines can simulate RAM programs, and as a result, we have the following theorem.

Theorem 3.2. Every RAM-computable function is Turing-computable. Furthermore, given
a RAM program P , we can effectively construct a Turing machine M computing the same
function.

The idea of the proof is to represent the contents of the registers R1, . . . Rp on the Turing
machine tape by the string

#r1#r2# · · ·#rp#,
where # is a special marker and ri represents the string held by Ri. We also use Proposition
3.1 to reduce the number of instructions to be dealt with.

The Turing machine M is built of blocks, each block simulating the effect of some in-
struction of the program P . The details are a bit tedious, and can be found in Section 4.1
or in Machtey and Young [43].

RAM programs can also simulate Turing machines.

Theorem 3.3. Every Turing-computable function is RAM-computable. Furthermore, given
a Turing machine M , one can effectively construct a RAM program P computing the same
function.

The idea of the proof is to design a RAM program containing an encoding of the current
ID of the Turing machine M in register R1, and to use other registers R2, R3 to simulate
the effect of executing an instruction of M by updating the ID of M in R1.

The details are tedious and can be found in Section 4.2.

Another proof can be obtained by proving that the class of Turing computable functions
coincides with the class of partial computable functions (formerly called partial recursive
functions), to be defined shortly. Indeed, it turns out that both RAM programs and Turing
machines compute precisely the class of partial recursive functions. For this, we will need to
define the primitive recursive functions .

Informally, a primitive recursive function is a total recursive function that can be com-
puted using only for loops, that is, loops in which the number of iterations is fixed (unlike
a while loop). A formal definition of the primitive functions is given in Section 3.7. For the
time being we make the following provisional definition.

Definition 3.14. Let Σ = {a1, . . . , ak}. The class of partial computable functions , also called
partial recursive functions , is the class of partial functions (over Σ∗) that can be computed
by RAM programs (or equivalently by Turing machines).
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The class of computable functions , also called recursive functions , is the subset of the
class of partial computable functions consisting of functions defined for every input (i.e.,
total functions).

Turing machines can also be used as acceptors to define languages so we introduce the
basic relevant definitions. A more detailed study of these languages will be provided in
Chapter 7.

3.5 Listable Languages and Computable Languages

We define the computably enumerable languages, also called listable languages, and the
computable languages. The old-fashion terminology for listable languages is recursively
enumerable languages, and for computable languages is recursive languages.

When operating as an acceptor, a Turing machine takes a single string as input and
either goes on forever or halts with the answer “accept” or “reject.” One way to deal with
acceptance or rejection is to assume that the TM has a set of final states. Another way more
consistent with our view that machines compute functions is to assume that the TM’s under
consideration have a tape alphabet containing the special symbols 0 and 1. Then acceptance
is signaled by the output 1, and rejection is signaled by the output 0.

Note that with our convention that in order to produce an output a TM must halt in a
proper ID, the TM must erase the tape before outputing 0 or 1.

Definition 3.15. Let Σ = {a1, . . . , ak}. A language L ⊆ Σ∗ is (Turing) listable or (Turing)
computably enumerable (for short, a c.e. set) (or recursively enumerable (for short, a r.e.
set)) iff there is some TM M such that for every w ∈ L, M halts in a proper ID with the
output 1, and for every w /∈ L, either M halts in a proper ID with the output 0 or it runs
forever.

A language L ⊆ Σ∗ is (Turing) computable (or recursive) iff there is some TM M such
that for every w ∈ L, M halts in a proper ID with the output 1, and for every w /∈ L, M
halts in a proper ID with the output 0.

Thus, given a computably enumerable language L, for some w /∈ L, it is possible that a
TM accepting L runs forever on input w. On the other hand, for a computable (recursive)
language L, a TM accepting L always halts in a proper ID.

When dealing with languages, it is often useful to consider nondeterministic Turing ma-
chines . Such machines are defined just like deterministic Turing machines, except that their
transition function δ is just a (finite) set of quintuples

δ ⊆ K × Γ× Γ× {L,R} ×K,

with no particular extra condition.
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It can be shown that every nondeterministic Turing machine can be simulated by a
deterministic Turing machine, and thus, nondeterministic Turing machines also accept the
class of c.e. sets. This is a very tedious simulation, and very few books actually provide all
the details!

It can be shown that a computably enumerable language is the range of some computable
(recursive) function; see Section 7.4. It can also be shown that a language L is computable
(recursive) iff both L and its complement are computably enumerable; see Section 7.4. There
are computably enumerable languages that are not computable (recursive); see Section 7.4.

3.6 A Simple Function Not Known to be Computable

The “3n+ 1 problem” proposed by Collatz around 1937 is the following:

Given any positive integer n ≥ 1, construct the sequence ci(n) as follows starting with
i = 1:

c1(n) = n

ci+1(n) =

{
ci(n)/2, if ci(n) is even

3ci(n) + 1, if ci(n) is odd.

Observe that for n = 1, we get the infinite periodic sequence

1 =⇒ 4 =⇒ 2 =⇒ 1 =⇒ 4 =⇒ 2 =⇒ 1 =⇒ · · · ,

so we may assume that we stop the first time that the sequence ci(n) reaches the value 1 (if
it actually does). Such an index i is called the stopping time of the sequence. And this is
the problem:

Conjecture (Collatz):

For any starting integer value n ≥ 1, the sequence (ci(n)) always reaches 1.

Starting with n = 3, we get the sequence

3 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

Starting with n = 5, we get the sequence

5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

Starting with n = 6, we get the sequence

6 =⇒ 3 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.
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Starting with n = 7, we get the sequence

7 =⇒ 22 =⇒ 11 =⇒ 34 =⇒ 17 =⇒ 52 =⇒ 26 =⇒ 13 =⇒ 40

=⇒ 20 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

One might be surprised to find that for n = 27, it takes 111 steps to reach 1, and for
n = 97, it takes 118 steps. We computed the stopping times for n up to 107 and found that
the largest stopping time, 686 (685 steps) is obtained for n = 8400511. The terms of this
sequence reach values over 1.5 × 1011. The graph of the sequence c(8400511) is shown in
Figure 3.4.
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Figure 3.4: Graph of the sequence for n = 8400511.

We can define the partial computable function C (with positive integer inputs) defined
by

C(n) = the smallest i such that ci(n) = 1 if it exists.
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Then the Collatz conjecture is equivalent to asserting that the function C is (total) com-
putable. The graph of the function C for 1 ≤ n ≤ 107 is shown in Figure 3.5.

Figure 3.5: Graph of the function C for 1 ≤ n ≤ 107.

So far, the conjecture remains open. It has been checked by computer for all integers less
than or equal to 87× 260.

We now return to the computability of functions. Our goal is to define the partial
computable functions in the sense of Herbrand–Gödel–Kleene. This class of functions is
defined from some base functions in terms of three closure operations:

1. Composition

2. Primitive recursion

3. Minimization.

The first two operations preserve the property of a function to be total, and this sub-
class of total computable functions called primitive recursive functions plays an important
technical role.
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3.7 The Primitive Recursive Functions

Historically the primitive recursive functions were defined for numerical functions (comput-
ing on the natural numbers). Since one of our goals is to show that the RAM-computable
functions are partial recursive, we define the primitive recursive functions as functions
f : (Σ∗)m → Σ∗, where Σ = {a1, . . . , ak} is a finite alphabet. As usual, by assuming that
Σ = {a1}, we can deal with numerical functions f : Nm → N.

The class of primitive recursive functions is defined in terms of base functions and two
closure operations.

Definition 3.16. Let Σ = {a1, . . . , ak}. The base functions over Σ are the following func-
tions:

(1) The erase function E, defined such that E(w) = ε, for all w ∈ Σ∗;

(2) For every j, 1 ≤ j ≤ k, the j-successor function Sj, defined such that Sj(w) = waj,
for all w ∈ Σ∗;

(3) The projection functions P n
i , defined such that

P n
i (w1, . . . , wn) = wi,

for every n ≥ 1, every i, 1 ≤ i ≤ n, and for all w1, . . . , wn ∈ Σ∗.

Note that P 1
1 is the identity function on Σ∗. Projection functions can be used to permute,

duplicate, or drop the arguments of another function.

Definition 3.17. In the special case where we are only considering numerical functions
(Σ = {a1}), the function E : N → N is the zero function given by E(n) = 0 for all n ∈ N,
and it is often denoted by Z. There is a single successor function Sa1 : N → N usually
denoted S (or Succ) given by S(n) = n+ 1 for all n ∈ N.

Even though in this section we are primarily interested in total functions, later on, the
same closure operations will be applied to partial functions so we state the definition of the
closure operations in the more general case of partial functions. The first closure operation
is (extended) composition.

Definition 3.18. Let Σ = {a1, . . . , ak}. For any partial or total function

g : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗,

and any m ≥ 1 partial or total functions

hi : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗, n ≥ 1,
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the composition of g and the hi is the partial function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗,

denoted as g ◦ (h1, . . . , hm), such that

f(w1, . . . , wn) = g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn))

for all w1, . . . , wn ∈ Σ∗. If g and all the hi are total functions, then g ◦ (h1, . . . , hm) is
obviously a total function. But if g or any of the hi is a partial function, then the value
(g◦(h1, . . . , hm))(w1, . . . , wn) is defined if and only if all the values hi(w1, . . . , wn) are defined
for i = 1, . . . ,m, and g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)) is defined.

Thus even if g “ignores” some of its inputs, in computing g(h1(w1, . . . , wn), . . . , hm(w1,
. . . , wn)), all arguments hi(w1, . . . , wn) must be evaluated.

As an example of a composition, f = g ◦ (P 2
2 , P

2
1 ) is such that

f(w1, w2) = g(P 2
2 (w1, w2), P 2

1 (w1, w2)) = g(w2, w1).

The second closure operation is primitive recursion. First we define primitive recursion
for numerical functions because it is simpler.

Definition 3.19. Given any two partial or total functions g : Nm−1 → N and h : Nm+1 → N
(m ≥ 2), the partial or total function f : Nm → N is defined by primitive recursion from g
and h if f is given by

f(0, x2, . . . , xm) = g(x2, . . . , xm)

f(n+ 1, x2, . . . , xm) = h(n, f(n, x2, . . . , xm), x2, . . . , xm),

for all n, x2, . . . , xm ∈ N. When m = 1, we have

f(0) = b

f(n+ 1) = h(n, f(n)), for all n ∈ N,

for some fixed natural number b ∈ N.

If g and h are total functions, it is easy to show that f is also a total function. If g
or h is partial, obviously f(0, x2, . . . , xm) is defined iff g(x2, . . . , xm) is defined, and f(n +
1, x2, . . . , xm) is defined iff f(n, x2, . . . , xm) is defined and h(n, f(n, x2, . . . , xm), x2, . . . , xm)
is defined.

Definition 3.19 is quite a straightjacket in the sense that n+1 must be the first argument
of f , and the definition only applies if h has m + 1 arguments, but in practice a “natural”
definition often ignores the argument n and some of the arguments x2, . . . , xm. This is where
the projection functions come into play to drop, duplicate, or permute arguments.
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Example 3.7. For example, a “natural” definition of the predecessor function pred is

pred(0) = 0

pred(m+ 1) = m,

but this is not a legal primitive recursive definition. To make it a legal primitive recursive
definition we need the function h = P 2

1 , and a legal primitive recursive definition for pred is

pred(0) = 0

pred(m+ 1) = P 2
1 (m, pred(m)).

Example 3.8. Addition, multiplication, exponentiation, and super-exponentiation, can be
defined by primitive recursion as follows (being a bit loose, for supexp we should use some
projections ...):

add(0, n) = P 1
1 (n) = n

add(m+ 1, n) = S ◦ P 3
2 (m, add(m,n), n)

= S(add(m,n))

mult(0, n) = E(n) = 0

mult(m+ 1, n) = add ◦ (P 3
2 , P

3
3 )(m,mult(m,n), n)

= add(mult(m,n), n)

rexp(0, n) = S ◦ E(n) = 1

rexp(m+ 1, n) = mult ◦ (P 3
2 , P

3
3 )(m, rexp(m,n), n)

exp(m,n) = rexp ◦ (P 2
2 , P

2
1 )(m,n)

supexp(0, n) = 1

supexp(m+ 1, n) = exp(n, supexp(m,n)).

We usually write m + n for add(m,n), m ∗ n or even mn for mult(m,n), and mn for
exp(m,n).

Example 3.9. The recursive definition of mn is m(n+1) = mn ∗m, which corresponds to

exp(m,n+ 1) = mult(exp(m,n),m).

Unfortunately, the recursion is on the second argument n, so we have to create the auxiliary
function rexp given by

rexp(m,n) = nm,

write the primitive recusive definition of rexp in m, and then

exp(m,n) = rexp(n,m) = rexp ◦ (P 2
2 , P

2
1 )(m,n).
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Example 3.10. There is a minus operation on N named monus. This operation denoted
by ·− is defined by

m ·− n =

{
m− n, if m ≥ n

0, if m < n.

Then monus is defined by

m ·− 0 = m

m ·− (n+ 1) = pred(m ·− n),

except that the above is not a legal primitive recursion. For one thing, recursion should be
performed on m, not n. We can define rmonus as

rmonus(n,m) = m ·− n,

and then m ·− n = (rmonus ◦ (P 2
2 , P

2
1 ))(m,n), and

rmonus(0 ·−m) = P 1
1 (m)

rmonus(n+ 1,m) = pred ◦ P 2
2 (n, rmonus(n,m)).

Example 3.11. The following functions are also primitive recursive:

sg(n) =

{
1, if n > 0

0, if n = 0,

sg(n) =

{
0, if n > 0

1, if n = 0,

as well as

abs(m,n) = |m− n| = m ·− n+ n ·−m,
and

eq(m,n) =

{
1, if m = n

0, if m 6= n.

Indeed

sg(0) = 0

sg(n+ 1) = S ◦ E ◦ P 2
1 (n, sg(n))

sg(n) = S(E(n)) ·− sg(n) = 1 ·− sg(n),

and

eq(m,n) = sg(|m− n|).
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Example 3.12. Finally, the function

cond(m,n, p, q) =

{
p, if m = n

q, if m 6= n,

is primitive recursive, since

cond(m,n, p, q) = eq(m,n) ∗ p+ sg(eq(m,n)) ∗ q.

Example 3.13. We can also design more general version of cond. For example, define
compare≤ as

compare≤(m,n) =

{
1, if m ≤ n

0, if m > n,

which is given by

compare≤(m,n) = 1 ·− sg(m ·− n).

Then we can define

cond≤(m,n, p, q) =

{
p, if m ≤ n

q, if m > n,

with

cond≤(m,n, n, p) = compare≤(m,n) ∗ p+ sg(compare≤(m,n)) ∗ q.
The above allows to define functions by cases.

We now generalize primitive recursion to functions defined on strings (in Σ∗). The new
twist is that instead of the argument n+ 1 of f , we need to consider the k arguments uai of
f for i = 1, . . . , k (with u ∈ Σ∗), so instead of a single function h, we need k functions hi to
define primitive recursively what f(uai, w2, . . . , wm) is.

Definition 3.20. Let Σ = {a1, . . . , ak}. For any partial or total function

g : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m−1

→ Σ∗,

where m ≥ 2, and any k partial or total functions

hi : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m+1

→ Σ∗,

the partial function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗
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is defined by primitive recursion from g and h1, . . . , hk, if

f(ε, w2, . . . , wm) = g(w2, . . . , wm)

f(ua1, w2, . . . , wm) = h1(u, f(u,w2, . . . , wm), w2, . . . , wm)

· · · = · · ·
f(uak, w2, . . . , wm) = hk(u, f(u,w2, . . . , wm), w2, . . . , wm),

for all u,w2, . . . , wm ∈ Σ∗.

When m = 1, for some fixed w ∈ Σ∗, we have

f(ε) = w

f(ua1) = h1(u, f(u))

· · · = · · ·
f(uak) = hk(u, f(u)),

for all u ∈ Σ∗.

Again, if g and the hi are total, it is easy to see that f is total.

Example 3.14. As an example over {a, b}∗, the following function g : Σ∗ × Σ∗ → Σ∗, is
defined by primitive recursion:

g(ε, v) = P 1
1 (v)

g(uai, v) = Si ◦ P 3
2 (u, g(u, v), v),

where 1 ≤ i ≤ k. It is easily verified that g(u, v) = vu. Then,

con = g ◦ (P 2
2 , P

2
1 )

computes the concatenation function, i.e., con(u, v) = uv. The extended concatenation
conn+1 (n ≥ 1) defined by

conn+1(x1, . . . , xn+1) = x1 · · · xn+1

is primitive recursive because con2 = con and

conn+1(x1, . . . , xn+1) = con(conn(P n+1
1 (x1, . . . , xn+1), . . . P n+1

n (x1, . . . , xn+1)),

P n+1
n+1 (x1, . . . , xn+1)).

Here are some primitive recursive functions that often appear as building blocks for other
primitive recursive functions.
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Example 3.15. The delete last function dell given by

dell(ε) = ε

dell(uai) = u, 1 ≤ i ≤ k, u ∈ Σ∗

is defined primitive recursively by

dell(ε) = ε

dell(uai) = P 2
1 (u, dell(u)), 1 ≤ i ≤ k, u ∈ Σ∗.

Example 3.16. For every string w ∈ Σ∗, the constant function cw given by

cw(u) = w, for all u ∈ Σ∗

is defined primitive recursively by induction on the length of w by

cε = E

cvai = Si ◦ cv, 1 ≤ i ≤ k.

Example 3.17. The sign function sg given by

sg(x) =

{
ε, if x = ε

a1, if x 6= ε

is defined primitive recursively by

sg(ε) = ε

sg(uai) = (ca1 ◦ P 2
1 )(u, sg(u)).

Example 3.18. The anti-sign function sg given by

sg(x) =

{
a1, if x = ε

ε, if x 6= ε

is primitive recursive. The proof is left an an exercise.

Example 3.19. The function endj (1 ≤ j ≤ k) given by

endj(x) =

{
a1, if x ends with aj

ε, otherwise

is primitive recursive. The proof is left an an exercise.
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Example 3.20. The reverse function rev : Σ∗ → Σ∗ given by rev(u) = uR is primitive
recursive because

rev(ε) = ε

rev(uai) = (con ◦ (cai ◦ P 2
1 , P

2
2 ))(u, rev(u)), 1 ≤ i ≤ k.

Example 3.21. The tail function tail given by

tail(ε) = ε

tail(aiu) = u

is primitive recursive because
tail = rev ◦ dell ◦ rev.

Example 3.22. The last function last given by

last(ε) = ε

last(uai) = ai

is primitive recursive because

last(ε) = ε

last(uai) = cai ◦ P 2
1 (u, last(u)).

Example 3.23. The head function head given by

head(ε) = ε

head(aiu) = ai

is primitive recursive because
head = last ◦ rev.

We are now ready to define the class of primitive recursive functions.

Definition 3.21. Let Σ = {a1, . . . , ak}. The class of primitive recursive functions is the
smallest class of (total) functions (over Σ∗) which contains the base functions and is closed
under composition and primitive recursion.

In the special where k = 1, we obtain the class of numerical primitive recursive functions .

Example 3.24. The function f given by f(x1, x2) = x
|x2|
1 is defined by primitive recursion

as follows. First we introduce g given by g(x1, x2) = x
|x1|
2 , with

g(ε, x2) = ε

g(x1ai, x2) = con(g(x1, x2), x2).

Then f(x1, x2) = g(x2, x1). A RAM program in flowchart form computing f is shown in Fig-
ure 3.6. Observe how this program makes use of the program for computing concatenation.
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Computing x  1
| x  |

2

Figure 3.6: Computing f(x1, x2) = x
|x2|
1 by primitive recursion.

3.8 Primitive Recursive Functions are RAM

Computable

The class of primitive recursive functions may not seem very big, but it contains all the total
functions that we would ever want to compute. Although it is rather tedious to prove, the
following theorem can be shown.

Theorem 3.4. For any alphabet Σ = {a1, . . . , ak}, every primitive recursive function is
RAM computable, and thus Turing computable.

Proof. We showed just after Definition 3.7 that the base functions are RAM-computable.

Let us first show closure of the class of RAM programs under composition. Let R,P1, . . .,
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Pm be RAM programs computing g, h1, . . . , hm, and assume that h1, . . . , hm are functions
of n variables. The idea is to use P1, . . . , Pm as subroutines to R. Let q be least integer
greater than m and n and such that no register of index past q is used in R,P1, . . . , Pm. The
program computing g ◦ (h1, . . . , hm) is designed as follows. First, we save the contents of the
input registers.

R(q + 1) ← R1
...

R(q + n) ← Rn

Next we initialize the noninput registers and compute h1(x1, . . . , xn) by “calling” P1 as a
subroutine. The output is stored in R(q + n+ 1).

clr R(n+ 1)
...

clr Rq
P1

R(q + n+ 1) ← R1

We have similar pieces of RAM code to execute P2, . . . , Pm, the mth piece of code being

R1 ← R(q + 1)
...

Rn ← R(q + n)
clr R(n+ 1)

...
clr Rq
Pm

R(q + n+m) ← R1

At this stage, the values h1(x1, . . . , xn), . . . , hm(x1, . . . , xn) have been computed and are
stored in the registers R(q + n+ 1), . . . , R(q + n+m), or one of the Pi diverged. We finally
call the subroutine R to compute g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)).

R1 ← R(q + n+ 1)
...

Rn ← R(q + n+m)
clr R(m+ 1)

...
clr Rq
R

The output is in register R1 (or the program diverged). Now the reader should understand
why we are using relative addresses in the jumps–this allows us to simply plug in the programs
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acting as subroutines in the right places. The other instructions simply make sure that these
programs are correctly initialized.

Next we show closure of the class of RAM programs under primitive recursion.
Suppose g, h1, . . . , hk are some total functions computable by some RAM programs, with

g : (Σ∗)m−1 → Σ∗, and hi : (Σ∗)m+1 → Σ∗, for i = 1, . . . , k. If we write x for (x2, . . . , xm), for
any y ∈ Σ∗, where y = ai1 · · · ain (with aij ∈ Σ), let f be defined by primitive recursion from
g and the hi’s, that is,

f(ε, x) = g(x)

f(ya1, x) = h1(y, f(y, x), x)

...

f(yai, x) = hi(y, f(y, x), x)

...

f(yak, x) = hk(y, f(y, x), x),

for all y ∈ Σ∗ and all x ∈ (Σ∗)m−1. Define the following sequences, uj and vj, for j =
0, . . . , n+ 1:

u0 = ε

u1 = u0ai1
...

uj = uj−1aij
...

un = un−1ain
un+1 = unai,

and

v0 = g(x)

v1 = hi1(u0, v0, x)

...

vj = hij(uj−1, vj−1, x)

...

vn = hin(un−1, vn−1, x)

vn+1 = hi(y, vn, x).

We leave it as an exercise to prove by induction that

vj = f(uj, x)
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for j = 0, . . . , n+ 1. It follows that

f(unai, x) = hi(un, f(un, x), x),

so f(unai, x) is defined and the function f is total. The RAM program in flowchart form
shown in Figure 3.7 implements the computation of the vj.

START

( y   ,  . . . , y   )              ( x   ,  . . . , x   )1 1m m    

( x   ,  . . . , x       )            ( y   ,  . . . , y   )1 m-1 m   2

v          g( x   ,  . . . , x      ) 1 m-1

x         u1

x         v2

x         y

x           y

3 2

m+1 m

v         h   ( x   ,  . . . , x      ) i 1 m+1

u         ua i

head ( y   )1

y         tail ( y   )1 1

ai

a a
1 k

x         v1

STOP

u          ε

Primitive Recursion

Figure 3.7: Closure under primitive recursion.

A statement such as
v ← g(x1, . . . , xm−1)

is an abbreviation for a RAM program R computing g, in which it is assumed that the
variables used by R, except the variables x1, . . . , xm−1, are not used elsewhere in the program
implementing primitive recursion. The same convention applies to the statement

v ← hi(x1, . . . , xm+1).
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In order to define new functions it is also useful to use predicates.

3.9 Primitive Recursive Predicates

Primitive recursive predicates will be used in Section 6.3.

Definition 3.22. An n-ary predicate P over N is any subset of Nn. We write that a tuple
(x1, . . . , xn) satisfies P as (x1, . . . , xn) ∈ P or as P (x1, . . . , xn). The characteristic function
of a predicate P is the function CP : Nn → {0, 1} defined by

Cp(x1, . . . , xn) =

{
1, iff P (x1, . . . , xn) holds

0, iff not P (x1, . . . , xn).

A predicate P (over N) is primitive recursive iff its characteristic function CP is primitive
recursive.

More generally, an n-ary predicate P (over Σ∗) is any subset of (Σ∗)n. We write that a
tuple (x1, . . . , xn) satisfies P as (x1, . . . , xn) ∈ P or as P (x1, . . . , xn).

Definition 3.23. The characteristic function of a predicate P is the function CP : (Σ∗)n →
{a1}∗ defined by

Cp(x1, . . . , xn) =

{
a1, iff P (x1, . . . , xn) holds

ε, iff not P (x1, . . . , xn).

A predicate P (over Σ∗) is primitive recursive iff its characteristic function CP is primitive
recursive.

Since we will only need to use primitive recursive predicates over N in the following
chapters, for simplicity of exposition we will restrict ourselves to such predicates. The
general case in treated in Machtey and Young [43].

It is easily shown that if P and Q are primitive recursive predicates (over Nn), then P ∨Q,
P ∧Q and ¬P are also primitive recursive.

As an exercise, the reader may want to prove that the predicate,

prime(n) iff n is a prime number,

is a primitive recursive predicate.

For any fixed k ≥ 1, the function

ord(k, n) = exponent of the kth prime in the prime factorization of n,

is a primitive recursive function.

We can also define functions by cases.
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Proposition 3.5. If P1, . . . , Pm are pairwise disjoint primitive recursive n-ary predicates
(which means that Pi∩Pj = ∅ for all i 6= j) and f1, . . . , fm+1 are primitive recursive functions
on Nn, the function g : Nn → N defined below is also primitive recursive:

g(x) =


f1(x), iff P1(x)

...
fm(x), iff Pm(x)
fm+1(x), otherwise.

Here we write x for (x1, . . . , xn).

Proposition 3.5 also applies to functions and predicates with string arguments.

It is also useful to have bounded quantification and bounded minimization. Recall that
we are restricting our attention to numerical predicates and functions, so all variables range
over N. Proofs of the results stated below can be found in Machtey and Young [43].

Definition 3.24. If P is an (n + 1)-ary predicate, then the bounded existential predicate
(∃y ≤ x)P (y, z) holds iff some y ≤ x makes P (y, z) true.

The bounded universal predicate (∀y ≤ x)P (y, z) holds iff every y ≤ x makes P (y, z)
true.

Both (∃y ≤ x)P (y, z) and (∀y ≤ x)P (y, z) are (n + 1)-ary predicates; that is, the input
arguments are x and z.

Proposition 3.6. If P is an (n+ 1)-ary primitive recursive predicate, then (∃y ≤ x)P (y, z)
and (∀y ≤ x)P (y, z) are also primitive recursive predicates.

As an application, we can show that the equality predicate u = v is primitive recursive.
The following slight generalization of Proposition 3.6 will be needed in Section 6.3.

Proposition 3.7. If P is an (n + 1)-ary primitive recursive predicate and f : Nn → N is
a primitive recursive function, then (∃y ≤ f(z))P (y, z) and (∀y ≤ f(z))P (y, z) are also
primitive recursive predicates.

Definition 3.25. If P is an (n + 1)-ary predicate, then the bounded minimization of P ,
min(y ≤ x)P (y, z), is the function defined such that min(y ≤ x)P (y, z) is the least natural
number y ≤ x such that P (y, z) if such a y exists, x+ 1 otherwise.

The bounded maximization of P , max(y ≤ x)P (y, z), is the function defined such that
max(y ≤ x)P (y, z) is the largest natural number y ≤ x such that P (y, z) if such a y exists,
x+ 1 otherwise.

Both min(y ≤ x)P (y, z) and max(y ≤ x)P (y, z) are functions from Nn+1 to N; that is,
the input arguments are x and z.

Proposition 3.8. If P is an (n+1)-ary primitive recursive predicate, then min(y ≤ x)P (y, z)
and max(y ≤ x)P (y, z) are primitive recursive functions.



206 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Bounded existential predicates and bounded universal predicates can also be defined for
predicates with string arguments.

Definition 3.26. The bounded existential predicate (∃y/x)P (y, z) holds iff some prefix y of
x makes P (y, z) true. The bounded universal predicate (∀y/x)P (y, z) holds iff every prefix y
of x makes P (y, z) true. In both cases the input arguments are x and z.

Again, if P is primitive recursive, then so are (∃y/x)P (y, z) and (∀y/x)P (y, z).

Bounded universal quantification can be used to prove that the equality predicate eq(x, y)
for strings is primitive recursive. This is surprisingly tricky. One needs a version of monus
on strings, namely

x− y =

{
ε, if |x| ≤ |y|
v, if |x| > |y| and x = uv with |u| = |y|.

We leave it as an exercise to show that that the above function is primitive recursive.

One also needs the predicate end(x) = end(y) which holds iff x = y = ε or x and y end
with the same letter. It is easy to show that this predicate is primitive recursive. Then the
predicate |x| = |y| is primitive recursive since it holds iff x− y = ε and y − x = ε.

Finally, the reader should verify that we have eq(x, y) iff |x| = |y| and

∀z/x[end(z) = end(rev(rev(y)− (x− z))].

We can also define bounded minimization and maximization for predicates with string
arguments.

Definition 3.27. The bounded minimization min(y/x) P (y, z) of P is the function defined
such that min(y/x)P (y, z) is the shortest prefix y of x such that P (y, z) if such a y exists,
xa1 otherwise.

The bounded maximization max(y/x)P (y, z) of P is the function defined such that
max(y/x)P (y, z) is the longest prefix y of x such that P (y, z) if such a y exists, xa1 otherwise.

In both cases the input arguments are x and z. If P is primitive recursive, then so are
min(y/x)P (y, z) and max(y/x)P (y, z).

So far the primitive recursive functions do not yield all the Turing-computable func-
tions. The following proposition also shows that restricting ourselves to total functions is
too limiting.

Let F be any set of total functions (f : (Σ∗)n → Σ∗) that contains the base functions and
is closed under composition and primitive recursion (and thus, F contains all the primitive
recursive functions).
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Definition 3.28. We say that a function f : Σ∗×Σ∗ → Σ∗ is universal for the one-argument
functions in F iff for every function g : Σ∗ → Σ∗ in F , there is some n ∈ N such that

f(an1 , u) = g(u)

for all u ∈ Σ∗.

Proposition 3.9. For any countable set F of total functions containing the base functions
and closed under composition and primitive recursion, if f is a universal function for the
functions g : Σ∗ → Σ∗ in F , then f /∈ F .

Proof. Assume that the universal function f is in F . Let g be the function such that

g(u) = f(a
|u|
1 , u)a1

for all u ∈ Σ∗. We claim that g ∈ F . It is enough to prove that the function h such that

h(u) = a
|u|
1

is primitive recursive, which is easily shown.

Then, because f is universal, there is some m such that

g(u) = f(am1 , u)

for all u ∈ Σ∗. Letting u = am1 , we get

g(am1 ) = f(am1 , a
m
1 ) = f(am1 , a

m
1 )a1,

a contradiction.

Thus, either a universal function for F is partial, or it is not in F .

In order to get a larger class of functions, we need the closure operation known as mini-
mization.

3.10 The Partial Computable Functions

Minimization can be viewed as an abstract version of a while loop. First let us consider the
simpler case of numerical functions.

Consider a function g : Nm+1 → N, with m ≥ 0. We would like to know if for any fixed
n1, . . . , nm ∈ N, the equation

g(n, n1, . . . , nm) = 0 with respect to n ∈ N
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has a solution n ∈ N, and if so, we return the smallest such solution. Thus we are defining
a (partial) function f : Nm → N such that

f(n1, . . . , nm) = min{n ∈ N | g(n, n1, . . . , nm) = 0},

with the understanding that f(n1, . . . , nm) is undefined otherwise. If g is computed by a
RAM program, computing f(n1, . . . , nm) corresponds to the while loop

n := 0;
while g(n, n1, . . . , nm) 6= 0 do
n := n+ 1;
endwhile
let f(n1, . . . , nm) = n.

Definition 3.29. For any function g : Nm+1 → N, where m ≥ 0, the function f : Nm → N is
defined by minimization from g, if the following conditions hold for all n1, . . . , nm ∈ N:

(1) f(n1, . . . , nm) is defined iff there is some n ∈ N such that g(p, n1, . . . , nm) is defined for
all p, 0 ≤ p ≤ n, and

g(n, n1, . . . , nm) = 0.

(2) When f(n1, . . . , nm) is defined,

f(n1, . . . , nm) = n,

where n is such that g(n, n1, . . . , nm) = 0 and g(p, n1, . . . , nm) 6= 0 for every p, 0 ≤ p ≤
n−1. In other words, n is the smallest natural number such that g(n, n1, . . . , nm) = 0.

Following Kleene, we write

f(n1, . . . , nm) = µn[g(n, n1, . . . , nm) = 0].

Remark: When f(n1, . . . , nm) is defined, f(n1, . . . , nm) = n, where n is the smallest natural
number such that Condition (1) holds. It is very important to require that all the values
g(p, n1, . . . , nm) be defined for all p, 0 ≤ p ≤ n, when defining f(n1, . . . , nm). Failure to do
so allows non-computable functions.

Minimization can be generalized to functions defined on strings as follows. Given a
function g : (Σ∗)m+1 → Σ∗, for any fixed w1, . . . , wm ∈ Σ∗, we wish to solve the equation

g(u,w1, . . . , wm) = ε with respect to u ∈ Σ∗,

and return the “smallest” solution u, if any. The only issue is what does smallest solution
mean. We resolve this issue by restricting u to be a string of aj’s, for some fixed letter
aj ∈ Σ. Thus there are k variants of minimization corresponding to searching for a shortest
string in {aj}∗, for a fixed j, 1 ≤ j ≤ k.
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Let Σ = {a1, . . . , ak}. For any function

g : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ k, the function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗

looks for the shortest string u over {aj}∗ (for a fixed j) such that

g(u,w1, . . . , wm) = ε.

This corresponds to the following while loop:

u := ε;
while g(u,w1, . . . , wm) 6= ε do
u := uaj;
endwhile
let f(w1, . . . , wm) = u

The operation of minimization (sometimes called minimalization) is defined as follows.

Definition 3.30. Let Σ = {a1, . . . , ak}. For any function

g : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ k, the function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗,

is defined by minimization over {aj}∗ from g, if the following conditions hold for all w1, . . .,
wm ∈ Σ∗:

(1) f(w1, . . . , wm) is defined iff there is some n ≥ 0 such that g(apj , w1, . . . , wm) is defined
for all p, 0 ≤ p ≤ n, and

g(anj , w1, . . . , wm) = ε.

(2) When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = anj ,

where n is such that
g(anj , w1, . . . , wm) = ε

and
g(apj , w1, . . . , wm) 6= ε

for every p, 0 ≤ p ≤ n− 1.
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We write
f(w1, . . . , wm) = minju[g(u,w1, . . . , wm) = ε].

Remark: When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = anj ,

where n is the smallest natural number such that Condition (1) holds. It is very important
to require that all the values g(apj , w1, . . . , wm) be defined for all p, 0 ≤ p ≤ n, when defining
f(w1, . . . , wm). Failure to do so allows non-computable functions.

Remark: Inspired by Kleene’s notation in the case of numerical functions, we may use the
µ-notation:

f(w1, . . . , wm) = µju[g(u,w1, . . . , wm) = ε].

The class of partial computable functions is defined as follows.

Definition 3.31. Let Σ = {a1, . . . , ak}. The class of partial computable functions (in the
sense of Herbrand–Gödel–Kleene), also called partial recursive functions is the smallest class
of partial functions (over Σ∗) which contains the base functions and is closed under compo-
sition, primitive recursion, and minimization.

The class of computable functions also called recursive functions is the subset of the class
of partial computable functions consisting of functions defined for every input (i.e., total
functions).

One of the major results of computability theory is the following theorem.

Theorem 3.10. For an alphabet Σ = {a1, . . . , ak}, every partial computable function (partial
recursive function) is RAM-computable, and thus Turing-computable. Conversely, every
RAM-computable function (or Turing-computable function) is a partial computable function
(partial recursive function). Similarly, the class of computable functions (recursive functions)
is equal to the class of Turing-computable functions that halt in a proper ID for every input,
and to the class of RAM programs that halt for all inputs.

Sketch of proof. First we prove that every partial computable function is RAM-computable.
Since we already know from Theorem 3.4 that the RAM programs contain the base functions
and are closed under composition and primitive recursion, it suffices to show that minimiza-
tion can be implemented by a RAM program. The RAM program in flowchart form shown
in Figure 3.8 implements minimization.

By Theorem 3.2, every RAM program can be converted to a Turing machine, so every
partial computable function is Turing-computable.

For the converse, one can show that given a Turing machine, there is a primitive recursive
function describing how to go from one ID to the next. Then minimization is used to guess
whether a computation halts. The proof shows that every partial computable function needs
minimization at most once. The characterization of the computable functions in terms of
TM’s follows easily. Details are given in Section 4.3. See also Machtey and Young [43] and
Kleene I.M. [36] (Chapter XIII).
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Figure 3.8: Closure under minimization.

We will prove directly in Section 6.3 that every RAM-computable function (over N) is
partial computable. This will be done by encoding RAM programs as natural numbers.

There are computable functions (recursive functions) that are not primitive recursive.
Such an example is given by Ackermann’s function.

Example 3.25. Ackermann’s function is the function A : N × N → N which is defined by
the following recursive clauses:

A(0, y) = y + 1

A(x+ 1, 0) = A(x, 1)

A(x+ 1, y + 1) = A(x, A(x+ 1, y)).

It turns out that A is a computable function which is not primitive recursive. This is
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not easy to prove. It can be shown that

A(0, x) = x+ 1

A(1, x) = x+ 2

A(2, x) = 2x+ 3

A(3, x) = 2x+3 − 3,

and

A(4, x) = 22·
··
216
}
x − 3,

with A(4, 0) = 16− 3 = 13.

For example
A(4, 1) = 216 − 3, A(4, 2) = 2216 − 3.

Actually, it is not so obvious that A is a total function, but it is.

Proposition 3.11. Ackermann’s function A is a total function.

Proof. This is shown by induction, using the lexicographic ordering � on N × N, which is
defined as follows:

(m,n) � (m′, n′) iff either

m = m′ and n = n′, or

m < m′, or

m = m′ and n < n′.

We write (m,n) ≺ (m′, n′) when (m,n) � (m′, n′) and (m,n) 6= (m′, n′).

We prove that A(m,n) is defined for all (m,n) ∈ N× N by complete induction over the
lexicographic ordering on N× N.

In the base case, (m,n) = (0, 0), and since A(0, n) = n + 1, we have A(0, 0) = 1, and
A(0, 0) is defined.

For (m,n) 6= (0, 0), the induction hypothesis is that A(m′, n′) is defined for all (m′, n′) ≺
(m,n). We need to conclude that A(m,n) is defined.

If m = 0, since A(0, n) = n+ 1, A(0, n) is defined.

If m 6= 0 and n = 0, since
(m− 1, 1) ≺ (m, 0),

by the induction hypothesis, A(m − 1, 1) is defined, but A(m, 0) = A(m − 1, 1), and thus
A(m, 0) is defined.

If m 6= 0 and n 6= 0, since
(m,n− 1) ≺ (m,n),
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by the induction hypothesis, A(m,n− 1) is defined. Since

(m− 1, A(m,n− 1)) ≺ (m,n),

by the induction hypothesis, A(m − 1, A(m,n − 1)) is defined. But A(m,n) = A(m −
1, A(m,n− 1)), and thus A(m,n) is defined.

Thus, A(m,n) is defined for all (m,n) ∈ N× N.

It is possible to show that A is a computable (recursive) function, although the quickest
way to prove it requires some fancy machinery (the recursion theorem; see Section 8.1).
Proving that A is not primitive recursive is even harder.

A further study of the partial recursive functions requires the notions of pairing functions
and of universal functions (or universal Turing machines).
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Chapter 4

Equivalence of the Models of
Computation

4.1 Simulation of a RAM Program by a

Turing Machine

It is convenient to describe Turing machines using diagrams. We can use a labeled graph
representation where each transition (p, a, b,m, q) is represented by the diagrams shown in
Figure 4.1.

orp q qp
(a,b,m) a/b, m

Figure 4.1: Representation of a Turing machine instruction.

There is another convenient notation which can be used, if for each state, all transitions
entering that state cause the head to move in the same direction. If this condition is not
satisfied, by splitting states, an equivalent Turing machine can be effectively constructed
and we leave the construction as an exercise. The situation is now the following. Given an
instruction (p, a, b,m, q) ∈ δ, we have the diagram shown in Figure 4.2.

There is a sight problem if p is not entered by any transition. But then, either p is the
start state, in which case we use the notation shown in Figure 4.3, or else p is inaccessible
and we can get rid of quintuples starting with p. Otherwise, all transitions entering p cause
the tape to move in the same direction m′, and we draw the diagram shown in Figure 4.4.

215
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m 
a/bp q

Figure 4.2: Representation of a Turing machine instruction.

m 
a/b q

Figure 4.3: Transition from the start state.

m 
a/bp q

m’

Figure 4.4: A typical transition.

Further simplifications are possible. When no confusion arises, we can omit state names.
Transitions (p, a, a,m, q) are represented by the diagram of Figure 4.5, and transitions

m 
ap q

Figure 4.5: A simplified transition.

(p, a, a,m, p) are simply omitted. In other words, loops from a state to itself that do not
change the current symbol being scanned are omitted.

For all blocking pairs (p, a), that is, pairs such that no quintuple in δ begins with (p, a),
we draw an outgoing arrow from state p labeled a as shown in Figure 4.6.
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m 
ap

Figure 4.6: A blocking transition.

Example 4.1. Consider the Turing machine M with K = {q0, q1, q2, q3}, Γ = {a, b, B}, and
δ consisting of the following quintuples:

q0, B → B,R, q3,

q0, a→ b, R, q1,

q0, b→ a,R, q1,

q1, a→ b, R, q1,

q1, b→ a,R, q1,

q1, B → B,L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B,R, q3.

The diagram (using the above conventions) corresponding to the Turing machine M is
shown in Figure 4.7.

START
q0

a/b

START
q0

b/a

R

q1
a/b

b/a

B
L

q2
B

R

q3

START
q
0

a/a

b/b B

a,b
,B

Figure 4.7: Diagram of the Turing machine M .

For any input u ∈ {a, b}∗, the output of the computation is the string v obtained from u
by changing each “a” into a “b” and each “b” into an “a”.

We now describe a construction which takes a RAM program as input and produces as
output a Turing machine computing the same function as the function computed by the
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RAM program. This construction provides a proof for Theorem 3.2 that we repeat for the
convenience of the reader.

Theorem 4.1. Every RAM-computable function is Turing-computable. Furthermore, given
a RAM program P , we can effectively construct a Turing machine M computing the same
function.

Proof. Let P be a RAM program using m registers R1, . . . Rm and having n instructions.
The contents r1, . . . , rm of the registers are represented on the Turing machine tape by the
string

#r1#r2# · · ·#rm#,

where # is a special marker and ri represents the string held by Ri. We also use Proposition
3.1, which allows us to restrict ourselves to RAM programs that use only instructions of the
form

(1j) N addj Y
(2) N tail Y
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue

The simulating Turing machine M is built of n blocks connected for the same flow of
control as the n instructions in P . The jth block of the Turing machine simulates the jth
instruction in P .

The machine M begins with some initialization whose purpose is to make sure that the
simulation starts with a tape of the form

#r1#r2# · · ·#rm#

representingm registers, withm+1 symbols #. Since the RAM program could have a number
of input variables t < m, and it is necessary to add m + 2 − t symbols #. If the input is
x1, x2, · · · , xt, the t− 1 commas are changed to #, and we add m+ 1− (t− 1) = m+ 2− t
symbols #. For example, if m = 5 and t = 3, the Turing input tape ab, bb, a becomes
#ab#bb#a###. See Figure 4.8 for the Turing machine achieving this step.

To simplify our diagrams, let us assume that the RAM alphabet is Σ = {0, 1}. Then the
alphabet of the Turing machine is Γ = {0, 1,#, B}. Each RAM statement is translated as a
Turing machine block as follows. We have four blocks, one for each instruction.

(a) addi Rq. See Figure 4.9.

(b) tail Rq. See Figure 4.10.
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START

START

START

0

1

B

L B/# R
B/#
,/#

.   .    .
B/#
,/# R

B/#
,/# R B/# L

m

Initialization

Figure 4.8: Initialization.

L B R # .  .  .  .  . # R #

q

R
#/a

R

R

R

1/#

#/1

0/1 1/0

0/#

#/0

B/#

to (j+1)-st block

find Rq add a

j

j shift right

Figure 4.9: Simulation of an instruction addi Rq.

L B R # .  .  .  .  . # R #

q

R R
1/B

0/B RL

L

L

0/B

1/B B/1

B/0

#/B B/#

B

L

B

B

#

to (j+1)-st block

delete shift leftfind Rq

Figure 4.10: Simulation of an instruction tail Rq.



220 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

(c) jmpi Z

There are two variants of this case, since Z is either a jump above or a jump below.
These two cases are handled similarly, the only difference being the address of the block to
jump to. See Figure 4.11.

L B R # .  .  .  .  . # R #

q

R

to block Z

to (j+1)-st block

to (j+1)-st block

#

aj

j - aj

find Rq test

Figure 4.11: Simulation of an instruction jmpi Z.

Finally, we clean up the tape by erasing all but the contents of R1 from the tape. This
block corresponds to the last continue statement.

(d) Clean up phase. See Figure 4.12.

L B #R R #/B R

0/B

1/B #/B

B L #/B R
0,1,B

erase #r2#...#rm# move back erase first #

Figure 4.12: Clean up phase.

Also note that a continue statement which is not the last continue statement in the
RAM program is translated as an arrow from the exit of the jth block to the entry of the
(j + 1)th block.
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Notice that the Turing machine produced by the construction has the nice property that
it never moves left of the blank square immediately to the left of its leftmost #. In other
words, the tape need only be unbounded to the right. We leave as an exercise to prove that
every Turing-computable function is computable by a Turing machine which never moves
more than one square to the left of its starting position.

Example 4.2. Here is an example of the simulation for a RAM program with two input
registers and a total of four registers. The input values are 101 in R1 and 00 in R2. The
initialization phase is shown in Figure 4.13.

R R B/# R B/# L

START

START

START

0

1

B

L B/# R ,/#

1/1

contents of R1 moves cursor back to leftmost #

0/0

contents of R
contents of R

contents of R2
3

4

0/0

x  = 101R1 1

x  = 002R2 Instruction Block
of RAM Program

R3

R4

Initial input:  101 , 00

B/#

  Place input string onto Turing Machine Tape

Turing Machine Tape# 1 0 1 # 0 0 # # #

Figure 4.13: Initialization phase.

The simulation of the instruction add0 R1 is shown in Figure 4.14.

The simulation of the instruction tail R2 is shown in Figure 4.15.

Next we show that every Turing computable function is RAM-computable.
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Turing Machine Tape

# 1 0 1 # 0 0 # # #

Execute add  R0 1

Move cursor to #

# 1 0 1 # 0 0 # # #

Change # to 0 and move cursor right

# 1 0 1 0 0 0 # # #

R
#/a

R

R

R

1/#
#/1

0/1 1/0

0/#

#/0

j

Change 0 to # and move right

# 1 0 1 0 0 # # ##

R
#/a

Rj

Keep 0 and move right

# 1 0 1 0 0 # # ##

R

R

0/#

R

R

0/#

0/0
Change # to 0 and move right

# 1 0 1 0 0 # ## 0

R

R

#/0

Keep # and move right (do this twice)

# 1 0 1 0 0 # ## 0

R

R

#/0

#/#

B/#

move to next block

Change B to # and move to next block

B

B

B

B

B

B

B

B

B

B

B B

# 1 0 1 0 0 # ## 0 B#
R

B/#

Figure 4.14: Simulation of the instruction add0 R1.

4.2 Simulation of Turing Machine by a

RAM Program

In this section we provide a proof of Theorem 3.3 which we repeat for the reader’s conve-
nience.

Theorem 4.2. Every Turing-computable function is RAM-computable. Furthermore, given
a Turing machine M , one can effectively construct a RAM program P computing the same
function.

Proof. Recall that we showed that the concatenation function con and the extended concate-
nation function conn defined such that conn(x1, . . . , xn) = x1 · · ·xn are primitive recursive
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R R
1/B

0/B RL

L

L

0/B

1/B B/1

B/0

#/B B/#

B

L

B

B

#

# 1 0 1 0 0 # ## 0 B#

Turing Machine Tape

Execute tail R2

Move cursor to first entry in R2

# 1 0 1 0 0 # ## 0 B#

Change 0 to B and move right R R0/B

# 1 0 1 0 B # ## 0 B#

Change 0 to B and move left

R

L

0/B

# 1 0 1 0 B # ## B#B

Change  B to 0 and move right

# 1 0 1 0 # ## B#B0

Move Right

# 1 0 1 0 # ## B#B0
R R

L

B/0

B

Change # to  B and move left

# 1 0 1 0 ## B#B0 B

R

L
#/B

Change B to # and move right

# 1 0 1 0 ## B#0 B#

Move Right

# 1 0 1 0 ## B#0 B# R R

L

B/#
B

Repeat two more times

# 1 0 1 0 # B0 # # # B

Move cursor left to rightmost # and exit to next block

R

L

B

B

Figure 4.15: Simulation of the instruction tail R2.

and consequently RAM-computable. Also, RAM programs are closed under composition.
This allows to write a RAM program as a composition of blocks, avoiding the tedious task
of writing the program in full.

Let M = (K,Γ,∆, δ, q0) be a Turing machine with K = {q0, . . . , qm} and Γ = {a1, . . . , ak,
B, “,’), and let ϕ be the partial function of n arguments computed by M .

The idea of the proof is to design a RAM program P containing an encoding of the
current ID of the Turing machine M in register R1, and to use other registers R2, R3 to
simulate the effect of executing an instruction of M by updating the ID of M in R1. After
some initialization, the program P contains the current ID of M in register R1. For each
move of M , the program P updates the current ID to the next ID.
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Initially, P takes the n input strings x1, . . . , xn and creates

#ID0# = #q0x1, x2, · · · , xn#

in register R1 and then simulates M . If and when M halts in a halting ID of the form
BkqwB`, the program P places w in R1 and stops. If the ID is improper, then P loops
forever.

The alphabet for P is Σ = Γ ∪K ∪ {#}, and it is assumed that Γ ∩K = ∅ and that #
is neither in Γ nor K. We let ak+1 = B and ak+2 = #.

When P simulates a move of M by updating the ID, register R1 contains the current ID,
which is of the form uajpaiv and satisfies the following properties: if u = ε, then aj = #,
and if v consists of single symbol, then v = #.

During the first phase in which P updates the ID, P transfers u into register R2, aj into
register R3, and paiv is left in R1. Then it reads ai and, depending on (p, ai), it simulates
the action of M . In order to remember p and ai, the program P has labels of the form jp
and jpi. Right moves are accomplished at the addresses jpiR and jpiR#. Left moves are
accomplished at the addresses jpiL and jpiL#. The updated ID is placed back into R1.
When a halting ID is found, P checks that this ID is proper. If the halting ID is proper,
then the output is returned in R1, otherwise P loops forever. For simplicity we adopt a
subroutine notation. We also omit the suffix a or b in the target labels of jumps, which is
not a problem since all jumps in P are uniquely defined.

We initialize P with the following commands:

R1 = con2n+2(#, q0, x1, “,”, · · · , “,”, xn,#)

BEGIN clr R2
clr R3
jmp TEST

NU tail R1
TEST R1 jmp1 A1

...
R1 jmpk+2 A(k + 2)
R1 jmpq0 Q0

...
R1 jmpqm Qm



4.2. SIMULATION OF TURING MACHINE BY A RAM PROGRAM 225

The subroutine Ai is the following program:

Ai R3 jmp1 ui1
...
R3 jmpk+2 ui(k + 2)
addi R3
jmp NU

ui1 add1 R2
jmp upr3
...

ui(k + 2) addk+2 R2
jmp upr3

upr3 tail R3
addi R3
jmp NU

To remember ajp, for each p, 0 ≤ p ≤ m, we have

Qp R3 jmp1 1p
...
R3 jmpk+2 (k + 2)p

To remember ajpai, for each p, 0 ≤ p ≤ m, we have

jp tail R1
R1 jmp1 jp1

...
R1 jmpk+1 jp(k + 1)

Next we have three cases.

(1) (Right move) To simulate the instruction (p, a, b, R, q) corresponding to the transition
on ID’s given by

uajpaiv → uajbqv, v 6= #

we have the program

jpi tail R1
R1 jmp1 jpiR

...
R1 jmpk+1 jpiR
R1 jmpk+2 jpiR#
jpiR R1 = con3(R2, ajbq, R1)

jmp BEGIN
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To simulate the transition
uajpai → uajbqB

corresponding to the case where v = #, in which case a blank needs to be inserted as the
rightmost symbol on the tape, we have the program

jpiR# R1 = con2(R2, ajbqB#)
jmp BEGIN

(2) (Left move) To simulate the instruction (p, a, b, L, q), corresponding to the transition
on ID’s given by

uajpaiv → uqajbv, u 6= ε

we have the program

jpi tail R1
R1 jmp1 jpiL

...
R1 jmpk+1 jpiL
R1 jmpk+2 jpiL#
jpiL R1 = con3(R2, qajb, R1)

jmp BEGIN

To simulate the transition
paiv → qBbv

corresponding to the case where u = ε, in which case a blank needs to be inserted as the
lefmost symbol on the tape, we have the program

jpiL# R1 = con2(#qBb,R1)
jmp BEGIN

(3) If no quintuple begins with (p, ai), then upaiv is a halting ID. We test if it is proper.
For each such jpi, we have the program shown below.

jpi tail R1
jmp PROPER

The program PROPER checks that an ID is proper. It should be noted that this is
unnecessary if the Turing machine has the property that if it halts, then the ID is proper.
This can be achieved by modifying the Turing machine so that if it halts in an improper ID,
then it loops.

First, the program PROPER checks that the ID starts with a string of the form #Bkq.
Next it places the output in R1, and finally it checks that the ID ends with B`#.
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PROPER R1 = con3(R2, ajpai, R1)
R2 ← R1
R2 jmp# B
jmp LOOP

HEAD R2 jmpB B
R2 jmpq0 Q
...
R2 jmpqm Q
jmp LOOP

B tail R2
jmp HEAD

Q clr R1

MORE tail R2
R2 jmp1 RES1
...
R2 jmpk RESk
R2 jmpB BTAIL
R2 jmp# STOP
jmp LOOP

For each i, 1 ≤ i ≤ k, we have the program

RESi addi R1
jmp MORE

BTAIL tail R2
R2 jmpB BTAIL
R2 jmp# STOP
jmp LOOP

LOOP jmp LOOP
STOP continue

Example 4.3. Here is an example of the simulation of the Turing machine of Example
3.5 that exchanges a’s and b’s by a RAM program. The input is ab. The simulation of the
transition q0ab→ bq1b is shown in Figure 4.16. The simulation of the transition bq1b→ baq1B
is shown in Figure 4.17.

We leave the following proposition as an exercise.

Proposition 4.3. Given a Turing machine M computing a function ϕ, we can effectively
construct a Turing machine M ′ also computing ϕ with the following additional properties.

(1) M ′ halts in a proper ID iff M halts in a proper ID.

(2) M ′ loops iff either M loops or M halts in an improper ID.
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ID0 q   ab0

a b
q0

becomes b
q
b

ID bq  b

1

1 1

RAM program counterpart 

#q   a,b#0

Run TEST which tells us to jump to A4
(recall # is associated with a  )4

Subroutine A4 removes the leftmost pound sign and places it into R3

q   a,b#0

#

Run TEST again; jump to routine Q0Q
Create Line 4q0 
Delete q   from R1 and jump to Line 4q01

Change ID  into ID 

Result of A4

  a,b#

0

#

Result o
f Q

0

Use Line 4q01R to form the correct concatenation
     The empty string of R2
     The transition  

1

#bq1
The tail of R1 
Place result into R1

0

#bq  , b#1

Clear R3 and repeat process

First Transition

STEP 2

Step 1

Step 3

R1

R2

R3

R1

R2

R3

R1

R2

R3

R1

R2

R3

Figure 4.16: Simulation of the transition q0ab→ bq1b.

The construction is possible because a Turing machine is capable of checking whether or
not a halting ID of M is proper, and if impoper, it loops forever. The construction is very
similar to the program PROPER, as a Turing machine.

4.3 Every Turing Computable Function is Partial Com-

putable a la Herbrand–Gödel–Kleene

The key to the proof that every Turing-computable function is a partial computable function
in the sense of Herbrand–Gödel–Kleene is that we can define a primitive recursive function
which simulates the transitions of a Turing machine in terms of instantaneous descriptions
(ID’s).

Instantaneous descriptions are represented as strings #upav#, where p is a state, a ∈ Γ,
and u, v ∈ Γ∗.

Given a Turing machine M = (K,Γ,∆, δ, q0) (with Σ = {a1, . . . , ak}) we define the
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Figure 4.17: Simulation of the transition bq1b→ baq1B.

following pairs of ID’s describing the transitions of M .

(1) For every (move right) instruction (p, a, b, R, q) ∈ δ, we have the pairs

(paa1, bqa1)

...

(paak, bqak)

(pa#, bqB#).

(2) For every (move left) instruction (p, a, b, L, q) ∈ δ, we have the pairs

(a1pa, qa1b)

...

(akpa, qakb)

(#pa,#qBb).
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The above set of pairs is denoted TRANS, and it is assumed to be ordered in some
fashion. As an abbreviation each pair is denoted `i → ri, for example, paa1 → bqa1 and
a1pa→ qa1b. We assume that there are N such pairs (this is the number of quintuples in δ).

We also have a list BLOCKED of strings pa such that no quintuple in δ starts with (p, a),
say

pi1ai1 , . . . , pimaim .

An illustration of the rules `i → ri is shown in Figure 4.18.

Right instruction (p,a,b,R,q)

u a ak v1

p

u ak v1becomes

q

b

u a

p

ubecomes

q

b# B #

(paa  , bqa  )k k

(pa#, bqB#)

Left instruction (p,a,b,L,q)

a

p

vu 1 ak vu 1 ak

q

bbecomes

(a  pa, qa  b)k k

a

p

v# v# b

q

Bbecomes

(#pa, #qBb)

Figure 4.18: Illustration of the rules associated to transitions.

We will use a number of primitive recursive functions.

Proposition 4.4. The following functions are primitive recursive.

(1) Occ(x, y), where Occ(x, y) holds iff x is a substring of y.

(2) u(x, z) = the prefix of z the left of the leftmost occurrence of x in z if Occ(x, z).

(3) v(x, z) = the suffix of z the right of the leftmost occurrence of x in z if Occ(x, z).

(4) rep(x, y, z) = the result of replacing the leftmost occurrence of x by y in z if Occ(x, z).

Proof. Recall that concatenation and extended concatenation are primitive recursive.

(1) Occ(x, y) iff (∃z/y)(∃w/y)[z = wx].
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(2) u(x, z) = min y/z(∃w/z)[yx = w].

(3) v(x, z) = z − u(x, z)x (here − is the version of monus on strings defined just after
Definition 3.26).

(4) rep(x, y, z) = u(x, z)yv(x, z).

Note that for every ID, there is at most one occurrence of `i or ri for some `i → ri in
TRANS. This is why it doesn’t hurt to pick the leftmost occurrence.

The predicate Occ is illustrated in Figure 4.19.

w x Schematic representation of Occ(x,y)

{ z}
y{ } baw = abbab b

y = abbabbab

z=wx = abbabba 

w could contain x

Occ(ba, abbabbab)

Figure 4.19: Illustration of the predicate Occ.

The functions u and v are illustrated in Figure 4.20. The function rep is illustrated in
Figure 4.21.

Proposition 4.5. For any Turing machine M , the following functions are primitive recur-
sive.

(1) The function T such that T (ID0, y) = ID iff ID0 `∗|y| ID in |y| steps.

(2) HALT(ID) iff ID is a halting ID.

(3) STOP(y, ID) iff M halts in a halting ID after |y| steps.

Proof. Note that we do not actually care what T,HALT, STOP do if ID0 and ID are not
proper representations of ID’s.
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x Schematic representation of u(x,z)

{

z

} y

y does NOT contain x

w

{ }
z = abbabbab

bbabbay = ab

w = yx = abba

u(ba, abbabba) = ab

x Schematic representation of v(x,z)

z

} u(x,z) does NOT contain x

u(x,z) z - u(x,z)x

} z - u(x,z)x

z = abbabbab

ab ba v(ba, abbabbab) = bbab

Figure 4.20: Illustration of the functions u and v.

(1) The function T is defined as follows, which shows that it is primitive recursive.

T (x, ε) = x

T (x, yai) =



rep(`1, r1, T (x, y)) iff Occ(`1, T (x, y))

rep(`2, r2, T (x, y)) iff Occ(`2, T (x, y)) ∧ ¬Occ(`1, T (x, y))
...

rep(`N , rN , T (x, y)) iff Occ(`N , T (x, y)) ∧ ¬Occ(`1, T (x, y))

∧ · · · ∧ ¬Occ(`N−1, T (x, y))

T (x, y) otherwise.

The function T is illustrated in Figure 4.22.

If T (x, y) represents the ID #upav# obtained after performing |y| steps starting from
the ID x, then T (x, yai) represents the ID obtained by applying an instruction starting
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Schematic representation of rep(x,y,z)

z

} u(x,z) does NOT contain x

u(x,z) x <-- y v(x,z)

} rep(ba, aa, abbabbab) = abaabbabu(x,z) = ab ba <-- aa v(x,z) = bbab

z = abbabbab

Figure 4.21: Illustration of the function rep.

with (p, a), if any. To see if such an instruction applies we test sequentially starting
from k = 1 whether the left-hand side `k of a transition `k → rk occurs in T (x, y),
which is performed by Occ(`k, T (x, y)), the tests Occ(`k1 , T (x, y)) for all k1 < k being
negative. If so, `k is replaced by rk in the ID T (x, y) to mimic the TM transition
corresponding to `r → rk, which is achieved by rep(`k, rk, T (x, y)). Since the purpose
of y is to count the number of steps, only |y| matters, so we may assume that y is a
string of a1s.

(2) The function HALT is defined as follows.

HALT(x) iff [Occ(pi1ai1 , x) ∨ · · · ∨Occ(pimaim , x)].

(3) STOP(y, ID) iff HALT(T (x, y)).

If M is a Turing machine computing a function of n arguments x1, . . . , xn, the starting
ID is defined as

ID0 = #q0x1, x2, · · · , xn#

Let INIT be the function given by

INIT(x1, . . . , xn) = #x1, . . . , xn#.

Obviously INIT is primitive recursive. Then for all x1, . . . , xn ∈ Σ∗, we have

ID0 `∗|y| ID and ID is a halting ID

iff

T (INIT(x1, . . . , xn),min1y[STOP(y, INIT(x1, . . . , xn))]) = ID.
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ID  = q  abb0 0

a b b

(q  , a, b, R, q  )0 1

q
0

q
1

b b b

ID   = bq   bb1 1

(q   , b, a, R, q   )1 1

(q  bb,  aq   b)1 1

q
1

b a b

ID   = baq   b12

T(ID   , ε) = ID   = q  abb 0 0 0

T(ID  , a) = rep(q   ab, bq   b, T(ID  , ε ))  

(q   ab, bq   b)0 1

0 10 = ID   = bq   bb1 1

T(ID  , aa) = rep(q   bb, aq   b, T(ID   ,a)) = 

0

00 11
ID   = baq   b12

Figure 4.22: Illustration of the function T .

Let RES be the function that cleans up a halting ID to produce the output. The function
RES is defined by primitive recursion as follows (recall that rev is the reverse function and
con is the concatenation function).

RES(ε) = ε

RES(x#) = RES(x)

RES(xB) = RES(x)

RES(xai) = con(RES(x), ai), 1 ≤ i ≤ k

RES(xq) = RES(rev(x)), q ∈ K.
We leave it as an exercise to prove that for any halting ID of the form #BkquB`# with

u ∈ Σ∗, we have
RES(#BkquB`#) = u.

Combining all the facts we established we obtain the following result.

Theorem 4.6. Every Turing computable function ϕ of n arguments is partial computable
in the sense of Herbrand–Gödel–Kleene. Moreover, given a Turing machine M , we can
effectively find a definition of ϕ of the form

ϕ(x1, . . . , xn) = RES(T (INIT(x1, . . . , xn),min1y[STOP(y, INIT(x1, . . . , xn))])).

As a corollary we have the following nontrivial result.

Corollary 4.7. Every partial computable function ϕ can be effectively obtained in the form
ϕ = f ◦min1 g, where f and g are primitive recursive functions.

Consequently, every partial computable function has a definition in which minimization
is applied at most once.



Chapter 5

The Lambda-Calculus

The original motivation of Alonzo Church for inventing the λ-calculus was to provide a
type-free foundation for mathematics (alternate to set theory) based on higher-order logic
and the notion of function in the early 1930’s (1932, 1933). This attempt to provide such
a foundation for mathematics failed due to a form of Russell’s paradox. Church was clever
enough to turn the technical reason for this failure, the existence of fixed-point combinators,
into a success, namely to view the λ-calculus as a formalism for defining the notion of
computability (1932,1933,1935). The λ-calculus is indeed one of the first computation models,
slightly preceding the Turing machine.

Kleene proved in 1936 that all the computable functions (recursive functions) in the
sense of Herbrand and Gödel are definable in the λ-calculus, showing that the λ-calculus
has universal computing power . In 1937, Turing proved that Turing machines compute the
same class of computable functions. (This paper is very hard to ead, in part, because the
definition of a Turing machine is not included in this paper). In short, the λ-calculus and
Turing machines have the same computing power . Here we have to be careful. To be precise
we should have said that all the total computable functions (total recursive functions) are
definable in the λ-calculus. In fact, it is also true that all the partial computable functions
(partial recursive functions) are definable in the λ-calculus but this requires more care.

Since the λ-calculus does not have any notion of tape, register, or any other means of
storing data, it quite amazing that the λ-calculus has so much computing power.

The λ-calculus is based on three concepts:

(1) Application.

(2) Abstraction (also called λ-abstraction).

(3) β-reduction (and β-conversion).

If f is a function, say the exponential function f : N→ N given by f(n) = 2n, and if n a
natural number, then the result of applying f to a natural number, say 5, is written as

(f 5)

235
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instead of f(5), and is called an application. Here we can agree that f and 5 do not have
the same type, in the sense that f is a function and 5 is a number, so applications such as
(f f) or (5 5) do not make sense, but the λ-calculus is type-free so expressions such as (f f)
as allowed. This may seem silly, and even possibly undesirable, but allowing self application
turns out to a major reason for the computing power of the λ-calculus.

Given an expression M containing a variable x, say

M(x) = x2 + x+ 1,

as x ranges over N, we obtain the function represented in standard mathematical notation
by x 7→ x2 + x + 1. If we supply the input value 5 for x, then the value of the function is
52 + 5 + 1 = 31. Church introduced the notation

λx. (x2 + x+ 1)

for the function x 7→ x2 + x + 1. Here, we have an abstraction, in the sense that the static
expression M(x) for x fixed becomes an “abstract” function denoted λx.M , where x can be
instantiated to any input value.

It would be pointless to only have the two concepts of application and abstraction. The
glue between these two notions is a form of evaluation called β-reduction.1 Given a λ-
abstraction λx.M and some other term N (thought of as an argument), we have the “eval-
uation” rule, we say β-reduction,

(λx.M)N
+−→β M [x := N ],

where M [x := N ] denotes the result of substituting N for all occurrences of x in M . For
example, if M = x2 + x+ 1 and N = 2y + 1, we have

(λx. (x2 + x+ 1))(2y + 1)
+−→β (2y + 1)2 + 2y + 1 + 1.

Observe that β-reduction is a purely formal operation (plugging N wherever x occurs in
M), and that the expression (2y+1)2 +2y+1+1 is not instantly simplified to 4y2 +6y+3. In
the λ-calculus, the natural numbers as well as the arithmetic operations + and × need to be
represented as λ-terms in such a way that they “evaluate” correctly using only β-conversion.
In this sense, the λ-calculus is an incredibly low-level programming language. Nevertheless,
the λ-calculus is the core of various functional programming languages such as OCaml , ML,
Miranda and Haskell , among others.

We now proceed with precise definitions and results. But first we ask the reader not
to think of functions as the functions we encounter in analysis or algebra. Instead think
of functions as rules for computing (by moving and plugging arguments around), a more
combinatory (which does not mean combinatorial) viewpoint.

This chapter relies heavily on the masterly expositions by Barendregt [4, 5]. We also
found inspiration from very informative online material by Henk Barendregt, Peter Selinger,
and J.R.B. Cockett, whom we thank. Hindley and Seldin [31] and Krivine [39] are also
excellent sources (and not as advanced as Barendregt [4]).

1Apparently, Church was fond of Greek letters.
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5.1 Syntax of the Lambda-Calculus

We begin by defining the lambda-calculus , also called untyped lambda-calculus or pure lambda-
calculus , to emphasize that the terms of this calculus are not typed. This formal system
consists of

1. A set of terms, called λ-terms .

2. A notion of reduction, called β-reduction, which allows a term M to be transformed
into another term N in a way that mimics a kind of evaluation.

First we define (pure) λ-terms. We have a countable set of variables {x0, x1, . . . , xn . . .}
that correspond to the atomic λ-terms.

Definition 5.1. The λ-terms M are defined inductively as follows.

(1) If xi is a variable, then xi is a λ-term.

(2) If M and N are λ-terms, then (MN) is a λ-term called an application.

(3) If M is a λ-term, and x is a variable, then the expression (λx.M) is a λ-term called a
λ-abstraction.

Note that the only difference between the λ-terms of Definition 5.1 and the raw simply-
typed λ-terms of Definition 2.13 is that in Clause (3), in a λ-abstraction term (λx.M), the
variable x occurs without any type information, whereas in a simply-typed λ-abstraction
term (λx : σ.M), the variable x is assigned the type σ. At this stage this is only a cosmetic
difference because raw simply-typed λ-terms are not yet assigned types. But there are type-
checking rules for assigning types to raw simply-typed λ-terms that restrict application, so
the set of simply-typed λ-terms that type-check is much more restricted than the set of
(untyped) λ-terms. In particular, no simply-typed λ-term that type-checks can be a self-
application (MM). The fact that self-application is allowed in the untyped λ-calculus is
what gives it its computational power (through fixed-point combinators, see Section 5.5).

Definition 5.2. The depth d(M) of a λ-term M is defined inductively as follows.

1. If M is a variable x, then d(x) = 0.

2. If M is an application (M1M2), then d(M) = max{d(M1), d(M2)}+ 1.

3. If M is a λ-abstraction (λx.M1), then d(M) = d(M1) + 1.

It is pretty clear that λ-terms have representations as (ordered) labeled trees.

Definition 5.3. Given a λ-term M , the tree tree(M) representing M is defined inductively
as follows:

1. If M is a variable x, then tree(M) is the one-node tree labeled x.
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2. If M is an application (M1M2), then tree(M) is the tree with a binary root node labeled
. , and with a left subtree tree(M1) and a right subtree tree(M2).

3. If M is a λ-abstraction (λx.M1), then tree(M) is the tree with a unary root node
labeled λx, and with one subtree tree(M1).

Definition 5.3 is illustrated in Figure 5.1.

x
M = x

tree (M)
1 2M = ( M  M  ) •

M1
M2

tree(M)
M = λx • M λx

tree(M)

M1

tree(    )
tree(     )

tree(      )

1

Figure 5.1: The tree tree(M) associated with a pure λ-term M .

Obviously, the depth d(M) of λ-term is the depth of its tree representation tree(M).
Unfortunately λ-terms contain a profusion of parentheses so some conventions are com-

monly used.

(1) A term of the form
(· · · ((FM1)M2) · · ·Mn)

is abbreviated (association to the left) as

FM1 · · ·Mn.

(2) A term of the form
(λx1. (λx2. (· · · (λxn.M) · · · )))

is abbreviated (association to the right) as

λx1 · · · xn.M.

It is also assumed that application binds more strongly that λ-abstraction. So

λx1λx2.M1M2M3

is an abbreviation for (
λx1.

(
λx2. ((M1M2)M3)

))
.
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Matching parentheses may be dropped or added for convenience.

Example 5.1. Here are some examples of λ-terms (and their abbreviation):

y y

(yx) yx

(λx. (yx)) λx. yx

((λx. (yx))z) (λx. yx)z

(((λx. (λy. (yx)))z)w) (λxy. yx)zw.

Note that λx. yx is an abbreviation for (λx. (yx)), not ((λx. y)x) (which is abbreviated
as (λx. y)x).

The variables occurring in a λ-term are free or bound.

Definition 5.4. For any λ-term M , the set FV (M) of free variables of M and the set
BV (M) of bound variables in M are defined inductively as follows.

(1) If M = x (a variable), then

FV (x) = {x}, BV (x) = ∅.

(2) If M = (M1M2), then

FV (M) = FV (M1) ∪ FV (M2), BV (M) = BV (M1) ∪BV (M2).

(3) if M = (λx.M1), then

FV (M) = FV (M1)− {x}, BV (M) = BV (M1) ∪ {x}.

If x ∈ FV (M1), we say that the occurrences of the variable x occur in the scope of λ.

A λ-term M is closed or a combinator if FV (M) = ∅, that is, if it has no free variables.

Example 5.2. We have

FV
(
(λx. yx)z

)
= {y, z}, BV

(
(λx. yx)z

)
= {x},

and
FV
(
(λxy. yx)zw

)
= {z, w}, BV

(
(λxy. yx)zw

)
= {x, y}.

Before proceeding with the notion of substitution we must address an issue with bound
variables. The point is that bound variables are really place-holders so they can be renamed
freely without changing the reduction behavior of the term as long as they do not clash
with free variables. For example, the terms λx. (x(λy. x(yx)) and λx. (x(λz. x(zx)) should
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be considered as equivalent. Similarly, the terms λx. (x(λy. x(yx)) and λw. (w(λz. w(zw))
should be considered as equivalent.

One way to deal with this issue is to use the tree representation of λ-terms given in
Definition 5.3. For every leaf labeled with a bound variable x, we draw a backpointer to
an ancestor of x determined as follows. Given a leaf labeled with a bound variable x,
climb up to the closest ancestor labeled λx, and draw a backpointer to this node. Then
all bound variables can be erased. An example is shown in Figure 5.2 for the term M =
λx. x(λy. (x(yx))).

λx

•

x λy

•

•

x

x
y

tree(λx • x(λy • x(yx)))

Figure 5.2: The tree representation of a λ-term with backpointers.

A clever implementation of the idea of backpointers is the formalism of de Bruijn indices ;
see Pierce [48] (Chapter 6) or Barendregt [4] (Appendix C).

Church introduced the notion of α-conversion to deal with this issue. First we need to
define substitutions.

Definition 5.5. A substitution ϕ is a finite set of pairs ϕ = {(x1, N1), . . . , (xn, Nn)}, where
the xi are distinct variables and the Ni are λ-terms. We write

ϕ = [N1/x1, . . . , Nn/xn] or ϕ = [x1 := N1, . . . , xn := Nn].

The second notation indicates more clearly that each term Ni is substituted for the
variable xi, and it seems to have been almost universally adopted.

Definition 5.6. Given a substitution ϕ = [x1 := N1, . . . , xn := Nn], for any variable xi, we
denote by ϕ−xi the new substitution where the pair (xi, Ni) is replaced by the pair (xi, xi)
(that is, the new substitution leaves xi unchanged).
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Definition 5.7. Given any λ-term M and any substitution ϕ = [x1 := N1, . . . , xn := Nn],
we define the λ-term M [ϕ], the result of applying the substitution ϕ to M , as follows.

(1) If M = y, with y 6= xi for i = 1, . . . , n, then M [ϕ] = y = M .

(2) If M = xi for some i ∈ {1, . . . , n}, then M [ϕ] = Ni.

(3) If M = (PQ), then M [ϕ] = (P [ϕ]Q[ϕ]).

(4) If M = λx.N and x 6= xi for i = 1, . . . , n, then M [ϕ] = λx.N [ϕ].

(5) If M = λx.N and x = xi for some i ∈ {1, . . . , n}, then M [ϕ] = λx.N [ϕ]−xi .

The term M is safe for the substitution ϕ = [x1 := N1, . . . , xn := Nn] if BV (M)∩(FV (N1)∪
· · · ∪ FV (Nn)) = ∅, that is, if the free variables in the substitution terms Ni do not become
bound.

Note that Clause (5) ensures that a substitution only substitutes the terms Ni for the
variables xi free in M . Thus if M is a closed term, then for every substitution ϕ, we have
M [ϕ] = M . More generally, if none of the variables xi occurs free in M , then M [ϕ] = M .

Example 5.3. Here are some examples of substitution.

y[x := λx. (xz)(xz)] = y

x[x := λx. (xz)(xz)] = λx. (xz)(xz)

(xz)(yz)[y := (vv); z := (λu. v)] = (x(λu. v))((vv)(λu. v))

λx. (xz)(yz)[y := (vv); z := (λu. v)] = λx. (x(λu. v))((vv)(λu. v))

λz. (z(xz))[x := (λu. (uu)); z = (uu)] = λz. (z((λu. (uu))z)).

There is a problem with the present definition of a substitution in Cases (4) and (5),
which is that the result of substituting a term Ni containing the variable x free causes this
variable to become bound after the substitution. We say that x is captured .

Example 5.4. If we make the substitution

λx. (xz)(yz)[y := (xx); z := (λu. v)] = λx. (x(λu. v))((xx)(λu. v)),

the variable x occurring free in the term (xx) now has three bound occurrences in the term
λx. (x(λu. v))((xx)(λu. v)). We should only apply a substitution ϕ to a term M if M is
safe for ϕ. We should rename the bound variable x in the term λx. (xz)(yz), say as w,
obtaining the term λw. (wz)(yz), and then there is no capture of variable when we make the
substitution

λw. (wz)(yz)[y := (xx); z := (λu. v)] = λw. (w(λu. v))((xx)(λu. v)).

To remedy this problem, Church defined α-conversion.
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Definition 5.8. The binary relation −→α on λ-terms called immediate α-conversion2 is the
smallest relation satisfying the following properties: for all λ-terms M,N,P,Q.

λx.M −→α λy.M [x := y], for all y /∈ FV (M) ∪BV (M)

if M −→α N, then MQ −→α NQ and PM −→α PN

if M −→α N, then λx.M −→α λx.N.

The least equivalence relation ≡α= (−→α ∪ −→−1
α )∗ containing −→α (the reflexive and

transitive closure of −→α ∪ −→−1
α ) is called α-conversion. Here −→−1

α denotes the converse
of the relation −→α, that is, M −→−1

α N iff N −→α M .

Example 5.5. We have

λfx. f(f(x)) = λf. λx. f(f(x)) −→α λf. λy. f(f(y)) −→α λg. λy. g(g(y)) = λgy. g(g(y)).

Now given a λ-term M and a substitution ϕ = [x1 := N1, . . . , xn := Nn], before applying
ϕ to M , we first perform some α-conversion to obtain a term M ′ ≡α M whose set of bound
variables BV (M ′) is disjoint from FV (N1)∪ · · · ∪FV (Nn) so that M ′ is safe for ϕ, and the
result of the substitution is M ′[ϕ].

Example 5.6. We have(
λyz. (xy)z

)
[x := yz] ≡α

(
λuv. (xu)v

)
[x := yz] = λuv. ((yz)u)v.

From now on, we consider two λ-terms M and M ′ such that M ≡α M ′ as identical (to
be rigorous, we deal with equivalence classes of terms with respect to α-conversion). Even
the experts are lax about α-conversion so we happily go along with them. The convention
is that bound variables are always renamed to avoid clashes (with free or bound variables).

Note that the representation of λ-terms as trees with back-pointers also ensures that
substitutions are safe. However, this requires some extra effort. No matter what, it takes
some effort to deal properly with bound variables.

5.2 β-Reduction and β-Conversion; the Church–Rosser

Theorem

The computational engine of the λ-calculus is β-reduction.

Definition 5.9. The relation −→β, called immediate β-reduction, is the smallest relation
satisfying the following properties for all λ-terms M,N,P,Q:

(λx.M)N −→β M [x := N ], where M is safe for [x := N ]

2We told you that Church was fond of Greek letters.
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if M −→β N, then MQ −→β NQ and PM −→β PN

if M −→β N, then λx.M −→β λx.N.

The transitive closure of −→β is denoted by
+−→β, the reflexive and transitive closure of

−→β is denoted by
∗−→β, and we define β-conversion, denoted by

∗←→β, as the smallest

equivalence relation
∗←→β = (−→β ∪ −→−1

β )∗ containing −→β.

To study properties of β-reduction sequences it is important to define precisely where
a subterm occurs inside of a term. This notion is quite clear if we view a term M as the
corresponding tree tree(M). Then a subterm N corresponds to a subtree tree(N) of tree(M).
Since the same subtree can occur in several places, we need to exercise some care. We use
the fact that the root of the subtree tree(N) is reached from the root of the tree tree(M)
along a unique path described by a string over the alphabet {1, 2}.

We have the usual lexicographic ordering � on the set of strings {1, 2}∗, where for any two
strings u, v ∈ {1, 2}∗, u � v if either u is a prefix of v, namely v = ux for some x ∈ {1, 2}∗,
or u = x1y, v = x2z, for some x, y, z ∈ {1, 2}∗.
Definition 5.10. Let M be a λ-term. The set of occurrences of subterms in M , Occ(M),
is the set of pairs (u,N), with u ∈ {1, 2}∗ and N a λ-term, defined as follows.

(1) If M is the variable x, then Occ(M) = {(ε, x)}.

(2) If M is an application M = (M1M2), then

Occ(M) = {(ε,M)}∪{(1u,N1) | (u,N1) ∈ Occ(M1)}∪{(2v,N2) | (v,N2) ∈ Occ(M2)}.

(3) If M is an abstraction M = λx.M1, then

Occ(M) = {(ε,M)} ∪ {(1u,N1) | (u,N1) ∈ Occ(M1)}.

If (u,N) ∈ Occ(M), we say that the subterm N occurs at u in M . Note that M itself occurs
at ε in M . If N occurs at u in M and N ′ occurs at v in M , we say that u is a proper ancestor
of v if v = ux for some x 6= ε. In this case, we say that N ′ is a proper subterm of N .

Example 5.7. The term

M =

(
λz.
((
λy. ((zy)y)

)
z
))

w

has the following set of occurrences of subterms:

(111111, z), (111112, y),
(

11111, (zy)
)
, (11112, y),

(
1111, ((zy)y)

)
,
(

111,
(
λy. ((zy)y)

))
,

(112, z),

(
11,
((
λy. ((zy)y)

)
z
))

,

(
1,

(
λz.
((
λy. ((zy)y)

)
z
)))

, (2, w),(
ε,

(
λz.
((
λy. ((zy)y)

)
z
))

w

)
.
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The subterm z occurs at 111111 and 112 and the subterm y occurs at 111112 and 1112. The

subterm (zy) (which occurs at 11111) is a proper subterm of the subterm
((
λy. ((zy)y)

)
z
)

(which occurs at 11).

Definition 5.11. Given a λ-term M , a subterm R of M of the form R = (λx.M1)N1 is
called a redex . If M β-reduces to M ′, because the redex R occurring at u in M β-reduces,
namely

R = (λx.M1)N1 −→β M1[x := N1],

we write
M

∗−→u,R,β M
′.

A λ-term M is a β-normal form if there is no λ-term N such that M −→β N , equivalently
if M contains no β-redex.

Example 5.8. The term

M =

(
λz.
((
λy. ((zy)y)

)
z
))

w

has two β-redexes.

(1) The term M itself.

(2) The subterm
((
λy. ((zy)y)

)
z
)

at 11.

Example 5.9. The term

M =

(
λz.

(((
λx. (xz)

)
u
)((

λy. (yz)
)
v
)))

w

has three β-redexes.

(1) The term M itself.

(2) The subterm
((
λx. (xz)

)
u
)

at 111.

(3) The subterm
((
λy. (yz)

)
v
)

at 112.

The following characterization of terms in β-normal form is easily shown by induction on
the depth of terms.

Proposition 5.1. A λ-term M is a β-normal form if and only if one of the following
conditions hold:

(1) M is a variable x.

(2) M = xM1 · · ·Mn, where x is variable and M1, . . . ,Mn are β-normal forms.
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(3) M = λx.M1, where M1 is a β-normal form.

Definition 5.12. We say that a redex R occurring at u in M is maximal if there is no redex
R′ occurring at v in M such that v is a proper ancestor of u, equivalently R is not a proper
subterm of R′. A redex R occurring at u in M is the leftmost maximal redex in M if R is
maximal and if for any other redex R′ at v which is also maximal, then u � v. This means
that in the tree tree(M), the root of tree tree(R) occurs on a path of the form x1y, and the
root of tree tree(R′) occurs on a path of the form x2z.

Definition 5.13. A reduction sequence such that the leftmost maximal redex is β-reduced
at every step is called a normal reduction (or leftmost reduction).

Normal reductions are important because according to a theorem of Curry, if a term M
has a β-normal form M∗, then there is a normal reduction from M to M∗; see Barendregt
[4] (Chapter 13, Theorem 13.2.2). The weaker notion of quasi-leftmost reduction will be
considered later in Section 5.6.

In Example 5.8, there is a unique maximal redex, namely M itself, so it is the leftmost
maximal redex, and similarly in Example 5.9.

Example 5.10. The term

M = w

(((
λz.
((
λy. ((zy)y)

)
z
))

u

)((
λz.
((
λy. (zy)

)
z
))

v

))

has two maximal β-redexes(
λz.
((
λy. ((zy)y)

)
z
))

u,

(
λz.
((
λy. (zy)

)
z
))

v,

and the blue redex is the leftmost maximal redex.

Example 5.11. The subterm
(
(λx. (λy. x))u

)
is the maximal leftmost β-redex in the term(

(λx. (λy. x))u
)
v. We have

(λxy. x)uv =
(
(λx. (λy. x))u

)
v −→β ((λy. x)[x := u])v = (λy. u)v −→β u[y := v] = u.

The subterm
(
(λx. (λy. y))u

)
is the maximal leftmost β-redex in the term

(
(λx. (λy. y))u

)
v.

We have

(λxy. y)uv =
(
(λx. (λy. y))u

)
v −→β ((λy. y)[x := u])v = (λy. y)v −→β y[y := v] = v.

This shows that λxy. x behaves like the projection onto the first argument and λxy. y behaves
like the projection onto the second.
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Example 5.12. The normal reduction from the term

M =

(
λz.

(((
λx. (xz)

)
u
)((

λy. (yz)
)
v
)))

w

is shown below:(
λz.

(((
λx. (xz)

)
u
)((

λy. (yz)
)
v
)))

w
+−→β

((
λx. (xw)

)
u
)((

λy. (yw)
)
v
)

+−→β (uw)
((
λy. (yw)

)
v
)

+−→β (uw)(vw).

Example 5.13. More interestingly, if we let ω = λx. (xx), then

Ω = ωω = (λx. (xx))(λx. (xx)) −→β (xx)[x := λx. (xx)] = ωω = Ω.

The above example shows that β-reduction sequences may be infinite. This is a curse and a
miracle of the λ-calculus! The term Ω has no β-normal form.

Example 5.14. There are even β-reductions where the evolving term grows in size.

(λx. (xx)x)(λx. (xx)x)
+−→β

(
(λx. (xx)x)(λx. (xx)x)

)
(λx. (xx)x)

+−→β

((
(λx. (xx)x)(λx. (xx)x)

)
(λx. (xx)x)

)
(λx. (xx)x)

+−→β · · ·

There is only one maximal (leftmost) redex shown in blue. This term has no β-normal form.

Example 5.15. The term

L = (λx. (xx)y)(λx. (xx)y)

also does not have a β-normal form. Indeed,

L = (λx. (xx)y)(λx. (xx)y)
+−→β

(
λx. (xx)y)(λx. (xx)y

)
y

+−→β

(
λx. (xx)y)(λx. (xx)y

)
yy

+−→β · · · ,

namely

L
+−→β Ly

+−→β Lyy
+−→β · · · .

� A term M may have a β-normal form, but also some infinite β-reduction sequence.
Consider the term

P = (λu. v)L = (λu. v)
(

(λx. xxy)(λx. xxy)
)
,
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which is the unique maximal redex (and thus the leftmost maximal redex). We have the
β-reduction

P = (λu. v)L
+−→β v[u := L] = v,

where v is a β-normal form, but also the infinite β-reduction sequence

P = (λu. v)L
+−→β (λu. v)(Ly)

+−→β (λu. v)(Lyy)
+−→β · · · .

As we will see later, in general, there is no algorithm to decide whether a term has a β-normal
form, or whether all β-reduction sequences terminate.

In general, a λ-term contains many different β-redexes. One then might wonder if there is
any sort of relationship between any two terms M1 and M2 arising through two β-reduction
sequences M

∗−→βM1 and M
∗−→βM2 starting with the same term M . The answer is given

by the following famous theorem.

Theorem 5.2. (Church–Rosser Theorem) The following two properties hold.

(1) The λ-calculus is confluent: for any three λ-terms M,M1,M2, if M
∗−→β M1 and

M
∗−→β M2, then there is some λ-term M3 such that M1

∗−→β M3 and M2
∗−→β M3.

See Figure 5.3.

M

* *

Given

M M1 2
0 M

* *

M M1 2

M3

Confluence

* *

Figure 5.3: The confluence property.

(2) The λ-calculus has the Church–Rosser property: for any two λ-terms M1,M2, if

M1
∗←→β M2, then there is some λ-term M3 such that M1

∗−→β M3 and M2
∗−→β M3.

See Figure 5.4.

Furthermore (1) and (2) are equivalent, and if a λ-term M β-reduces to a β-normal form
N , then N is unique (up to α-conversion).
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M M1 2
*

Given

0 M M1 2
*

M3
Church-Rosser

* *

Figure 5.4: The Church–Rosser property.

Proof. We are not aware of any easy proof of Part (1) or Part (2) of Theorem 5.2, but the
equivalence of (1) and (2) is easily shown by induction.

Assume that (2) holds. Since
∗−→β is contained in

∗←→β, if M
∗−→βM1 and M

∗−→βM2,

then M1
∗←→βM2, and since (2) holds, then there is some λ-term M3 such that M1

∗−→βM3

and M2
∗−→β M3, which is (1).

To prove that (1) implies (2) we need the following observation.

Since
∗←→β = (−→β ∪imreducesβ−1)∗, we see immediately that M1

∗←→β M2 iff either

(a) M1 = M2, or

(b) there is some M3 such that M1 −→β M3 and M3
∗←→β M2, or

(c) there is some M3 such that M3 −→β M1 and M3
∗←→β M2.

Assume (1). We proceed by induction on the number of steps in M1
∗←→βM2. If

M1
∗←→βM2, as discussed before, there are three cases.

Case a. Base case, M1 = M2. Then (2) holds with M3 = M1 = M2.

Case b. There is some M3 such that M1 −→β M3 and M3
∗←→βM2. Since M3

∗←→βM2

contains one less step than M1
∗←→βM2, by the induction hypothesis there is some M4 such

that M3
∗−→βM4 and M2

∗−→βM4, and then M1 −→β M3
∗−→βM4 and M2

∗−→βM4, proving
(2). See Figure 5.5.

Case c. There is some M3 such that M3 −→β M1 and M3
∗←→β M2. Since M3

∗←→β M2

contains one less step than M1
∗←→βM2, by the induction hypothesis there is some M4 such

that M3
∗−→β M4 and M2

∗−→β M4. Now M3 −→β M1 and M3
∗−→β M4, so by (1) there

is some M5 such that M1
∗−→β M5 and M4

∗−→β M5. Putting derivations together we get

M1
∗−→β M5 and M2

∗−→β M4
∗−→β M5, which proves (2). See Figure 5.6.

Suppose M
∗−→β N1 and M

∗−→β N2 where N1 and N2 are both β-normal forms. Then

by confluence there is some N such that N1
∗−→β N and N2

∗−→β N . Since N1 and N2 are
both β-normal forms, we must have N1 = N = N2 (up to α-conversion).

Barendregt gives an elegant proof of the confluence property in [4] (Chapter 11).
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M M * M
1 23

Given

0

M M * M
1 23

M4

Induction Hypothesis

0

M M * M
1 2

M4

3

**

* **

Figure 5.5: Case b.

Another immediate corollary of the Church–Rosser theorem is that if M
∗←→β N and if

N is a β-normal form, then in fact M
∗−→β N . We leave this fact as an exerise

This fact will be useful in showing that the recursive functions are computable in the
λ-calculus.

Example 5.16. Consider the term

M =

(
λz.
((
λy. (zyy)

)
z
))

w.

We have the reductions

M =

(
λz.
((
λy. (zyy)

)
z
))

w −→β

(
λz.
(
zzz
))
w = M1

and

M =

(
λz.
((
λy. (zyy)

)
z
))

w −→β

((
λy. (wyy)

)
w
)

= M2.

We have confluence because

M1 =
(
λz.
(
zzz
))
w −→β www = M3

and

M2 =
((
λy. (wyy)

)
w
)
−→β www = M3.
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M M * M
1 23

Given

0

M M * M
1 23

M4

Induction Hypothesis* *

0

M M * M
1 23

M4

* *
* Confluence

*
M 5

=

M M * M
1 23

M4

* *
*

*
M5

*

Figure 5.6: Case c.

Example 5.17. Consider the term

M =

(
λz.

(((
λx. (xz)

)
u
)((

λy. (yz)
)
v
)))

w.

We have the reduction sequences

M =

(
λz.

(((
λx. (xz)

)
u
)((

λy. (yz)
)
v
)))

w −→β

(
λz.

((
uz
)((

λy. (yz)
)
v
)))

w

−→β

(
λz.
((
uz
)(
vz
)))

w = M1

and

M =

(
λz.

(((
λx. (xz)

)
u
)((

λy. (yz)
)
v
)))

w

−→β

(((
λx. (xw)

)
u
)((

λy. (yw)
)
v
))

= M2.

Confluence holds because

M1 =

(
λz.
((
uz
)(
vz
)))

w −→β

(
(uw)(vw)

)
= M3

and

M2 =

(((
λx. (xw)

)
u
)((

λy. (yw)
)
v
))
−→β

((
uw
)((

λy. (yw)
)
v
))

−→β

(
(uw)(vw)

)
= M3.
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5.3 Some Useful Combinators

In this section we provide some evidence for the expressive power of the λ-calculus.
First we make a remark about the representation of functions of several variables in

the λ-calculus. The λ-calculus makes the implicit assumption that a function has a single
argument. This is the idea behind application: given a term M viewed as a function and
an argument N , the term (MN) represents the result of applying M to the argument N ,
except that the actual evaluation is suspended . Evaluation is performed by β-conversion. To
deal with functions of several arguments we use a method known as Currying (after Haskell
Curry). In this method, a function of n arguments is viewed as a function of one argument
taking a function of n− 1 arguments as argument . Consider the case of two arguments, the
general case being similar. Consider a function f : N × N → N. For any fixed x, we define
the function Fx : N→ N given by

Fx(y) = f(x, y) y ∈ N.

Using the λ-notation we can write

Fx = λy. f(x, y),

and then the function x 7→ Fx, which is a function from N to the set of functions [N → N]
(also denoted NN), is denoted by the λ-term

F = λx. Fx = λx. (λy. f(x, y)).

And indeed,

(FM)N
+−→β FMN

+−→β f(M,N).

Remark: Currying is a way to realizing the isomorphism between the sets of functions
[N × N → N] and [N → [N → N]] (or in the standard set-theoretic notation, between NN×N

and (NN)N. Does this remind you of the identity

(mn)p = mnp?

It should.
The function space [N → N] is called an exponential . There is a very abstract way to

view all this which is to say that we have an instance of a Cartesian closed category (CCC).

Proposition 5.3. If I,K,K∗, and S are the combinators defined by

I = λx. x

K = λxy. x

K∗ = λxy. y

S = λxyz. (xz)(yz),
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then for all λ-terms M,N,P , we have

IM
+−→β M

KMN
+−→β M

K∗MN
+−→β N

SMNP
+−→β (MP )(NP )

KI
+−→β K∗

SKK
+−→β I.

Proof. The first equation is trivial and the second and third equations are shown as in
Example 5.11, except that the bound variable y in λxy. x needs to be renamed if it occurs
free in M . The fourth equation is shown as follows. We have

SMNP =
(
λxyz. (xz)(yz)

)
MNP −→β

((
λyz. (xz)(yz)

)
[x := M ]

)
NP

=
(
λyz. (Mz)(yz)

)
NP

−→β

((
λz. (Mz)(yz)

)
[y := N ]

)
P

=
(
λz. (Mz)(Nz)

)
P

−→β

(
(Mz)(Nz)

)
[z := P ] = (MP )(NP ).

The last equation is shown as follows.

SKK =
(
λxyz. (xz)(yz)

)
KK

−→β

((
λyz. (xz)(yz)

)
[x := K]

)
K

=
((
λyz. (Kz)(yz)

)
K

−→β

((
λz. (Kz)(yz)

)
[y := K]

= λz. (Kz)(Kz)
+−→β λz. z = I,

where we used the fact that (Kz)(Kz)
+−→β z, since KMN = (KM)N

+−→βM , with M = z
and N = Kz. The fitfth equation is left as an exercise.

The need for a conditional construct if then else such that if T then P elseQ yields P and
if F then P else Q yields Q is indispensable to write nontrivial programs. There is a trick
to encode the boolean values T and F in the λ-calculus to mimick the above behavior of
if B then P else Q, provided that B is a truth value. Since everything in the λ-calculus is a
function, the booleans values T and F are encoded as λ-terms. At first, this seems quite
odd, but what counts is the behavior of if B then P elseQ, and it works!

The truth values T,F and the conditional construct if B thenP elseQ can be encoded in
the λ-calculus as follows.



5.3. SOME USEFUL COMBINATORS 253

Proposition 5.4. Consider the combinators given by T = K,F = K∗, and

if then else = λb. (λx. (λy. (bx)y)) = λbxy. bxy.

Then for all λ-terms M,P,Q we have

if M then P elseQ = (((if then else)M)P )Q
+−→β (MP )Q = MPQ.

In particular,

if T then P elseQ
+−→β P

if F then P elseQ
+−→β Q.

Proof. We have

if M then P elseQ = (((if then else)M)P )Q

=
(((

λb. (λx. (λy. (bx)y))
)
M
)
P
)
Q

−→β

(((
λx. (λy. (bx)y)

)
[b := M ]

)
P
)
Q =

((
λx. (λy. (Mx)y)

)
P
)
Q

−→β

((
λy. (Mx)y

)
[x := P ]

)
Q =

(
λy. (MP )y

))
Q

−→β ((MP )y)[y := Q] = (MP )Q.

The other two reductions follow by Proposition 5.3.

The boolean operations ∧,∨,¬ can be defined in terms of if then else. For example,

Not b = if b then F else T

And b1b2 = if b1 then (if b2 then T else F) else F

Or b1b2 = if b1 then T else (if b2 then T else F).

Remark: If B is a term different from T or F, then if B then P else Q may not reduce
at all, or reduce to something different from P or Q. The problem is that the conditional
statement that we designed only works properly if the input B is of the correct type, namely
a boolean. If we give garbage as input, then we can’t expect a correct result. The λ-calculus
being type-free, it is unable to check for the validity of the input. In this sense this is a
defect, but it also accounts for its power.

The ability to construct ordered pairs is also crucial.

Proposition 5.5. For any two λ-terms M and N consider the combinator 〈M,N〉 and the
combinators π1 and π2 given by

〈M,N〉 = λz. zMN = λz. if z thenM elseN

π1 = λz. zK

π2 = λz. zK∗.
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Then

π1〈M,N〉 +−→β M

π2〈M,N〉 +−→β N

〈M,N〉T +−→β M

〈M,N〉F +−→β N.

The proof of the first equation is given in Example 5.18 and the proof of the other three
is left as an exercise.

Example 5.18. We have

π1〈M,N〉 =
(
λz. zK

)(
λz. zMN

)
−→β

(
zK
)
[z := λz. zMN ] =

(
λz. zMN)K

−→β (zMN)[z := K] = KMN
+−→β M,

by Proposition 5.3.

Observe that if we define the combinator

pair = λx. (λy. (λz. (zx)y)) = λxyz. zxy,

then
pairMN

+−→β λz. zMN = 〈M,N〉.
The combinator pair is very closely related to the combinator if then else = λzxy. zxy. Both
combinators contain the term zxy, but in pair, the variables are abstracted in the order
xyz, and in if then else, they are abstracted in the order zxy. So

pairPQM
+−→β MPQ

(if then else )MPQ
+−→β MPQ.

In the next section we show how to encode the natural numbers in the λ-calculus and
how to compute various arithmetical functions.

5.4 Representing the Natural Numbers

Historically the natural numbers were first represented in the λ-calculus by Church in the
1930’s. Later in 1976 Barendregt came up with another representation which is more con-
venient to show that the recursive functions are λ-definable. We start with Church’s repre-
sentation.
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First, given any two λ-terms F and M , for any natural number n ∈ N, we define F n(M)
inductively as follows.

F 0(M) = M

F n+1(M) = F (F n(M)).

Observe that

F n(M) = F
(
F
(
· · · (F︸ ︷︷ ︸
n

M) · · ·
))
.

Definition 5.14. (Church Numerals) The Church numerals c0, c1, c2, . . . are defined by

cn = λfx. fn(x).

So c0 = λfx. x = K∗, c1 = λfx. fx, c2 = λfx. f(fx), c3 = λfx. f(f(fx)), etc. The
Church numerals are β-normal forms.

Observe that

c0Fz = (c0F )z = ((λfx. x)F )z
+−→β z (†1)

cnFz = (cnF )z = ((λfx. fn(x))F )z
+−→β F

n(z), n ≥ 1. (†2)

This shows that cn iterates n times the function represented by the term F on initial input z.
This is the trick behind the definition of the Church numerals. This suggests the following
definition.

Definition 5.15. The iteration combinator Iter is given by

Iter = λnfx. nfx.

Observe that

Iter cn F X = (Iter cn F )X
+−→β (cn F )X

+−→β F
nX, (†3)

that is, the result of iterating F for n steps starting with the initial term X.

Remark: The combinator Iter is actually equal to the combinator

if then else = λbxy. bxy

of Definition 5.4. Remarkably, if n (or b) is a boolean, then this combinator behaves like a
conditional, but if n (or b) is a Church numeral, then it behaves like an iterator. A closely
related combinator is Fold, defined by

Fold = λxfn. nxf.
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The only difference is that the abstracted variables are listed in the order x, f, n, instead of
n, f, x. In fact,

Fold = pair,

as defined just after Example 5.18. This version of an iterator is used when the Church
numerals are defined as λxf. fn(x) instead of λfx. fn(x), where x and f are permuted in
the λ-binder.

Let us show how some basic functions on the natural numbers can be defined.

Example 5.19. We begin with the constant function Z given by Z(n) = 0 for all n ∈ N.
We claim that Zc = λx. c0 works. Indeed, we have

Zc cn = (λx. c0)cn −→β c0[x := cn] = c0,

since c0 is a closed term.

Example 5.20. The successor function Succ is given by

Succ(n) = n+ 1.

We claim that
Succc = λnfx. f(nfx)

computes Succ. Indeed we have

Succc cn = (λnfx. f(nfx))cn

−→β

(
λfx. f(nfx)

)
[n := cn] = λfx. f(cnfx)

−→β λfx. f(fn(x))

= λfx. fn+1(x) = cn+1.

Example 5.21. The function IsZero which tests whether a natural number is equal to 0 is
defined by the combinator

IsZeroc = λx. x(K F)T.

We have

IsZeroc cn =
(
λx. x(K F)T

)
cn

+−→β

(
λx. x(K F)T

)
[x := cn] = cn(K F)T

+−→β (K F)nT,

and the rest of the proof is left as an exercise.

Addition and multiplication are a little more tricky to define.

Proposition 5.6. (J.B. Rosser) Define Add and Mult as the combinators given by

Add = λmnfx.mf(nfx)

Mult = λmnz.m(nz).
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We have

Add cmcn
+−→β cm+n

Mult cmcn
+−→β cm∗n

for all m,n ∈ N.

Proof. We have

Add cmcn = (λmnfx.mf(nfx))cmcn
+−→β (λfx. cmf(cnfx))
+−→β λfx. f

m(fn(x))

= λfx. fm+n(x) = cm+n.

For multiplication we need to prove by induction on m that

(cnx)m(y)
∗−→β x

m∗n(y). (∗)

If m = 0, then both sides are equal to y.
For the induction step, we have

(cnx)m+1(y) = cnx((cnx)m(y))
∗−→β cnx(xm∗n(y)) by induction
∗−→β x

n(xm∗n(y))

= xn+m∗n(y) = x(m+1)∗n(y).

We now have

Mult cmcn = (λmnz.m(nz))cmcn
+−→β λz. (cm(cnz))

= λz. ((λfy. fm(y))(cnz))
+−→β λzy. (cnz)m(y),

and since we proved in (∗) that

(cnz)m(y)
∗−→β z

m∗n(y),

we get

Mult cmcn
+−→β λzy. (cnz)m(y)

+−→β λzy. z
m∗n(y) = cm∗n,

which completes the proof.
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As an exercise the reader should prove that addition and multiplication can also be
defined in terms of Iter (see Definition 5.15) by

Add = λmn. ItermSuccc n

Mult = λmn. Iterm (Addn) c0.

The above expressions are close matches to the primitive recursive definitions of addition
and multiplication. To check that they work, prove that

Add cm cn
+−→β (Succc)

m(cn)
+−→β cm+n

and
Mult cm cn

+−→β (Add cn)m(c0)
+−→β cm∗n.

Example 5.22. Rosser defined the exponential function

exp(m,n) = mn, m ≥ 0, n ≥ 1,

using the combinator
exp = λxy · (yx).

Observe that

exp cm cn = (λxy. (yx)) cm cn
+−→β cncm = (λfx. fn(x))cm
+−→β λx. (cm)n(x).

To finish the proof there is a tricky point, which is that we need to use conversion instead
of reduction. We prove that for n ≥ 1,

(cm)n(x)
∗←→β cmn(x).

This is done by induction on n, starting from n = 1. For the induction step

(cm)n+1(x) = cm((cm)n(x)) = (λfy. fm(y))((cm)n(x))
+−→β λy. ((cm)n(x))m(y)
∗←→β λy. (cmn(x))m(y).

By (∗), we have

(cpx)m(y)
∗−→β x

m∗p(y),

so with p = mn, we get

λy. (cmn(x))m(y)
+−→β λy. x

m∗mn(y) = λy. xm
n+1

(y)
∗←→β (λfy. fm

n+1

(y))x = cnm+1(x),

so finally
(cm)n+1(x)

∗←→β cmn+1(x).
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Putting everything together, we have

exp cm cn
+−→β λx. (cm)n(x)

∗←→β λx. cmn(x).

This is not exactly what we want! The term on the right-hand should be cmn . To finish
the proof, we use the following property which is easily shown. If M is a λ-term of the form

M = λy.M ′ and x /∈ FV (M), then λx. (Mx)
+−→β M . In summary, we have

exp cm cn
∗←→β cmn .

Since the term on the right-hand side is a β-normal form, by the Church-Rosser theorem,
actually

exp cm cn
+−→β cmn .

Example 5.23. A function that plays an important technical role is the predecessor function
Pred defined such that

Pred(0) = 0

Pred(n+ 1) = n.

It turns out that it is quite tricky to define this function in terms of the Church numerals.
Church and his students struggled for a while until Kleene found a solution in his famous
1936 paper. The story goes that Kleene found his solution when he was sittting in the
dentist’s chair! The trick is to make use of pairs. Kleene’s solution is

PredK = λn. π2(Itern (λz. 〈Succc(π1z), π1z〉) 〈c0, c0〉).

In the above expression, Iter is applied to the three arguments n, (λz. 〈Succc(π1z), π1z〉),
and 〈c0, c0〉. Thus we have

PredK cn
+−→β π2((λz. 〈Succc(π1z), π1z〉)n〈c0, c0〉).

The reason this works is that we see immediately that

(λz. 〈Succc(π1z), π1z〉)0〈c0, c0〉 +−→β 〈c0, c0〉,

and we can prove by induction that

(λz. 〈Succc(π1z), π1z〉)n+1〈c0, c0〉 +−→β 〈cn+1, cn〉.

Then we have
PredK c0

+−→β π2(〈c0, c0〉) = c0

and
PredK cn+1

+−→β π2(〈cn+1, cn〉) = cn.
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For the base case n = 0 we get

(λz. 〈Succc(π1z), π1z〉)〈c0, c0〉 −→β 〈Succc(π1〈c0, c0〉), π1〈c0, c0〉〉
+−→β 〈Succc(c0), c0〉
+−→β 〈c1, c0〉.

For the induction step, we have

(λz. 〈Succc(π1z), π1z〉)n+2〈c0, c0〉
= (λz. 〈Succc(π1z), π1z〉)

(
(λz. 〈Succc(π1z), π1z〉)n+1〈c0, c0〉

)
+−→β (λz. 〈Succc(π1z), π1z〉)〈cn+1, cn〉
+−→β 〈Succc(cn+1), cn+1〉 +−→β 〈cn+2, cn+1〉.

Here is another tricky solution due to J. Velmans (according to H. Barendregt):

Predc = λxyz. x(λpq. q(py))(Kz)I.

We leave it to the reader to verify that it works.

The ability to construct pairs together with the Iter combinator allows the definition of
a large class of functions, because Iter is “type-free” in its second and third arguments so
it really allows higher-order primitive recursion.

Example 5.24. The factorial function defined such that

0! = 1

(n+ 1)! = (n+ 1)n!

can be defined. First we define h by

h = λmn.Mult Succcnm

and then
fact = λn. π1(Itern (λz. 〈h(π1z) (π2z),Succc(π2z)〉) 〈c1, c0〉).

The above expression, Iter is applied to the arguments n, (λz. 〈h(π1z) (π2z),Succc(π2z)〉),
and 〈c1, c0〉. We have

h cn! cn
+−→β Mult Succc cn cn!

+−→β Mult cn+1 cn!
+−→β c(n+1)!,

and
fact cn

+−→β π1((λz. 〈h(π1z) (π2z),Succc(π2z)〉)n 〈c1, c0〉).
This works because

(λz. 〈h(π1z) (π2z),Succc(π2z)〉)0 〈c1, c0〉 +−→β 〈c1, c0〉 = 〈c0!, c0〉,



5.4. REPRESENTING THE NATURAL NUMBERS 261

and by induction,

(λz. 〈h(π1z) (π2z),Succc(π2z)〉)n+1 〈c1, c0〉 +−→β〈c(n+1)!, cn+1〉.
Then we have

fact cn
+−→β π1((λz. 〈h(π1z) (π2z),Succc(π2z)〉)n 〈c1, c0〉)
+−→β π1(〈cn!, cn〉) +−→β cn!.

For the induction step, we have

(λz. 〈h(π1z) (π2z),Succc(π2z)〉)n+2 〈c1, c0〉
= (λz. 〈h(π1z) (π2z),Succc(π2z)〉)

(
λz. 〈h(π1z) (π2z),Succc(π2z)〉)n+1 〈c1, c0〉

)
+−→β (λz. 〈h(π1z) (π2z),Succc(π2z)〉)〈c(n+1)!, cn+1〉
+−→β 〈h c(n+1)! cn+1,Succc(cn+1)〉 +−→β 〈c(n+2)!, cn+2〉.

Barendregt came up with another way of representing the natural numbers that makes
things easier.

Definition 5.16. (Barendregt Numerals) The Barendregt numerals bn are defined as follows:

b0 = I = λx. x

bn+1 = 〈F,bn〉.
The Barendregt numerals are β-normal forms. Barendregt uses the notation pnq instead

of bn but this notation is also used for the Church numerals by other authors so we prefer
using bn (which is consistent with the use of cn for the Church numerals). The Barendregt
numerals are tuples, which makes operating on them simpler than the Church numerals
which encode n as the composition fn.

Proposition 5.7. The functions Succ,Pred and IsZero are defined in terms of the Baren-
dregt numerals by the combinators

Succb = λx. 〈F, x〉
Predb = λx. (xF)

IsZerob = λx. (xT),

and we have

Succb bn
+−→β bn+1

Predb b0
+−→β b0

Predb bn+1
+−→β bn

IsZerob b0
+−→β T

IsZerob bn+1
+−→β F.
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The proof is left as an exercise.
Since there is an obvious bijection between the Church combinators and the Barendregt

combinators there should be combinators effecting the translations. Indeed we have the
following result.

Proposition 5.8. The combinator T given by

T = λx. (xSuccb)b0

has the property that

T cn
+−→β bn for all n ∈ N.

Proof. We proceed by induction on n. For the base case

T c0 = (λx. (xSuccb)b0)c0

+−→β (c0Succb)b0 by (†1)
+−→β b0.

For the induction step,

T cn = (λx. (xSuccb)b0)cn
+−→β (cnSuccb)b0 by (†2)
+−→β Succb

n(b0).

Thus we need to prove that

Succb
n(b0)

+−→β bn. (∗)

For the base case n = 0, the left-hand side reduces to b0.
For the induction step, we have

Succb
n+1(b0) = Succb(Succb

n(b0))
+−→β Succb(bn) by induction
+−→β bn+1,

which concludes the proof.

There is also a combinator defining the inverse map but it is defined recursively and we
don’t know how to express recursive definitions in the λ-calculus. This is achieved by using
fixed-point combinators.

Remark: With some work, it is possible to show that lists and trees can be represented in
the λ-calculus.
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5.5 Fixed-Point Combinators and Recursively Defined

Functions

Fixed-point combinators are the key to the definability of recursive functions in the λ-
calculus. We begin with the Y-combinator due to Curry.

Proposition 5.9. (Curry Y-combinator) If we define the combinator Y as

Y = λf. (λx. f(xx))(λx. f(xx)),

then for any λ-term F we have
F (YF )

∗←→β YF.

We say that YF is a fixed-point of F .

Proof. Write W = λx. F (xx). We have

F (YF ) = F
((
λf. (λx. f(xx))(λx. f(xx))

)
F
)
−→β F

(
(λx. F (xx))(λx. F (xx))

)
= F (WW ),

and

YF =
(
λf. (λx. f(xx))(λx. f(xx))

)
F −→β (λx. F (xx))(λx. F (xx)) = (λx. F (xx))W

−→β F (WW ).

Therefore F (YF )
∗←→β YF , as claimed.

Observe that neither F (YF )
+−→βYF nor YF

+−→βF (YF ). This is a slight disadvantage
of the Curry Y-combinator. Turing came up with another fixed-point combinator that does
not have this problem.

Proposition 5.10. (Turing Θ-combinator) If we define the combinator Θ as

Θ = (λxy. y(xxy))(λxy. y(xxy)),

then for any λ-term F we have

ΘF
+−→β F (ΘF ).

We say that ΘF is a fixed-point of F .

Proof. If we write A = (λxy. y(xxy)), then Θ = AA. We have

ΘF = (AA)F = ((λxy. y(xxy))A)F

−→β (λy. y(AAy))F

−→β F (AAF )

= F (ΘF ),

as claimed.
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Both Y and Θ have no β-normal form.

Now we show how to use the fixed-point combinators to represent recursively-defined
functions in the λ-calculus.

Example 5.25. There is a combinator G such that

GX
+−→β X(XG) for all X.

Informally, the idea is to consider the “functional” F = λgx. x(xg) and to find a fixed-point
of this functional. Pick

G = Θλgx. x(xg) = ΘF.

Since by Proposition 5.10 we have G = ΘF
+−→β F (ΘF ) = FG, and we also have

FG = (λgx. x(xg))G −→β λx. x(xG),

so G
+−→β FG

+−→β λx. x(xG), which implies

GX
+−→β (λx. x(xG))X −→β X(XG).

Example 5.26. In general, if we want to define a function G recursively such that

GX
+−→β M(X,G)

where M(X,G) is λ-term containing recursive calls to G applied to various functions of X,
we let F = λgx.M(x, g) and

G = ΘF.

Then we have

G
+−→β FG = (λgx.M(x, g))G −→β λx.M(x, g)[g := G] = λx.M(x,G),

so
GX

+−→β (λx.M(x,G))X −→β M(x,G)[x := X] = M(X,G),

as desired.

Example 5.27. Here is how the factorial function can be defined (using the Church numer-
als). Let

F = λgn. if IsZeroc n then c1 else Multn g(Predc n).

Then the term G = ΘF defines the factorial function.

Since G is a fixed-point of F we have G
+−→β FG. If n = 0, we have

G c0
+−→β FG c0

+−→β if IsZeroc c0 then c1 else Mult c0G(Predc c0)
+−→β if T then c1 else Mult c0 (G c0)
+−→β c1.
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So, G c0
+−→β c1, which corresponds to 0! = 1.

Otherwise, if n ≥ 1, we have

G cn
+−→β (FG) cn
+−→β if IsZeroc cn then c1 else Mult cnG(Predc cn)
+−→β if F then c1 else Mult cn (G cn−1)
+−→β Mult cn (G cn−1)

+−→β Mult cn (F G) cn−1
+−→β · · ·

+−→β Mult cn (Mult cn−1 (G cn−2))
+−→β · · ·

+−→β Mult cn (Mult cn−1 (Mult cn−2(· · · (Mult c2 (Mult c1(G c0))) · · · )))
+−→β Mult cn (Mult cn−1 (Mult cn−2(· · · (Mult c2 (Mult c1c1))) · · · ))) +−→β cn!.

As usual with recursive definitions there is no guarantee that the function that we obtain
terminates for all input.

Example 5.28. For example, if we consider

F = λgn. if IsZeroc n then c1 else Multn g(Succc n),

then for n ≥ 1, the reduction behavior is

Gcn
+−→β Mult cnG cn+1,

which does not terminate.

We leave it as an exercise to show that the inverse of the function T mapping the Church
numerals to the Barendregt numerals is given by the combinator

T−1 = Θ(λfx. if IsZerob x then c0 else Succc(f(Predb x)).

It is remarkable that the λ-calculus allows the implementation of arbitrary recursion with-
out a stack, just using λ-terms as the data-structure and β-reduction. This does not mean
that this evaluation mechanism is efficient but this is another story (as well as evaluation
strategies, which have to do with parameter-passing strategies, call-by-name, call-by-value).

Now we have all the ingredients to show that all the total computable functions are
definable in the λ-calculus. It is also true that all the partial computable functions are
definable in the λ-calculus, but this is significantly harder to prove. The difficulty is that if F
is the λ-term computing f(n1, . . . , nm) when it is defined, then if f(n1, . . . , nm) is undefined,
we need to prove that F cn1 . . . cnm does not have a β-normal form. This involves a trick
and the use of a deep theorem about quasi-leftmost reductions.
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5.6 λ-Definability of the Total Computable Functions

Let us begin by reviewing the definition of the computable functions (recursive functions)
(à la Herbrand–Gödel–Kleene). For our purposes it suffices to consider functions (partial or
total) f : Nn → N as opposed to the more general case of functions f : (Σ∗)n → Σ∗ defined
on strings.

Definition 5.17. The base functions are the functions Z, S, P n
i defined as follows.

(1) The constant zero function Z such that

Z(n) = 0, for all n ∈ N.

(2) The successor function S such that

S(n) = n+ 1, for all n ∈ N.

(3) For every n ≥ 1 and every i with 1 ≤ i ≤ n, the projection function P n
i such that

P n
i (x1, . . . , xn) = xi, x1, . . . , xn ∈ N.

Next comes (extended) composition.

Definition 5.18. Given any partial or total function g : Nm → N (m ≥ 1) and any m
partial or total functions hi : Nn → N (n ≥ 1), the composition of g and h1, . . . , hm, denoted
g ◦ (h1, . . . , hm), is the partial or total function function f : Nn → N given by

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)), x1, . . . , xn ∈ N.

If g or any of the hi are partial functions, then f(x1, . . . , xn) is defined if and only if all
hi(x1, . . . , xn) are defined and g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) is defined .

� Note that even if g “ignores” one of its arguments, say the ith one,
g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) is undefined if hi(x1, . . . , xn) is undefined.

Definition 5.19. Given any partial or total functions g : Nm → N and h : Nm+2 → N
(m ≥ 1), the partial or total function function f : Nm+1 → N is defined by primitive recursion
from g and h if f is given by

f(0, x1, . . . , xm) = g(x1, . . . , xm)

f(n+ 1, x1, . . . , xm) = h(f(n, x1, . . . , xm), n, x1, . . . , xm)

for all n, x1, . . . , xm ∈ N. If m = 0, then g is some fixed natural number and we have

f(0) = g

f(n+ 1) = h(f(n), n).
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It can be shown that if g and h are total functions, then so is f .
Note that the second clause of the definition of primitive recursion is

f(n+ 1, x1, . . . , xm) = h(f(n, x1, . . . , xm), n, x1, . . . , xm) (∗1)

but in an earlier definition it was

f(n+ 1, x1, . . . , xm) = h(n, f(n, x1, . . . , xm), x1, . . . , xm), (∗2)

with the first two arguments of h permuted. Since

h ◦ (Pm+2
2 , Pm+2

1 , Pm+2
3 , . . . , Pm+2

m+2 )(n, f(n, x1, . . . , xm), x1, . . . , xm)

= h(f(n, x1, . . . , xm), n, x1, . . . , xm)

and

h ◦ (Pm+2
2 , Pm+2

1 , Pm+2
3 , . . . , Pm+2

m+2 )(f(n, x1, . . . , xm), n, x1, . . . , xm)

= h(n, f(n, x1, . . . , xm), x1, . . . , xm),

the two definitions are equivalent. In this section we chose version (∗1) because it matches
the treatment in Barendregt [4] and will make it easier for the reader to follow Barendregt
[4] if they wish.

The last operation is minimization (sometimes called minimalization).

Definition 5.20. Given any partial or total function g : Nm+1 → N (m ≥ 0), the partial or
total function function f : Nm → N is defined as follow;: for all x1, . . . , xm ∈ N,

f(x1, . . . , xm) = the least n ∈ N such that g(n, x1, . . . , xm) = 0,

and undefined if there is no n such that g(n, x1, . . . , xm) = 0. We say that f is defined by
minimization from g, and we write

f(x1, . . . , xm) = µx[g(x, x1, . . . , xm) = 0].

For short, we write f = µg.

Even if g is a total function, f may be undefined for some (or all) of its inputs.

Definition 5.21. (Herbrand–Gödel–Kleene) The set of partial computable (or partial recur-
sive) functions is the smallest set of partial functions (defined on Nn for some n ≥ 1) which
contains the base functions and is closed under

(1) Composition.

(2) Primitive recursion.
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(3) Minimization.

The set of computable (or recursive) functions is the subset of partial computable functions
that are total functions (that is, defined for all input).

We proved earlier the Kleene normal form, which says that every partial computable
function f : Nm → N is computable as

f = g ◦ µh,

for some primitive recursive functions g : N→ N and h : Nm+1 → N. The significance of this
result is that f is built up from total functions using composition and primitive recursion,
and only a single minimization is needed at the end.

Before stating our main theorem, we need to define what it means for a (numerical)
function to be definable in the λ-calculus. This requires some care to handle partial functions.

Since there are combinators for translating Church numerals to Barendregt numerals and
vice-versa, it does not matter which numerals we pick. We pick the Church numerals because
primitive recursion is definable without using a fixed-point combinator.

Definition 5.22. A function (partial or total) f : Nn → N is λ-definable if for all m1, . . .,
mn ∈ N, there is a combinator (a closed λ-term) F with the following properties.

(1) The value f(m1, . . . ,mn) is defined if and only if Fcm1 · · · cmn reduces to a β-normal
form (necessarily unique by the Church–Rosser theorem).

(2) If f(m1, . . . ,mn) is defined, then

Fcm1 · · · cmn
∗←→β cf(m1,...,mn).

In view of the Church–Rosser theorem (Theorem 5.2) and the fact that cf(m1,...,mn) is a
β-normal form, we can replace

Fcm1 · · · cmn
∗←→β cf(m1,...,mn)

by
Fcm1 · · · cmn

∗−→β cf(m1,...,mn).

Note that the termination behavior of f on inputs m1, . . . ,mn has to match the reduction
behavior of Fcm1 · · · cmn . An equivalent way to state (1) is to assert that if f(m1, . . . ,mn)
is defined, then Fcm1 · · · cmn reduces to a β-normal form, and if f(m1, . . . ,mn) is undefined,
then no reduction sequence from Fcm1 · · · cmn reaches a β-normal form. Condition (2)
ensures that if f(m1, . . . ,mn) is defined, then the correct value cf(m1,...,mn) is computed
by some reduction sequence from Fcm1 · · · cmn . If we only care about total functions, then
(1) requires that Fcm1 · · · cmn reduces to a β-normal for all m1, . . . ,mn.

It is important to note that if f(m1, . . . ,mn) is defined, then there must be some reduction
from Fcm1 · · · cmn to a β-normal form equal to cf(m1,...,nm), but this does not mean that all
reductions from Fcm1 · · · cmn are finite. Some reductions from Fcm1 · · · cmn could be infinite.
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This leads to the question: are there reduction strategies that are guaranteed to terminate
with a normal form if it exists?

There are indeed such strategies, for example normal reductions as defined in Definition
5.11. The study of reduction strategies is a beautiful but technically difficult subject. Some
key contributors besides Curry are Barendregt, Klop and Levy.

A stronger and more elegant version of λ-definabilty that better captures when a function
is undefined for some input is considered in Section 5.8.

We have the following remarkable theorems.

Theorem 5.11. If a total function f : Nn → N is λ-definable, then it is (total) computable.
If a partial function f : Nn → N is λ-definable, then it is partial computable.

Although Theorem 5.11 is intuitively obvious since computation by β-reduction sequences
are “clearly” computable, a detailed proof is long and very tedious. One has to define
primitive recursive functions to mimick β-conversion, etc. Most books sweep this issue
under the rug. Barendregt observes that the “λ-calculus is recursively axiomatized,” which
implies that the graph of the function being defined is recursively enumerable, but no details
are provided; see Barendregt [4] (Chapter 6, Theorem 6.3.13). Kleene (1936) provides a
detailed and very tedious proof. This is an amazing paper, but very hard to read. If the
reader is not content she/he should work out the details over many long lonely evenings.

Theorem 5.12. (Kleene, 1936) If a total function f : Nn → N is computable, then it is
λ-definable.

Proof. There are several steps.
Step 1 . The base functions are λ-definable.
We already showed that Zc computes Z and that Succc computes S. Observe that Un

i

given by

Un
i = λx1 · · ·xn. xi

computes P n
i .

Step 2 . Closure under composition.
If g is λ-defined by the combinator G and h1, . . . , hm are λ-defined by the combinators

H1, . . . , Hm, then g ◦ (h1, . . . , hm) is λ-defined by

F = λx1 · · ·xn. G(H1x1 · · · xn) . . . (Hmx1 · · ·xn).

Since the functions are total, there is no problem.
Step 3 . Closure under primitive recursion.
We could use a fixed-point combinator but the combinator Iter and pairing do the job.

If f is defined by primitive recursion from g and h, and if G λ-defines g and H λ-defines h,
then f is λ-defined by

F = λnx1 · · ·xm. π1

(
Iter n λz. 〈H π1z π2z x1 · · ·xm, Succc(π2z)〉 〈Gx1 · · ·xm, c0〉

)
.
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We have

F cn cn1 . . . cnm
+−→β π1

((
λz. 〈H π1z π2z cn1 . . . cnm ,Succc(π2z)〉

)n〈Gcn1 . . . cnm c0〉
)
.

The reason F works is that we can prove by induction that(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)n〈Gcn1 · · · cnm , c0〉 +−→β 〈cf(n,n1,...,nm), cn〉.

For the base case n = 0,(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)0〈Gcn1 · · · cnm , c0〉
+−→β 〈Gcn1 · · · cnm , c0〉 = 〈cg(n1,...,nm), c0〉 = 〈cf(0,n1,...,nm), c0〉.

For the induction step,(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)n+1〈Gcn1 · · · cnm , c0〉
=
(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)n〈Gcn1 · · · cnm , c0〉
)

+−→β

(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)
〈cf(n,n1,...,nm), cn〉

+−→β 〈Hcf(n,n1,...,nm) cn cn1 · · · cnm , Succc cn〉
+−→β 〈ch(f(n,n1,...,nm),n,n1,...,nm), cn+1〉 = 〈cf(n+1,n1,...,nm), cn+1〉.

Since the functions are total, there is no problem.
We can also show that primitive recursion can be achieved using a fixed-point combinator.

Define the combinators J and F by

J = λfxx1 · · ·xm. if IsZeroc x thenGx1 · · ·xm
elseH(f(Predc x)x1 · · ·xm)(Predc x)x1 · · ·xm,

and
F = ΘJ.

We proceed by induction on n to prove that F λ-defines f .

We leave the base case n = 0 as an exercise. For n ≥ 1, since F
+−→β JF , we have

F cn cn1 . . . cnm
+−→β (JF ) cn cn1 . . . cnm
+−→β if IsZeroc cn thenGcn1 . . . cnm

elseH(F (Predc cn) cn1 . . . cnm)(Predc cn) cn1 . . . cnm
+−→β if T thenGcn1 . . . cnm

elseH(F (Predc cn) cn1 . . . cnm)(Predc cn) cn1 . . . cnm
+−→β H(F cn−1 cn1 . . . cnm) cn−1 cn1 . . . cnm .
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By the induction hypothesis,

F cn−1 cn1 . . . cnm
+−→β cf(n−1,n1,...,nm),

so by definition of H,

H(F cn−1 cn1 . . . cnm) cn−1 cn1 . . . cnm
+−→β ch(f(n−1,n1,...,nm),n−1,n1,...,nm)

= cf(n,n1,...,nm).

Then F λ-defines f , and since the functions are total, there is no problem. This method
must be used if we use the Barendregt numerals.

Step 4. Closure under minimization.
Suppose f is total and defined by minimization from g and that g is λ-defined by G.
Define the combinators J and H by

J = λfxx1 · · · xm. if IsZerocGxx1 · · · xm then x else f(Succc x)x1 · · ·xm
and

H = ΘJ.

Since H
+−→β JH, we have

H cn cn1 . . . cnm
+−→β (JH) cn cn1 . . . cnm
+−→β if IsZerocG cn cn1 . . . cnm then cn elseH(Succc cn) cn1 . . . cnm
+−→β if IsZerocG cn cn1 . . . cnm then cn elseH cn+1 cn1 . . . cnm .

Since the combinator G computes g, we deduce that

H cn cn1 . . . cnm
+−→β

{
cn, if g(n, n1, . . . , nm) = 0

H cn+1 cn1 · · · cnm , otherwise.
(H)

Let F be the combinator defined by

F = λx1 . . . xm. Hc0 x1 . . . xm,

so that
F cn1 . . . cnm

+−→β Hc0 cn1 . . . cnm .

Since we assumed that f is total, there is a least n such that g(n, n1, . . . , nm) = 0, and
so the definition of H cn cn1 . . . cnm given in (H) shows by induction on p ≤ n that since
g(q, n1, . . . .nm) 6= 0 for q < p,

H c0 cn1 . . . cnm
+−→β H cp cn1 . . . cnm ,

and thus

H c0 cn1 . . . cnm
+−→β cn, if n ≥ 0 is the smallest integer such that g(n, n1, . . . , nm) = 0.

Since F cn1 . . . cnm
+−→βHc0 cn1 . . . cnm , we conclude that F λ-defines f . We leave the details

as an exercise.

This finishes the proof that every total computable function is λ-definable.
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5.7 λ-Definability of the Partial Computable Functions

To prove Theorem 5.12 for the partial computable functions we appeal to the Kleene normal
form: every partial computable function f : Nm → N is computable as

f = ψ ◦ µg,

for some primitive recursive functions ψ : N → N and g : Nm+1 → N. Thus we are back to
the previous case where we are trying to find the least n such that g(n, n1, . . . , nm) = 0,
if any. Our previous proof yields combinators H and F and it appears that F defines
ϕ(n1, . . . , nm) = µx[g(x, n1, . . . , nm) = 0]. The minimization of g may fail, but since g is
a total function, one might think that it should be clear that F computes ϕ. However
this is not obvious because we need to prove that Hc0 cn1 . . . cnm has no normal form if
g(n, n1, . . . , nm) 6= 0 for all n ∈ N. But H is defined in terms of a fixed-point combinator, so
in fact the proof is tricky. We sketch how to proceed, adapting Hindley and Seldin [31] who
give a detailed proof (see Chapter 4, Theorems 4.15 and 4.18).

The adaptation has to do with the fact that Hindley and Seldin minimize g with respect
to the last argument instead of the first.

Theorem 5.13. If a partial function f : Nn → N is partial computable, then it is λ-definable.

Proof. The first step is to define H without using the fixed-point combinator Θ. First we
define a variant D of the pairing function by

D = λxyz. z(Ky)x.

Since
DXY cn

+−→β cn(KY )X
+−→β (KY )nX,

we can easily check that

DXY Z =

{
X, if Z = c0

Y, if Z = cn, n ≥ 1.
(D)

Assume that the combinator Ψ defines ψ and G defines g. Next we define R and P by

R = D Um+1
2

(
λuxy1 . . . ym. u (G (Succcx) y1 . . . ym)u (Succcx) y1 . . . ym

)
P = λxy1 . . . ym.R(Gxy1 . . . ym)Rxy1 . . . ym.

We have

P cn cn1 . . . cnm
+−→β R(G cn cn1 . . . cnm)R cn cn1 . . . cnm

= D Um+1
2

(
λuxy1 . . . ym. u (G (Succcx) y1 . . . ym)u (Succcx) y1 . . . ym

)
(G cn cn1 . . . cnm)R cn cn1 . . . cnm .
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Since the above term is of the form DXY ZW with

X = Um+1
2

Y =
(
λuxy1 . . . ym. u (G (Succcx) y1 . . . ym)u (Succcx) y1 . . . ym

)
Z = (G cn cn1 . . . cnm)

W = R cn cn1 . . . cnm ,

we have two cases depending on the result of reducing G cn cn1 . . . cnm .

If G cn cn1 . . . cnm
+−→β c0, by (D),

P cn cn1 . . . cnm
+−→β DXY c0W

+−→β XW = Um+1
2 R cn cn1 . . . cnm

+−→β cn.

If G cn cn1 . . . cnm
+−→β cp with p ≥ 1, by (D),

P cn cn1 . . . cnm
+−→β DXY cpW

+−→β YW =
(
λuxy1 . . . ym. u (G (Succcx) y1 . . . ym)u (Succcx) y1 . . . ym

)
R cn cn1 . . . cnm

+−→β R (G (Succc cn) cn1 . . . cnm) R(Succc cn) cn1 . . . cnm
∗←→β P (Succc cn) cn1 . . . cnm .

In summary, we proved that

(1) If G cn cn1 . . . cnm
+−→β c0, then

Pcn cn1 . . . cnm
+−→β cn.

(2) If G cn cn1 . . . cnm
+−→β cp (p ≥ 1), then

Pcn cn1 . . . cnm
∗←→β P(Succc cn) cn1 . . . cnm .

In fact, we proved that

Pcn cn1 . . . cnm
+−→β R(G cn cn1 . . . cnm)R cn cn1 . . . cnm
+−→β R (G cn+1 cn1 . . . cnm) R cn+1 cn1 . . . cnm . (∗3)

Now if we define F by

F = λx1 . . . xm.Ψ(P c0 x1 . . . xm),

we see immediately that F computes f if f(n1, . . . , nm) is defined. Furthermore, it can be
shown that F has a β-normal form, which is not the case of the previous F obtained with
the Turing fixed-point combinator.
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But if f(n1, . . . , nm) is undefined, we have to make sure that F has no β-normal form.

A trick to achieve this is to define F̃ by

F̃ = λx1 . . . xm. (P c0 x1 . . . xm) I(F x1 . . . xm).

If f(n1, . . . , nm) is defined, then there is a least n ≥ 0 such that g(n, n1, . . . , nm) = 0, so
Case (1) above arises and we have

F̃ cn1 . . . cnm
+−→β (P c0 cn1 . . . cnm)I(F cn1 . . . cnm)

+−→β cn I(F cn1 . . . cnm)
+−→β In(F cn1 . . . cnm)

+−→β F cn1 . . . cnm
+−→β cf(n1,...,nm),

so F̃ cn1 . . . cnm computes f(n1, . . . , nm). The reduction

cn I(F cn1 . . . cnm)
+−→β In(F cn1 . . . cnm)

follows from (†2) just after Definition 5.14 and the reduction

In(F cn1 . . . cnm)
+−→β F cn1 . . . cnm

holds by Proposition 5.3(1).

If f(n1, . . . , nm) is undefined, since g(n, n1, . . . , nm) 6= 0 for all n ≥ 0, G cn cn1 . . . cnm
never reduces to c0, so we have the infinite reduction sequence

F̃ cn1 . . . cnm
+−→β (P c0 cn1 . . . cnm)I(F cn1 . . . cnm)
+−→β (R(G c0 cn1 . . . cnm)R c0 cn1 . . . cnm)I(F cn1 . . . cnm)
+−→β (R(G c1 cn1 . . . cnm)R c1 cn1 . . . cnm)I(F cn1 . . . cnm)
+−→β (R(G c2 cn1 . . . cnm)R c2 cn1 . . . cnm)I(F cn1 . . . cnm)

+−→β · · · .

This turns out to be what is known as an infinite quasi-leftmost reduction, and this
implies that F̃ cn1 . . . cnm has no β-normal form.

The reader should review Definition 5.11 in order to understand the next definition.

Definition 5.23. Given a λ-term M0, a reduction sequence

M0
+−→u0,R0,β M1

+−→u1,R1,β M2
+−→β · · · +−→β Mn−1

+−→un−1,Rn−1,β Mn
+−→β · · ·

is a quasi-leftmost reduction if the following condition holds:

for all i ≥ 0, if M0
+−→β Mi and Mi is not a β-normal form, then there is

some j ≥ i such that Mj
+−→uj ,Rj ,β Mj+1 is a leftmost maximal reduction. (qlr)

If the reduction is finite and ends with Mn, then Mn is a β-normal form, since otherwise
Condition (qlr) would require that Mn β-reduces in order for a leftmost maximal reduction
to occur later.
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Observe that an infinite reduction is a quasi-leftmost reduction iff it contains infinitely

many letfmost maximal steps Mj
+−→uj ,Rj ,β Mj+1.

Example 5.29. Let
L = (λx. (xx)y)(λx. (xx)y)

be the term from Example 5.15. Recall that

L
+−→β Ly

+−→β Lyy
+−→β · · ·

and that L has no β-normal form. Consider the term

M =
((
λu. (λv. w)

)
L
)
L.

The redex L occurs at 12 and 2 and neither occurrence is maximal; see Figure 5.7.

L

λu

λv

L

w

Figure 5.7: The tree associated with the term M .

The redex
(
λu. (λv. w)

)
L is leftmost maximal. The term M has the β-normal form w,

but there are infinite reductions from M obtained by reducing either occurrence of L. There
are also finite quasi-leftmost reductions such as the following.

M =
((
λu. (λv. w)

)
L
)
L

+−→β

((
λu. (λv. w)

)
(Lyp)

)
L

+−→β (λv. w)L

+−→β (λv. w)(Lyq)
+−→β w,

where the leftmost maximal redexes are shown in red.

It is easily verified that the reduction above from F̃ cn1 . . . cnm is a quasi-leftmost reduc-
tion.

The importance of quasi-leftmost reductions is captured by the following theorem.

Theorem 5.14. Let M be a λ-term. If M has a β-normal form M∗, then every quasi-
leftmost reduction is finite and terminates with M∗.



276 CHAPTER 5. THE LAMBDA-CALCULUS

As a corollary, since a finite quasi-leftmost reduction terminates with a β-normal form,
a λ-term M has no β-normal form iff some quasi-leftmost reduction is infinite.

See Hindley and Seldin [31] (Chapters 3, Theorem 3.19, and Corollary 3.19.1). The fact
that the existence of an infinite quasi-leftmost reduction implies that there is no β-normal
is a consequence of a deep theorem whose proof is hard, the standardization theorem. Full
details can be found in Barendregt [4] (Chapter 11, Theorem 11.4.7, Chapter 13, Theorem
13.2.2 and Theorem 13.2.6).

Combining Theorem 5.11, Theorem 5.12 and Theorem 5.13, we have established the
remarkable result that the set of λ-definable total functions is exactly the set of (total)
computable functions, and similarly for partial functions. So the λ-calculus has universal
computing power.

The proof actually shows that every total or partial computable function is computed by
a λ-term that has a β-normal form.

Remark: With some work, it is possible to show that lists and trees can be represented in
the λ-calculus. Since a Turing machine tape can be viewed as a list, it should be possible
(but very tedious) to simulate a Turing machine in the λ-calculus. This simulation should
be somewhat analogous to the proof that a Turing machine computes a computable function
(defined à la Herbrand–Gödel–Kleene).

Since the λ-calculus has the same power as Turing machines we should expect some
undecidabity results analogous to the undecidability of the halting problem or Rice’s theorem
(see Theorem 7.6). We state the following analog of Rice’s theorem without proof. It is a
corollary of a theorem known as the Scott–Curry theorem.

Theorem 5.15. (D. Scott) Let A be any nonempty set of λ-terms not equal to the set of all
λ-terms. If A is closed under β-reduction, then it is not computable (not recursive).

Theorem 5.15 is proven in Barendregt [4] (Chapter 6, Theorem 6.6.2) and Barendregt
[5].

As a corollary of Theorem 5.15 it is undecidable whether a λ-term has a β-normal form,
a result originally proved by Church. This is an analog of the undecidability of the halting
problem, but it seems more spectacular because the syntax of λ-terms is really very simple.
The problem is that β-reduction is very powerful and elusive.

In the next section we revisit the problem of defining the partial computable functions.

5.8 Head Normal-Forms and the Partial Computable

Functions

One defect of the proof of Theorem 5.12 in the case where a computable function is partial
is the use of the Kleene normal form. The difficulty has to do with composition. Given
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a partial computable function g λ-defined by a closed term G and a partial computable
function h λ-defined by a closed term H (for simplicity we assume that both g and h have
a single argument), it would be nice if the composition h ◦ g was represented by λx.H(Gx).
This is true if both g and h are total, but false if either g or h is partial as shown by the
following example from Barendregt [4] (Chapter 2, §2).

Recall from Definition 5.22 that if a partial function f : N→ N is represented by a λ-term
F , if f(n) is undefined, then no reduction from F cn ends in a β-normal form.

Example 5.30. If g is the function undefined everywhere and h is the constant func-
tion 0, then g is λ-defined by G = KΩ and h is λ-defined by H = K c0, with Ω =
(λx. (xx))(λx. (xx)). We have

λx.H(Gx) = λx.K c0(KΩx)
+−→β λx.Kc0Ω

+−→β λx. c0,

but h ◦ g = g is the function undefined everywhere, and λx. c0 represents the total function
h. Consequenly, λx.H(Gx) does not λ-define the function undefined everywhere g = h ◦ g,

since there is a reduction (λx.H(Gx))cn
+−→β (λx. c0)cn

+−→β c0.

It turns out that the λ-definability of the partial computable functions can be obtained
in a more elegant fashion without having recourse to the Kleene normal form by capturing
the fact that a function is undefined for some input is a more subtle way. The key notion
is the notion of head normal form, which is more general than the notion of β-normal form.
As a consequence, there are fewer λ-terms having no head normal form than λ-terms having
no β-normal form, and we capture a stronger form of divergence.

Recall that a λ-term is either a variable x, or an application (MN), or a λ-abstraction
(λx.M). We can sharpen this characterization as follows.

Proposition 5.16. The following properties hold.

(1) Every application term M is of the form

M = (N1N2 · · ·Nn−1)Nn, n ≥ 2,

where N1 is not an application term.

(2) Every abstraction term M is of the form

M = λx1 · · ·xn. N, n ≥ 1,

where N is not an abstraction term.

(3) Every λ-term M is of one of the following two forms:

M = λx1 · · ·xn. xM1 · · ·Mm, m, n ≥ 0 (a)

M = λx1 · · ·xn. (λx.M0)M1 · · ·Mm, m ≥ 1, n ≥ 0, (b)

where x is a variable.
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Proof. (1) Suppose that M is an application M = M1M2. We proceed by induction on the
depth of M1. For the base case M1 must be variables and we are done. For the induction
step, if M1 is a λ-abstraction, we are done. If M1 is an application, then by the induction
hypothesis it is of the form

M1 = (N1N2 · · ·Nn−1)Nn, n ≥ 2,

where N1 is not an application term, and then

M = M1M2 = ((N1N2 · · ·Nn−1)Nn)M2, n ≥ 2,

where N1 is not an application term.
The proof of (2) is similar.
(3) We proceed by induction on the depth of M . If M is a variable, then we are in Case

(a) with m = n = 0.
If M is an application, then by (1) it is of the form M = N1N2 · · ·Np with N1 not an

application term. This means that either N1 is a variable, in which case we are in Case (a)
with n = 0, or N1 is an abstraction, in which case we are in Case (b) also with n = 0.

If M is an abstraction λx.N , then by the induction hypothesis N is of the form (a) or
(b), and by adding one more binder λx in front of these expressions we preserve the shape
of (a) and (b) by increasing n by 1.

Example 5.31. The terms, I,K,K∗,S, the Church numerals cn, if then else, 〈M,N〉, π1, π2,
Iter, Succc, Add and Mult as in Proposition 5.6, are λ-terms of type (a). However, PredK,
Ω = (λx. (xx))(λx. (xx)), Y (the Curry Y-combinator), Θ (the Turing Θ-combinator) are
of type (b). Regarding

PredK = λn. π2(Itern (λz. 〈Succc(π1z), π1z〉) 〈c0, c0〉),

recall that π2 = λz. zK∗.

Proposition 5.16 motivates the following definition.

Definition 5.24. A λ-term M is a head normal form (for short hnf ) if it is of the form (a),
namely

M = λx1 · · ·xn. xM1 · · ·Mm, m, n ≥ 0,

where x is a variable called the head variable.
A λ-term M has a head normal form if there is some head normal form N such that

M
∗−→β N .

In a term M of the form (b),

M = λx1 · · ·xn. (λx.M0)M1 · · ·Mm, m ≥ 1, n ≥ 0,

the subterm (λx.M0)M1 is called the head redex of M .



5.8. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS 279

Example 5.32. In addition to the terms of type (a) that we listed after Proposition 5.16,
the term λx. xΩ is a head normal form. It is the head normal form of the term λx. (Ix)Ω,
which has no β-normal form.

Not every term has a head normal form. For example, the term

Ω = (λx. (xx))(λx. (xx))

has no head normal form. Every β-normal form must be a head normal form, but the
converse is false as we saw with

M = λx. xΩ,

which is a head normal form but has no β-normal form.
Note that a head redex of a term is a leftmost redex, but not conversely, as shown by the

term λx. x((λy. y)x), in which the leftmost redex is (λy. y)x, which is not a head redex.
A term may have more than one head normal form but here is a way of obtaining a head

normal form (if there is one) in a systematic fashion.

Definition 5.25. The relation −→h, called one-step head reduction, is defined as follows.
For any two terms M and N , if M contains a head redex (λx.M0)M1, which means that M
is of the form

M = λx1 · · ·xn. (λx.M0)M1 · · ·Mm, m ≥ 1, n ≥ 0,

then M −→h N with

N = λx1 · · ·xn. (M0[x := M1])M2 · · ·Mm.

We denote by
+−→h the transitive closure of −→h and by

∗−→h the reflexive and transitive
closure of −→h.

Given a term M containing a head redex, the head reduction sequence of M is the uniquely
determined sequence of one-step head reductions

M = M0 −→h M1 −→h · · · −→h Mn −→h · · · .

If the head reduction sequence reaches a term Mn which is a head normal form we say that
the sequence terminates , and otherwise we say that M has an infinite head reduction.

The following result is shown in Barendregt [4] (Chapter 8, §3).

Theorem 5.17. (Wadsworth) A λ-term M has a head normal form if and only if the head
reduction sequence terminates.

In some intuitive sense, a λ-term M that does not have any head normal form has a
strong divergence behavior with respect to β-reduction.
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Remark: There is a notion more general than the notion of head normal form which comes
up in functional languages (for example, Haskell). A λ-term M is a weak head normal form
if it is of one of the two forms

λx.N or yN1 · · ·Nm

where y is a variable These are exactly the terms that do not have a redex of the form
(λx.M0)M1N1 · · ·Nm. Every head normal form is a weak head normal form, but there are
many more weak head normal forms than there are head normal forms since a term of the
form λx.N where N is arbitrary is a weak head normal form, but not a head normal form
unless N is of the form λx1 · · ·xn. xM1 · · ·Mm, with m,n ≥ 0.

Reducing to a weak head normal form is a lazy evaluation strategy.

There is also another useful notion which turns out to be equivalent to having a head
normal form.

Definition 5.26. A closed λ-term M is solvable if there are closed terms N1, . . . , Nn such
that

MN1 · · ·Nn
∗−→β I.

A λ-term M with free variables x1, . . . , xm is solvable if the closed term λx1 · · ·xm.M is
solvable. A term is unsolvable if it is not solvable.

The following result is shown in Barendregt [4] (Chapter 8, §3).

Theorem 5.18. (Wadsworth) A λ-term M has a head normal form if and only if is it
solvable.

Actually, the proof that having a head normal form implies solvable is not hard.
We are now ready to revise the notion of λ-definability of numerical functions. Note that

Barendregt represents the natural numbers using the Barendregt numerals instead of the
Church numerals. This makes the proof technically simpler.

Definition 5.27. A function (partial or total) f : Nn → N is strongly λ-definable if for all
m1, . . ., mn ∈ N, there is a combinator (a closed λ-term) F with the following properties:

(1) If the value f(m1, . . . ,mn) is defined, then Fbm1 · · ·bmn reduces to the β-normal form
bf(m1,...,mn).

(2) If f(m1, . . . ,mn) is undefined, then Fbm1 · · ·bmn has no head normal form, or equiv-
alently, is unsolvable.

Observe that in Case (2), when the value f(m1, . . . ,mn) is undefined, the divergence
behavior of Fbm1 · · ·bmn is stronger than in Definition 5.22. Not only Fbm1 · · ·bmn has no
β-normal form, but actually it has no head normal form.

The following result is proven in Barendregt [4] (Chapter 8, §4). The proof does not use
the Kleene normal form. Instead, it makes clever use of the term KII. Another proof is
given in Krivine [39] (Chapter II).
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Theorem 5.19. Every partial or total computable function is strongly λ-definable. Con-
versely, every strongly λ-definable function is partial computable.

Making sure that a composition g ◦ (h1, . . . , hm) is defined for some input x1, . . . , xn iff all
the hi(x1, . . . , xn) and g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) are defined is tricky. The term
KII comes to the rescue! The Barendregt numerals have the property that

bnKII
+−→β I,

so they are “uniformly solvable;” see Barendregt [4] (Chapter 8, Lemma 8.4.5). If g is
strongly λ-definable by G and the hi are strongly λ-definable by Hi, then it can be shown
that the combinator F given by

F = λx1 · · ·xn. (H1x1 · · ·xnKII) · · · (Hmx1 · · ·xnKII)(G(H1x1 · · ·xn) · · · (G(Hmx1 · · ·xn))

strongly λ-defines F ; see Barendregt [4] (Chapter 8, Lemma 8.4.6).
To prove closure under minimization, the Turing fixed-point combinator and the combi-

nators

J = λfxx1 · · ·xn. if IsZerobGxx1 · · ·xn then x else f(Succb x)x1 · · ·xn
H = ΘJ

F = λx1 . . . xn. Hb0 x1 . . . xn,

can be used, because when f(m1, . . . ,mn) is undefined, there is an infinite quasi-leftmost
reduction from Fbm1 · · ·bmn , and this implies that Fbm1 · · ·bmn has no β-normal form,
which in turn implies that it has no head normal form; see Barendregt [4] (Chapter 8,
Lemma 8.4.10 and 8.4.11).

5.9 Definability of Functions in Typed Lambda-Calculi

This section relies on material from Section 2.14 that the reader may want to review.
In the pure λ-calculus, some λ-terms have no β-normal form, and worse, it is undecidable

whether a λ-term has a β-normal form. In contrast, by Theorem 2.12, every raw λ-term
that type-checks in the simply-typed λ-calculus has a β-normal form. Thus it is natural to
ask whether the natural numbers are definable in the simply-typed λ-calculus because if the
answer is positive, then the numerical functions definable in the simply-typed λ-calculus are
guaranteed to be total.

This indeed possible. If we pick any base type σ, then we can define typed Church
numerals cn as terms of type Natσ = (σ → σ)→ (σ → σ), by

cn = λf : (σ → σ). λx : σ. fn(x).

The notion of λ-definable function is defined just as before. Then we can define Add and
Mult as terms of type Natσ → (Natσ → Natσ) essentially as before, but surprise, not
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much more is definable. Among other things, strong typing of terms restricts the iterator
combinator too much. It was shown by Schwichtenberg and Statman that the numerical
functions definable in the simply-typed λ-calculus are the extended polynomials; see Statman
[58] and Troelstra and Schwichtenberg [61].

Definition 5.28. The extended polynomials are the smallest class of numerical functions
closed under composition containing

1. The constant functions 0 and 1.

2. The projections.

3. Addition and multiplication.

4. The function IsZeroc.

Is there a way to get a larger class of total functions?
There are indeed various ways of doing this. One method is to add the natural numbers

and the booleans as data types to the simply-typed λ-calculus, and to also add product
types, an iterator combinator, and some new reduction rules. This way we obtain a system
equivalent to Gödel’s system T . A large class of numerical total functions containing the
primitive recursive functions is definable in this system; see Girard–Lafond–Taylor [23].
Although theoretically interesting, this is not a practical system.

Another wilder method is to add more general types to the simply-typed λ-calculus,
the so-called second-order types or polymorphic types . In addition to base types, we allow
type variables (often denoted X, Y, . . .) ranging over simple types and new types of the form
∀X. σ.3

Definition 5.29. The second-order types (or polymorphic types) σ are defined inductively
as follows.

(1) If Ti is a base type, then Ti is a polymorphic type, and if X is a type variable, then
X is a polymorphic type.

(2) If σ and τ are polymorphic types, then (σ → τ) is a polymorphic type.

(3) If σ is a polymorphic type and X is a type variable, then ∀X. σ is a polymorphic type.

Since second-order types may contain type variables bound by the quantfier ∀, we have
a notion of free and bound type variable. Formally, the definition is similar to Definition 5.4

Definition 5.30. For any second-order type σ, the set FV (σ) of free variables of σ and the
set BV (σ) of bound variables in σ are defined inductively as follows.

3Barendregt and others used Greek letters to denote type variables but we find this confusing.
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(1) If σ = X (a type variable), then

FV (X) = {X}, BV (X) = ∅.

(2) If σ = Ti (a base type), then

FV (Ti) = ∅, BV (Ti) = ∅.

(3) If σ = (σ1 → σ2), then

FV (σ) = FV (σ1) ∪ FV (σ2), BV (σ) = BV (σ1) ∪BV (σ2).

(4) if σ = ∀X. σ1, then

FV (σ) = FV (σ1)− {X}, BV (σ) = BV (σ1) ∪ {X}.

If X ∈ FV (σ1), we say that the occurrences of the variable X occur in the scope of ∀.

A type σ is closed if FV (σ) = ∅, that is, if it has no free variables.

Example 5.33. The type ∀X. (X → X) is such a new type, and so is

∀X. (X → ((X → X)→ X)).

Actually, the second-order types that we just defined are special cases of the QBF (quan-
tified boolean formulae) arising in complexity theory restricted to implication and universal
quantifiers; see Section 14.3. Remarkably, the other connectives ∧,∨,¬ and ∃ are definable
in terms of → (as a logical connective, ⇒) and ∀; see Proposition 5.20 and Troelstra and
Schwichtenberg [61] (Chapter 11).

The type
Nat = ∀X. (X → ((X → X)→ X)).

can be chosen to represent the type of the natural numbers. The type of the natural numbers
can also be chosen to be

∀X. ((X → X)→ (X → X)).

This makes essentially no difference but the first choice has some technical advantages.
Since the new types may contain type variables, we can substitute types for the variables

occurring free in a type σ.

Definition 5.31. Given any second-order type σ and any substitution ϕ = [X1 := σ1, . . .,
Xn := σn] where X1, . . . , Xn are type variables and σ1, . . . , σn are second-order types we
define the second-order type σ[ϕ], the result of applying the substitution ϕ to σ, as follows.

(1) If σ = Y , with Y 6= Xi for i = 1, . . . , n, then σ[ϕ] = Y = σ.

(2) If σ = Xi for some i ∈ {1, . . . , n}, then σ[ϕ] = σi.
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(3) If σ = Ti (a base type), then σ[ϕ] = Ti = σ.

(4) If σ = (σ1 → σ2), then σ[ϕ] = (σ1[ϕ]→ σ2[ϕ]).

(5) If σ = ∀X. σ1 and X 6= Xi for i = 1, . . . , n, then σ[ϕ] = ∀X. σ1[ϕ],

(6) If σ = ∀X. σ1 and X = Xi for some i ∈ {1, . . . , n}, then σ[ϕ] = ∀X. σ1[ϕ]−Xi .

The type σ is safe for the substitution ϕ = [X1 := σ1, . . . , Xn := σn] if BV (σ) ∩ (FV (σ1) ∪
· · · ∪ FV (σn)) = ∅, that is, if the free variables in the substitution terms σi do not become
bound.

As in the case of λ-terms, given a second-order type σ, the bound variables in BV (σ)
can be renamed so that σ is safe when applying a substitution to it. Technically this can
be achieved by adapting the notion of α-conversion given in Definition 5.8 to second-order
types. We leave it to the reader to carry out the details.

The new λ terms involving second-order types are defined as follows.

Definition 5.32. The polymorphic raw λ-terms (or second-order raw λ-terms) are defined
inductively as follows.

(1) If xi is a term variable, then xi is a raw term.

(2) If M and N are raw terms, then (MN) is a raw term called an application.

(3) If M is a raw term, σ is a polymorphic type, and x is a variable, then the expression
(λx : σ.M) is a raw term called a λ-abstraction.

(4) If M is a raw term and X is a type variable, then ΛX.M is a raw term called a
Λ-abstraction.

(5) If M is a raw term and τ is a polymorphic type, them (Mτ) is a raw term called a
type application.

As usual, to simplify notation, we may omit parentheses. Besides the type-checking rules
of Definition 2.19, we need two new type-checking rules having to do with terms of the form
ΛX.M and Mτ .

Since the new λ-terms may contain type variables, the notion of free and bound type
variable occurring in a polymorphic λ-term arises.

Definition 5.33. For any polymorphic λ-term M , the set FV T (M) of free type variables
of M and the set BV T (M) of bound type variables in M are defined inductively as follows.

(1) If M = x, a term variable, then

FV T (x) = ∅, BV T (x) = ∅.
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(2) If M = (M1M2), then

FV T (M) = FV T (M1) ∪ FV T (M2), BV T (M) = BV T (M1) ∪BV T (M2).

(3) if M = (λx : σ.M1), then

FV T (M) = FV T (M1) ∪ FV (σ), BV T (M) = BV T (M1) ∪BV (σ).

(4) if M = (ΛX.M1), then

FV T (M) = FV T (M1)− {X}, BV T (M) = BV T (M1) ∪ {X}.

If X ∈ FV T (M1), we say that the occurrences of the variable X occur in the scope of
Λ.

(5) If M = (M1τ), then

FV T (M) = FV T (M1) ∪ FV (τ), BV T (M) = BV T (M1) ∪BV T (τ).

We can also substitute types for the type variables occurring free in a term M .

Definition 5.34. Given any polymorphic λ-term M and any type substitution ϕ = [X1 :=
σ1, . . . , Xn := σn], we define the λ-term M [ϕ], the result of applying the substitution ϕ to M ,
as follows.

(1) If M = x, a term variable, then M [ϕ] = x = M .

(2) If M = (PQ), then M [ϕ] = (P [ϕ]Q[ϕ]).

(3) If M = λx : σ.N , then M [ϕ] = λx : σ[ϕ]. N [ϕ],

(4) If M = ΛX.N and X 6= Xi for i = 1, . . . , n, then M [ϕ] = ΛX.N [ϕ].

(5) If M = ΛX.N and X = Xi for some i ∈ {1, . . . , n}, then M [ϕ] = ΛX.N [ϕ]−Xi .

(6) If M = M1τ , then M [ϕ] = M1[ϕ]τ [ϕ].

The term M is safe for the substitution ϕ = [X1 := σ1, . . . , x = Xn := σn] if BV T (M) ∩
(FV (σ1) ∪ · · · ∪ FV (σn)) = ∅, that is, if the free type variables in the substitution terms σi
do not become bound.

As usual, before applying a type substitution to a polymorphic term M , we rename the
bound type variables in M so that M is safe for the type substitution.

Example 5.34. We have(
λf : (X → X). λx : X.λg : ∀Y. (Y → Y ). gX (fx)

)
[X := τ ]

= λf : (τ → τ). λx : τ. λg : ∀Y. (Y → Y ). gτ (fx).
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Definition 5.35. We have the following type-checking rules (typing rules).

Γ . M : σ

Γ . (ΛX.M) : ∀X. σ (type abstraction)

provided that X does not occur free in any of the types in Γ, and

Γ . M : ∀X. σ
Γ . (Mτ) : σ[X := τ ]

(type application)

where τ is any type and σ is safe for the substitution [X := τ ], namely BV (σ)∩FV (τ) = ∅.
We also have a new reduction rule

(ΛX.M)σ −→β∀ M [X := σ]

that corresponds to a new form of redundancy in proofs having to do with a ∀-elimination
immediately following a ∀-introduction. Here in the substitution M [X := τ ], we assume
that M is safe for the substitution [X := τ ], namely BV T (M) ∩ FV (τ) = ∅).

From the point of view where types are viewed as propositions and λ-terms are viewed as
proofs, type abstraction is an introduction rule and type application is an elimination rule,
both for the second-order quantifier ∀.
Definition 5.36. Besides the inference rules of Definition 2.4 for intuitionistic propositional
logic, the inference rules dealing with second-order quantified propositions are listed below.

Γ→ σ

Γ→ ∀X. σ (∀X-intro)

provided that X does not occur free in any of the types in Γ, and

Γ→ ∀X. σ
Γ→ σ[X := τ ]

(∀X-elim)

where τ is any type and σ is safe for the substitution [X := τ ],
In order to avoid a clash with the separator symbol → used in a sequent, we replace the

type constructor → by ⇒ in all the types. Namely, we view a type as a proposition. The
inference rules of Definition 2.4 together with the rules of Definition 5.36 define the proof
system of intuitionistic second-order propositional logic.

For more technical details, see Gallier [19].
The intuition behind terms of type ∀X. σ is that a term M of type ∀X. σ is a sort of

generic function such that for any type τ , the function Mτ is a specialized version of type
σ[X := τ ] of M .

For example, M could be the function that appends an element to a list, and for specific
types such as the natural numbers Nat, strings String, trees Tree, etc., the functions MNat,
MString, MTree, are the specialized versions of M to lists of elements having the specific
data types Nat, String,Tree.
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Definition 5.37. The typed λ-calculus specified by Definitions 5.29, 5.32 and 5.35 is called
the second-order polymorphic lambda calculus . It was invented by Girard (1972) who named

it system F ; see Girard [24, 25], and it is denoted λ2 by Barendregt. We define
+−→λ2 and

∗−→λ2 as the relations

+−→λ2 = (−→β ∪ −→β∀)
+

∗−→λ2 = (−→β ∪ −→β∀)
∗.

A variant of system F was also introduced independently by John Reynolds (1974) but
for very different reasons.

Observe that self-application terms of the form (MM) do not type-check in system F.
The type-checking rules prevent this to happen. In particular, the fixed-point combinators
Y and Θ do not type-check in system F. However any term M that type-checks can be
applied to any type τ .

From the point of view of logic, Girard’s system is a proof system for intuitionistic second-
order propositional logic. The Curry–Howard isomorphism extends to system F, in the sense
that second-order propositions built up using implication and universal quantification over
propositional variables correspond to second-order types built up using the arrow constructor
and universal quantification over type variables. More importantly, a deduction tree of
Γ→ P using the proof rules corresponds to a type-checking derivation of Γ . M : σ using
the type-checking rules, where the type σ is obtained from P by replacing ⇒ by →, and
the polymorphic λ-term M is a term representation of the proof tree of Γ→ P . Also, given
a type-checking derivation of Γ . M : σ using the type-checking rules, a proof of Γ→ P
is immediately obtained by erasing the lambda-terms and converting σ to P . By abuse of
language, a type-checking derivation is often referred to as a proof.

Example 5.35. Since Nat = ∀X.
(
X → ((X → X) → X

)
, for any n of type Nat and

any second-order type σ, the type application rule of Definition 5.35 yields the following
derivation

n : Nat . n : ∀X.
(
X → ((X → X)→ X

)
n : Nat . nσ :

(
X → ((X → X)→ X

)
[X := σ] = σ → ((σ → σ)→ σ)

which shows that nσ has type σ → ((σ → σ)→ σ).
In particular, nX has type X → ((X → X)→ X).

Example 5.36. If σ is any base type, we have the closed term

Aσ = λx : σ. λf : (σ → σ). fx.

We determine its type by applying the typing rules. We have the type-checking derivation

f : σ → σ . f : σ → σ x : σ . x : σ

x : σ, f : σ → σ . fx : σ

x : σ . λf : (σ → σ). fx : (σ → σ)→ σ

. λx : σ. λf : (σ → σ). fx : σ → ((σ → σ)→ σ)
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which shows that Aσ has type σ → ((σ → σ)→ σ).
The corresponding proof of the proposition σ ⇒ ((σ ⇒ σ)⇒ σ) is given below.

f : σ ⇒ σ → σ ⇒ σ x : σ → σ

x : σ, f : σ ⇒ σ → σ

x : σ → (σ ⇒ σ)⇒ σ

→ σ ⇒ ((σ ⇒ σ)⇒ σ)

The λ-term λx : σ. λf : (σ → σ). fx is a term representation of the above proof of the propo-
sition σ ⇒ ((σ ⇒ σ)⇒ σ).

For every term F of type σ → σ and every term a of type σ, we have

AσaF
+−→λ2 Fa.

Since Aσ has the same behavior for all types σ, it is natural to define the generic function
A given by

A = ΛX.λx : X.λf : (X → X). fx,

We have the type checking proof

f : X → X . f : X → X x : X . x : X

x : X, f : X → X . fx : X

x : X . λf : (X → X). fx : (X → X)→ X

. λx : X.λf : (X → X). fx : X → ((X → X)→ X)

. ΛX.λx : X.λf : (X → X). fx : ∀X.
(
X → ((X → X)→ X)

)
which shows that A has type Nat = ∀X. (X → ((X → X)→ X)).

The term Aσ has the same behavior as Aσ. We will see shortly that A is the Church
numeral c1 in λ2 as defined below.

Remarkably, system F is strongly normalizing , which means that every λ-term typable in
system F has a β-normal form. The proof of this theorem is hard and was one of Girard’s
accomplishments in his dissertation, Girard [25]. The Church–Rosser property also holds
for system F. The proof technique used to prove that system F is strongly normalizing is
thoroughly analyzed in Gallier [19].

We stated earlier that deciding whether a simple type σ is provable, that is, whether
there is a closed λ-term M that type-checks in the simply-typed λ-calculus such that the
judgement .M : σ is provable is a hard problem. Indeed Statman proved that this problem
is P-space complete; see Statman [57] and Section 14.4.

It is natural to ask whether it is decidable whether given any second-order type σ, there
is a closed λ-term M that type-checks in system F such that the judgement . M : σ is
provable (if σ is viewed as a second-order logical formula, the problem is to decide whether σ
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is provable). Surprisingly the answer is no; this problem (called inhabitation) is undecidable.
This result was proven by Löb around 1976, see Barendregt [5].

This undecidability result is troubling and at first glance seems paradoxical. Indeed,
viewed as a logical formula, a second-order type σ is a QBF (a quantified boolean formula),
and if we assign the truth values F and T to the boolean variables in it, we can decide
whether such a proposition is valid in exponential time and polynomial space (in fact, we
will see that later QBF validity is P-space complete). This seems in contradiction with the
fact that provability is undecidable.

But the proof system corresponding to system F is an intuitionistic proof system, so
there are (non-quantifed) propositions that are valid in the truth-value semantics but not
provable in intuitionistic propositional logic. The set of second-order propositions provable
in intuitionistic second-order logic is a proper subset of the set of valid QBF (under the
truth-value semantics), and it is not computable. So there is no paradox after all.

That system F is significantly more complex that the simply-typed λ-calculus is also
illustrated by the fact that type checking and typability in system F are equivalent and
undecidable; see Wells [63]. These two problems are decidable for the simply-typed λ-
calculus; see Section 2.14.

Going back to the issue of computability of numerical functions, a version of the Church
numerals can be defined as

cn = ΛX.λx : X.λf : (X → X). fn(x). (∗c1)

From the derivation

f : X → X . f : X → X x : X . x : X

x : X, f : X → X . fx : X

we deduce that

x : X, f : X → X . fn(x) : X,

and then we have the type derivation

x : X, f : X → X . fn(x) : X

x : X . λf : (X → X). fn(x) : (X → X)→ X

. λx : X.λf : (X → X). fn(x) : X → ((X → X)→ X)

. ΛX.λx : X.λf : (X → X). fn(x) : ∀X.
(
X → ((X → X)→ X)

)
which shows that cn has type Nat. Also note that variables x and f now appear in the order
x, f in the λ-binder, as opposed to f, x as in Definition 5.14.

Inspired by the definition of Succ given in Section 5.4, we can define the successor
function on the natural numbers as

Succ = λn : Nat.ΛX.λx : X.λf : (X → X). f(nX xf).
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Abbreviating X → X as Y , we have the derivation

f : Y . f : X → X

n : Nat . n : Nat

n : Nat . nX : X → ((X → X)→ X) x : X . x : X

n : Nat, x : X . nXx : ((X → X)→ X) f : Y . f : X → X

n : Nat, x : X, f : X → X . nXxf : X

n : Nat, x : X, f : X → X . f(nXxf) : X

n : Nat, x : X . λf : (X → X). f(nXxf) : (X → X)→ X

n : Nat . λx : X.λf : (X → X). f(nXxf) : X → ((X → X)→ X)

n : Nat . ΛX.λx : X.λf : (X → X). f(nXxf) : ∀X.
(
X → ((X → X)→ X)

)
. λn : Nat.ΛX.λx : X.λf : (X → X). f(nXxf) : Nat→ Nat

which shows that Succ has type Nat→ Nat.
For every type σ, every term F of type σ → σ and every term a of type σ, we have

cnσ aF =
(
ΛX.λx : X.λf : (X → X). fn(x)

)
σ aF

+−→λ2

(
λx : σ. λf : (σ → σ). fn(x)

)
aF

+−→λ2 F
n(a);

that is,

cnσ aF
+−→λ2 F

n(a). (∗c2)

So cnσ iterates F n times starting with a. As a consequence,

Succ cn =
(
λn : Nat.ΛX.λx : X.λf : (X → X). f(nX xf)

)
cn

+−→λ2 ΛX.λx : X.λf : (X → X). f(cnX xf)
+−→λ2 ΛX.λx : X.λf : (X → X). f(fn(x))

= ΛX.λx : X.λf : (X → X). fn+1(x) = cn+1.

We can also define addition of natural numbers as

Add = λm : Nat. λn : Nat.ΛX.λx : X.λf : (X → X).
(
mX (nX xf)

)
f.

We already proved that the following judgement is provable:

n : Nat, x : X, f : X → X . nXxf : X.

Abbreviating X → X as Y , we also have the derivation



5.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 291

m : Nat . m : Nat

m : Nat . mX : X → ((X → X)→ X) n : Nat, x : X, f : Y . nXxf : X

m : Nat, n : Nat, x : X, f : Y . mX(nXxf) : (X → X)→ X f : Y . f : X → X

m : Nat, n : Nat, x : X, f : X → X . (mX(nXxf))f : X

and by abstraction (four times), we deduce that Add has type Nat→ (Nat→ Nat).

Using (∗c2), we have

Add cm cn
+−→β ΛX.λx : X.λf : (X → X).

(
cmX (cnX xf)

)
f

+−→β ΛX.λx : X.λf : (X → X). cmX (fn(x))f
+−→β ΛX.λx : X.λf : (X → X). fm(fn(x))

= ΛX.λx : X.λf : (X → X). fm+n(x) = cm+n.

Multiplication is defined by the following term:

Mult = λm : Nat. λn : Nat.ΛX.λx : X.λf : (X → X).mXx
(
λy : X. (nXyf)

)
.

Using (∗c2), we have the reduction

Mult cm cn
+−→β ΛX.λx : X.λf : (X → X). cmXx

(
λy : X. (cnXyf)

)
+−→β ΛX.λx : X.λf : (X → X). cmXx

(
λy : X. (fn(y))

)
+−→β ΛX.λx : X.λf : (X → X).

(
λy : X. (fn(y))

)m
(x).

To finish the argument we need to prove that(
λy : X. (fn(y))

)m
(x)

+−→β f
mn(x).

We leave it as an exercise to finish the proof by induction on m.

Many of the constructions that can be performed in the pure λ-calculus can be mimicked
in system F, which explains its expressive power.

For example, for any two second-order types σ and τ , we can define a pairing function
〈−,−〉 (to be very precise, 〈−,−〉σ,τ ) given by

〈−,−〉σ,τ = λu : σ. λv : τ.ΛX.λf : σ → (τ → X). fuv.

We have the derivation
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f : σ → (τ → X) . f : σ → (τ → X) u : σ . u : σ

f : σ → (τ → X), u : σ . fu : τ → X v : τ . u : τ

f : σ → (τ → X), u : σ, v : τ . fuv : X

u : σ, v : τ . λf : σ → (τ → X). fuv : (σ → (τ → X))→ X

u : σ, v : τ . ΛX.λf : σ → (τ → X). fuv : ∀X. ((σ → (τ → X))→ X)

u : σ . λv : τ.ΛX.λf : σ → (τ → X). fuv : τ →
(
∀X. ((σ → (τ → X))→ X)

)
. λu : σ. λv : τ.ΛX.λf : σ → (τ → X). fuv : σ →

(
τ →

(
∀X. ((σ → (τ → X))→ X)

))
It follows that 〈−,−〉σ,τ has the type σ →

(
τ →

(
∀X. ((σ → (τ → X))→ X)

))
. Given any

term M of type σ and any term N of type τ , we have

〈−,−〉σ,τMN
∗−→λ2 ΛX.λf : σ → (τ → X). fMN.

Thus we define 〈M,N〉 as

〈M,N〉 = ΛX.λf : σ → (τ → X). fMN,

and the type

∀X. ((σ → (τ → X))→ X)

of 〈M,N〉 is denoted by σ × τ . As a logical formula it is equivalent to σ ∧ τ , which means
that if we view σ and τ as (second-order) propositions, then

σ ∧ τ ≡ ∀X. ((σ → (τ → X))→ X)

is provable intuitionistically. This is a special case of the result that we mentioned earlier:
the connectives ∧,∨,¬ and ∃ are definable in terms of → (as a logical connective, ⇒) and
∀.

Proposition 5.20. The connectives ∧,∨,¬,⊥ and ∃ are definable in terms of → and ∀,
which means that the following equivalences are provable intuitionistically, where X is not
free in σ or τ :

σ ∧ τ ≡ ∀X.
(
(σ ⇒ (τ ⇒ X))⇒ X

)
σ ∨ τ ≡ ∀X.

(
(σ ⇒ X)⇒ ((τ ⇒ X)⇒ X)

)
⊥ ≡ ∀X.X
¬σ ≡ σ ⇒ ∀X.X
∃Y. σ ≡ ∀X.

(
(∀Y. (σ ⇒ X))⇒ X

)
.

Proof. Here is a proof of (σ ∧ τ)⇒
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
.
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x : (σ ⇒ (τ ⇒ X))→ (σ ⇒ (τ ⇒ X))

y : σ ∧ τ → σ ∧ τ
y : σ ∧ τ → σ

x : (σ ⇒ (τ ⇒ X)), y : σ ∧ τ → (τ ⇒ X)

y : σ ∧ τ → σ ∧ τ
y : σ ∧ τ → τ

x : (σ ⇒ (τ ⇒ X)), y : σ ∧ τ → X

y : σ ∧ τ →
(
(σ ⇒ (τ ⇒ X))⇒ X

)
y : σ ∧ τ → ∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

)
→ (σ ∧ τ)⇒ ∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

)
Here is now a deduction of σ from the premise

(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
using the

(∀X-elim) rule with the substitution [X := σ].

x :
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
→
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
x :
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
→
(
(σ ⇒ (τ ⇒ σ))⇒ σ

)
y : σ, z : τ → σ

y : σ → τ ⇒ σ

→ σ ⇒ (τ ⇒ σ)

x :
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
→ σ

Similarly, here is a deduction of τ from the premise
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
using

the (∀X-elim) rule with the substitution [X := τ ].

x :
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
→
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
x :
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
→
(
(σ ⇒ (τ ⇒ τ))⇒ τ

)
y : σ, z : τ → τ

y : σ → τ ⇒ τ

→ σ ⇒ (τ ⇒ τ)

x :
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
→ τ

Applying the ∧-introduction rule to these two deductions, we get

x :
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
→ σ x :

(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
→ τ

x :
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
→ σ ∧ τ

→
(
∀X.

(
(σ ⇒ (τ ⇒ X))⇒ X

))
⇒ (σ ∧ τ)

Here is now a proof of
(
∀X.

(
(σ ⇒ X) ⇒ ((τ ⇒ X) ⇒ X)

))
⇒ (σ ∨ τ). Let us

abbreviate
(
∀X.

(
(σ ⇒ X)⇒ ((τ ⇒ X)⇒ X)

))
as Y . We use the (∀X-elim) rule with the

substitution [X := σ ∨ τ ].



294 CHAPTER 5. THE LAMBDA-CALCULUS

x : Y → ∀X.
(
(σ ⇒ X)⇒ ((τ ⇒ X)⇒ X)

)
x : Y →

(
(σ ⇒ (σ ∨ τ))⇒ ((τ ⇒ (σ ∨ τ))⇒ (σ ∨ τ)

)
y : σ → σ

y : σ → σ ∨ τ
→ σ ⇒ (σ ∨ τ)

x : Y → (τ ⇒ (σ ∨ τ))⇒ (σ ∨ τ)

z : τ → τ

z : τ → σ ∨ τ
→ τ ⇒ (σ ∨ τ)

x : Y → (σ ∨ τ)

→
(
∀X.

(
(σ ⇒ X)⇒ ((τ ⇒ X)⇒ X)

))
⇒ (σ ∨ τ)

For the converse, we have the following proof.

x : σ ∨ τ → σ ∨ τ
y : σ ⇒ X → σ ⇒ X u : σ → σ

y : σ ⇒ X, u : σ → X

z : τ ⇒ X → τ ⇒ X v : τ → τ

z : τ ⇒ X, v : τ → X

x : σ ∨ τ, y : σ ⇒ X, z : τ ⇒ X → X

x : σ ∨ τ, y : σ ⇒ X → ((τ ⇒ X)⇒ X)

x : σ ∨ τ → (σ ⇒ X)⇒ ((τ ⇒ X)⇒ X)

x : σ ∨ τ → ∀X.
(
(σ ⇒ X)⇒ ((τ ⇒ X)⇒ X)

)
→ (σ ∨ τ)⇒

(
∀X.

(
(σ ⇒ X)⇒ ((τ ⇒ X)⇒ X)

))
We leave the proof of the other equivalences as an exercise. Actually, technically we

need to add existentially quantified second-order formulae of the form ∃X. σ, where σ is any
second-order formula and X is a type variable, as well as the following proof rules which are
analogous to the rules used in first-order logic given in Definition 2.32.

Γ→ σ[X := τ ]

Γ→ ∃X. σ (∃-intro)
Γ→ ∃X. σ z : σ[X := Y ],∆→ C

Γ ∪∆→ C
(∃-elim),

where in (∃-elim), z : σ[X := τ ] /∈ ∆, and Y does not occur free in Γ, ∃X. σ, or C.

By renaming of variable we may assume that X be a variable distinct from Y and not

free in σ. A proof that ∃Y. σ ⇒
(
∀X.

(
(∀Y. (σ ⇒ X))⇒ X

))
is shown below.

x : ∃Y. σ → ∃Y. σ
y : σ[Y := X]→ σ[Y := X]

z : ∀Y. (σ ⇒ X)→ ∀Y. (σ ⇒ X)

z : ∀Y. (σ ⇒ X)→ σ[Y := X]⇒ X

y : σ[Y := X], z : ∀Y. (σ ⇒ X)→ X

x : ∃Y. σ, z : ∀Y. (σ ⇒ X)→ X

x : ∃Y. σ → (∀Y. (σ ⇒ X))⇒ X

x : ∃Y. σ → ∀X.
(
(∀Y. (σ ⇒ X))⇒ X

)
→ ∃Y. σ ⇒

(
∀X.

(
(∀Y. (σ ⇒ X))⇒ X

))
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To prove the converse we first use the rule (∀X-elim) with the substitution [X := σ] and
then the (∃-intro) rule. The details are left as an exercise.

Remark: Negation can also be defined as

¬σ ≡ ∀X. (σ ⇒ X).

We also have two projections π1 and π2 (to be very precise πσ×τ1 and πσ×τ2 ) given by

π1 = λg : σ × τ. gσ(λx : σ. λy : τ. x)

π2 = λg : σ × τ. gτ(λx : σ. λy : τ. y).

It is easy to check that π1 has type (σ × τ) → σ and that π2 has type (σ × τ) → τ . The
reader should check that for any M of type σ and any N of type τ we have

π1〈M,N〉 +−→λ2 M and π2〈M,N〉 +−→λ2 N.

Example 5.37. We have

π1〈M,N〉 =
(
λg : σ × τ. gσ(λx : σ. λy : τ. x)

)(
ΛX.λf : σ → (τ → X). fMN

)
+−→λ2

(
ΛX.λf : σ → (τ → X). fMN

)
σ(λx : σ. λy : τ. x)

+−→λ2

(
λf : σ → (τ → σ). fMN

)
(λx : σ. λy : τ. x)

+−→λ2 (λx : σ. λy : τ. x)MN
+−→λ2 (λy : τ.M)N
+−→λ2 M.

The booleans can be defined as

T = ΛX.λx : X.λy : X. x

F = ΛX.λx : X.λy : X. y,

both of type Bool = ∀X. (X → (X → X)). We also define if then else as

if then else = ΛX.λz : Bool. zX

of type ∀X.
(
Bool→ (X → (X → X))

)
.

It is easy that for any type σ and any two terms M and N of type σ we have

(if T thenM elseN)σ
+−→λ2 M

(if F thenM elseN)σ
+−→λ2 N,

where we write (if T thenM elseN)σ instead of (if then else) σTMN (and similarly for the
other term).
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Example 5.38. We have

(if T thenM elseN)σ =
(
ΛX.λz : Bool. zX

)
σTMN

+−→λ2

(
λz : Bool. zσ

)
TMN

+−→λ2

(
Tσ
)
MN

=
((

ΛX.λx : X.λy : X. x
)
σ
)
MN

+−→λ2

(
λx : σ. λy : σ. x

)
MN

+−→λ2 M.

Lists, trees, and other inductively data stuctures are also representable in system F; see
Girard–Lafond–Taylor [23].

We can also define an iterator Iter given by

Iter = ΛX.λu : X.λf : (X → X). λz : Nat. zX uf

of type ∀X. (X → ((X → X)→ (Nat→ X))). The idea is that given f of type σ → σ and
u of type σ, the term Iterσ ufcn iterates f n times over the input u.

It is easy to show that for any term t of type Nat we have

Iterσ ufc0
+−→λ2 u

Iterσ uf(Succc t)
∗←→λ2 f(Iterσ uft),

and that
Iterσ ufcn

+−→λ2 f
n(u).

Then mimicking what we did in the pure λ-calculus, we can show that the primitive
recursive functions are λ-definable in system F (using the iterator operator, not the fixed-
point combinator Θ, which does not type-check in system F). Actually, higher-order primitive
recursion is definable. So, for example, Ackermann’s function is definable.

Remarkably, the class of numerical functions definable in system F is a class of (total)
computable functions much bigger than the class of primitive recursive functions. This class
of functions was characterized by Girard as the functions that are provably-recursive in a
formalization of arithmetic known as intuitionistic second-order arithmetic; see Girard [25],
Troelstra and Schwichtenberg [61] and Girard–Lafond–Taylor [23]. It can also be shown
(using a diagonal argument) that there are (total) computable functions not definable in
system F.

From a theoretical point of view, every (total) function that we will ever want to compute
is definable in system F. However, from a practical point of view, programming in system F
is very tedious and usually leads to very inefficient programs. Nevertheless polymorphism is
an interesting paradigm which had made its way in certain programming languages.

Type systems even more powerful than system F have been designed, the ultimate system
being the calculus of constructions due to Huet and Coquand, but these topics are beyond
the scope of these notes.
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One last comment has to do with the use of the simply-typed λ-calculus as a the core of a
programming language. In the early 1970’s Dana Scott defined a system named LCF based
on the simply-typed λ-calculus and obtained by adding the natural numbers and the booleans
as data types, product types, and a fixed-point operator. Robin Milner then extended LCF,
and as a by-product, defined a programming language known as ML, which is the ancestor
of most functional programming languages. A masterful and thorough exposition of type
theory and its use in programming language design is given in Pierce [48].
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Chapter 6

Universal RAM Programs and
Undecidability of the Halting Problem

The goal of this chapter is to prove three of the main results of computability theory:

(1) The undecidability of the halting problem for RAM programs (and Turing machines).

(2) The existence of universal RAM programs.

(3) The existence of the Kleene T -predicate.

All three require the ability to code a RAM program as a natural number. Gödel pio-
neered the technique of encoding objects such as proofs as natural numbers in his famous
paper on the (first) incompleteness theorem (1931). One of the technical issues is to code
(pack) a tuple of natural numbers as a single natural number, so that the numbers being
packed can be retrieved. Gödel designed a fancy function whose defintion does not involve
recursion (Gödel’s β function; see Kleene [36] or Shoenfield [56]). For our purposes, a simpler
function J due to Cantor packing two natural numbers m and n as a single natural number
J(m,n) suffices.

Another technical issue is the fact it is possible to reduce most of computability theory
to numerical functions f : Nm → N, and even to functions f : N → N. Indeed, there are
primitive recursive coding and decoding functions Dk : Σ∗ → N and Ck : N → Σ∗ such that
Ck ◦Dk = idΣ∗ , where Σ = {a1, . . . , ak}. It is simpler to code programs (or Turing machines)
taking natural numbers as input.

Unfortunately, these coding techniques are very tedious so we advise the reader not to
get bogged down with technical details upon first reading.

6.1 Pairing Functions

Pairing functions are used to encode pairs of integers into single integers, or more generally,
finite sequences of integers into single integers. We begin by exhibiting a bijective pairing

299
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function J : N2 → N. The function J has the graph partially showed below:

y
4 10

↘
3 6 11

↘ ↘
2 3 7 12

↘ ↘ ↘
1 1 4 8 13

↘ ↘ ↘ ↘
0 0 2 5 9 14

0 1 2 3 4 x

The function J corresponds to a certain way of enumerating pairs of integers (x, y). Note
that the value of x + y is constant along each descending diagonal, and consequently, we
have

J(x, y) = 1 + 2 + · · ·+ (x+ y) + x,

= ((x+ y)(x+ y + 1) + 2x)/2,

= ((x+ y)2 + 3x+ y)/2,

that is,
J(x, y) = ((x+ y)2 + 3x+ y)/2.

For example, J(0, 3) = 6, J(1, 2) = 7, J(2, 2) = 12, J(3, 1) = 13, J(4, 0) = 14.

If we can prove can J is a bijection, then we can define K : N→ N and L : N→ N as the
projection functions onto the axes, that is, the unique functions such that

K(J(a, b)) = a and L(J(a, b)) = b,

for all a, b ∈ N. For example, K(11) = 1, and L(11) = 3; K(12) = 2, and L(12) = 2;
K(13) = 3 and L(13) = 1.

Definition 6.1. The pairing function J : N2 → N is defined by

J(x, y) = ((x+ y)2 + 3x+ y)/2 for all x, y ∈ N.

The functions K : N→ N and L : N→ N are the projection functions onto the axes, that is,
the unique functions such that

K(J(a, b)) = a and L(J(a, b)) = b,

for all a, b ∈ N.
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The functions J,K, L are called Cantor’s pairing functions . They were used by Cantor
to prove that the set Q of rational numbers is countable.

Clearly, J is primitive recursive, since it is given by a polynomial. In Definition 6.1, we
implicitly assumed that J is bijective in order to define K and L.

Neither injectivity nor surjectivity of J are easy to prove.

Theorem 6.1. The pairing function J : N2 → N defined by

J(x, y) = ((x+ y)2 + 3x+ y)/2 for all x, y ∈ N

is a bijection. There are unique functions K : N→ N and L : N→ N such that

K(J(a, b)) = a

L(J(a, b)) = b

J(K(z), L(z)) = z.

for all a, b, z ∈ N.

Sketch of proof. We follow Martin Davis [9]. The first step is to prove that for any z ∈ N, if
J(m,n) = z, then

8z + 1 = (2m+ 2n+ 1)2 + 8m. (a)

From the above equation we can deduce that

2m+ 2n+ 1 ≤
√

8z + 1 < 2m+ 2n+ 3. (b)

If x 7→ bxc is the function from R to N (the floor function), where bxc is the largest
integer ≤ x (for example, b2.3c = 2, b

√
2c = 1), we can prove that

b
√

8z + 1c+ 1 = 2m+ 2n+ 2 or b
√

8z + 1c+ 1 = 2m+ 2n+ 3,

so that

b(b
√

8z + 1c+ 1)/2c = m+ n+ 1. (c)

From Equation (c) we obtain

m+ n = b(b
√

8z + 1c+ 1)/2c − 1. (d)

Since J(m,n) = z means that

2z = (m+ n)2 + 3m+ n,

that is,

3m+ n = 2z − (m+ n)2, (e)
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we deduce from (d) and (e) that m and n are solutions of the system

m+ n = b(b
√

8z + 1c+ 1)/2c − 1

3m+ n = 2z − (b(b
√

8z + 1c+ 1)/2c − 1)2.

If we let

Q1(z) = b(b
√

8z + 1c+ 1)/2c − 1

Q2(z) = 2z − (b(b
√

8z + 1c+ 1)/2c − 1)2 = 2z − (Q1(z))2,

then we can prove that the number Q2(z)−Q1(z) is even and that

m =
1

2
(Q2(z)−Q1(z)) = K(z)

n = Q1(z)− 1

2
(Q2(z)−Q1(z)) = L(z).

Consequently, if z = J(m,n), then m = K(z) and n = L(z) as above, showing that m and
n are unique and thus that J is injective. The above also proves that J,K, L satisfy the
equations.

m = K(J(m,n))

n = L(J(m,n)).

It remains to prove that J is surjective. Let z ∈ N be any natural number and let r ∈ N
be the largest number such that

1 + 2 + · · ·+ r ≤ z.

If we let
x = z − (1 + 2 + · · ·+ r), (f)

then x ≤ r, since otherwise x ≥ r+ 1, and then (f) implies that 1 + 2 + · · ·+ r+ (r+ 1) ≤ z,
contradicting the maximality of r. Let y = r − x ≥ 0. Then we have

z = (1 + 2 + · · ·+ r) + x

= (1 + 2 + · · ·+ x+ y) + x

=
1

2
(x+ y)(x+ y + 1) + x

= J(x, y).

Therefore J is surjective. But

x =K(J(x, y)) = K(z)

y =L(J(x, y)) = L(z),

so
J(K(z), L(z)) = z,

as claimed.
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Theorem 6.1 yields explicit formulae for K and L. If we define

Q1(z) = b(b
√

8z + 1c+ 1)/2c − 1

Q2(z) = 2z − (Q1(z))2,

then we have

K(z) =
1

2
(Q2(z)−Q1(z))

L(z) = Q1(z)− 1

2
(Q2(z)−Q1(z)).

In the above formula, the function m 7→ b√mc yields the largest integer s such that
s2 ≤ m. These formulae also show that K and L are primitive recursive. An easier way to
see this is to observe that since J is a bijection,

x ≤ J(x, y) and y ≤ J(x, y),

we have
K(z) = min(x ≤ z)(∃y ≤ z)[J(x, y) = z],

and
L(z) = min(y ≤ z)(∃x ≤ z)[J(x, y) = z].

Therefore, by the results of Section 3.9, K and L are primitive recursive.

Observe that the equations K(J(a, b)) = a and L(J(a, b)) = b assert that J is injective
and that the equation J(K(z), L(z)) = z assert that J is surjective, but the problem is that
the definition of J does not obviously imply these properties so it is necessary to construct
K and L as done in the proof of Theorem 6.1.

The pairing function J(x, y) is also denoted as 〈x, y〉, and K and L are also denoted
as Π1 and Π2. The notation 〈x, y〉 is “intentionally ambiguous,” in the sense that it can
be interpreted as the actual ordered pair consisting of the two numbers x and y, or as the
number 〈x, y〉 = J(x, y) that encodes the pair consisting of the two numbers x and y. The
context should make it clear which interpretation is intended. In this chapter and the next,
it is the number (code) interpretation.

We can define bijections between Nn and N by induction for all n ≥ 1.

Definition 6.2. The function 〈−, . . . ,−〉n : Nn → N called an extended pairing function is
defined as follows. We let

〈z〉1 = z

〈x1, x2〉2 = 〈x1, x2〉,

and
〈x1, . . . , xn, xn+1〉n+1 = 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n,

for all z, x2, . . . , xn+1 ∈ N.
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Again we stress that 〈x1, . . . , xn〉n is a natural number . For example.

〈x1, x2, x3〉3 = 〈x1, 〈x2, x3〉〉2
= 〈x1, 〈x2, x3〉〉

〈x1, x2, x3, x4〉4 = 〈x1, x2, 〈x3, x4〉〉3
= 〈x1, 〈x2, 〈x3, x4〉〉〉

〈x1, x2, x3, x4, x5〉5 = 〈x1, x2, x3, 〈x4, x5〉〉4
= 〈x1, 〈x2, 〈x3, 〈x4, x5〉〉〉〉.

It can be shown by induction on n that

〈x1, . . . , xn, xn+1〉n+1 = 〈x1, 〈x2, . . . , xn+1〉n〉. (∗)

Observe that if z = 〈x1, . . . , xn〉n, then x1 = Π1(z), x2 = Π1(Π2(z)), x3 = Π1(Π2(Π2(z))),
x4 = Π1(Π2(Π2(Π2(z)))), x5 = Π2(Π2(Π2(Π2(z)))).

We can also define a uniform projection function Π: N3 → N with the following property:
if z = 〈x1, . . . , xn〉n, with n ≥ 2, then

Π(i, n, z) = xi for all i, where 1 ≤ i ≤ n.

The idea is to view z as an n-tuple, and Π(i, n, z) as the i-th component of that n-tuple, but
if z, n and i do not fit this interpretation, the function must be still be defined and we give
it a “crazy” value by default using some simple primitive recursive clauses.

Definition 6.3. The uniform projection function Π: N3 → N is defined by cases as follows:

Π(i, 0, z) = 0, for all i ≥ 0,

Π(i, 1, z) = z, for all i ≥ 0,

Π(i, 2, z) = Π1(z), if 0 ≤ i ≤ 1,

Π(i, 2, z) = Π2(z), for all i ≥ 2,

and for all n ≥ 2,

Π(i, n+ 1, z) =

Π(i, n, z) if 0 ≤ i < n,
Π1(Π(n, n, z)) if i = n,
Π2(Π(n, n, z)) if i > n.

By the results of Section 3.9, this is a legitimate primitive recursive definition. If z is the
code 〈x1, . . . , xn+1〉n+1 for the (n + 1)-tuple (x1, . . . , xn+1) with n ≥ 2, then for 0 ≤ i < n,
the clause of Definition 6.3 that applies is

Π(i, n+ 1, z) = Π(i, n, z),

and since
〈x1, . . . , xn, xn+1〉n+1 = 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n,
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we have

Π(i, n+ 1, 〈x1, . . . , xn, xn+1〉n+1) = Π(i, n+ 1, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n)

= Π(i, n, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n),

and since 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n codes an n-tuple, for i = 1, . . . , n−1, the value returned
is indeed xi. If i = n, then the clause that applies is

Π(n, n+ 1, z) = Π1(Π(n, n, z)),

so we have

Π(n, n+ 1, 〈x1, . . . , xn, xn+1〉n+1) = Π(n, n+ 1, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n)

= Π1(Π(n, n, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n))

= Π1(〈xn, xn+1〉)
= xn.

Finally, if i = n+ 1, then the clause that applies is

Π(n+ 1, n+ 1, z) = Π2(Π(n, n, z)),

so we have

Π(n+ 1, n+ 1, 〈x1, . . . , xn, xn+1〉n+1) = Π(n+ 1, n+ 1, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n)

= Π2(Π(n, n, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n))

= Π2(〈xn, xn+1〉)
= xn+1.

When i = 0 or i > n+ 1, we get “bogus” values.

Remark: One might argue that it would have been preferable to order the arguments of Π
as (n, i, z) rather than (i, n, z). We use the order (i, n, z) in conformity with Machtey and
Young [43].

Some basic properties of Π are given as exercises. In particular, the following properties
are easily shown:

(a) 〈0, . . . , 0〉n = 0, 〈x, 0〉 = 〈x, 0, . . . , 0〉n;

(b) Π(0, n, z) = Π(1, n, z) and Π(i, n, z) = Π(n, n, z), for all i ≥ n and all n, z ∈ N;

(c) 〈Π(1, n, z), . . . ,Π(n, n, z)〉n = z, for all n ≥ 1 and all z ∈ N;

(d) Π(i, n, z) ≤ z, for all i, n, z ∈ N;

(e) There is a primitive recursive function Large, such that,

Π(i, n+ 1,Large(n+ 1, z)) = z,
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for i, n, z ∈ N.

As a first application, we observe that we need only consider partial computable functions
(partial recursive functions)1 of a single argument. Indeed, let ϕ : Nn → N be a partial
computable function of n ≥ 2 arguments. Let ϕ : N→ N be the function given by

ϕ(z) = ϕ(Π(1, n, z), . . . ,Π(n, n, z)),

for all z ∈ N. Then ϕ is a partial computable function of a single argument, and ϕ can be
recovered from ϕ, since

ϕ(x1, . . . , xn) = ϕ(〈x1, . . . , xn〉n).

Thus, using 〈−, · · · ,−〉n and Π as coding and decoding functions, we can restrict our atten-
tion to functions of a single argument.

From now on, since the context usually makes it clear we abbreviate 〈x1, . . . , xn〉n as
〈x1, . . . , xn〉.

Pairing functions can also be used to prove that certain functions are primitive recursive,
even though their definition is not a legal primitive recursive definition. For example, consider
the Fibonacci function defined as follows:

f(0) = 1,

f(1) = 1,

f(n+ 2) = f(n+ 1) + f(n),

for all n ∈ N. This is not a legal primitive recursive definition, since f(n+ 2) depends both
on f(n+1) and f(n). In a primitive recursive definition, g(y+1, x) is only allowed to depend
upon g(y, x), where x is an abbrevation for (x2, . . . , xm).

Definition 6.4. Given any function f : Nn → N, the function f : Nn+1 → N defined such
that

f(y, x) = 〈f(0, x), . . . , f(y, x)〉y+1

is called the course-of-value function for f .

The following proposition holds.

Proposition 6.2. Given any function f : Nn → N, if f is primitive recursive, then so is f .

Proof. First it is necessary to define a function con such that if x = 〈x1, . . . , xm〉 and y =
〈y1, . . . , yn〉, where m,n ≥ 1, then

con(m,x, y) = 〈x1, . . . , xm, y1, . . . , yn〉.

1The term partial recursive is now considered old-fashion. Many researchers have switched to the term
partial computable.
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This fact is left as an exercise. Now, if f is primitive recursive, let

f(0, x) = f(0, x),

f(y + 1, x) = con(y + 1, f(y, x), f(y + 1, x)),

showing that f is primitive recursive. Conversely, if f is primitive recursive, then

f(y, x) = Π(y + 1, y + 1, f(y, x)),

and so, f is primitive recursive.

Remark : Why is it that

f(y + 1, x) = 〈f(y, x), f(y + 1, x)〉

does not work? Check the definition of 〈x1, . . . , xn〉n.

We define course-of-value recursion as follows.

Definition 6.5. Given any two functions g : Nn → N and h : Nn+2 → N, the function
f : Nn+1 → N is defined by course-of-value recursion from g and h if

f(0, x) = g(x),

f(y + 1, x) = h(y, f(y, x), x).

The following proposition holds.

Proposition 6.3. If f : Nn+1 → N is defined by course-of-value recursion from g and h and
g, h are primitive recursive, then f is primitive recursive.

Proof. We prove that f is primitive recursive. Then by Proposition 6.2, f is also primitive
recursive. To prove that f is primitive recursive, observe that

f(0, x) = g(x),

f(y + 1, x) = con(y + 1, f(y, x), h(y, f(y, x), x)).

When we use Proposition 6.3 to prove that a function is primitive recursive, we rarely
bother to construct a formal course-of-value recursion. Instead, we simply indicate how the
value of f(y + 1, x) can be obtained in a primitive recursive manner from f(0, x) through
f(y, x). Thus, an informal use of Proposition 6.3 shows that the Fibonacci function is
primitive recursive. A rigorous proof of this fact is left as an exercise.

Next we show that there exist coding and decoding functions between Σ∗ and {a1}∗, and
that partial computable functions over Σ∗ can be recoded as partial computable functions
over {a1}∗. Since {a1}∗ is isomorphic to N, this shows that we can restrict out attention to
functions defined over N.
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6.2 Equivalence of Alphabets

Given an alphabet Σ = {a1, . . . , ak}, strings over Σ can be ordered by viewing strings as
numbers in a number system where the digits are a1, . . . , ak. In this number system, which
is almost the number system with base k, the string a1 corresponds to zero, and ak to k− 1.
Hence, we have a kind of shifted number system in base k. The total order on Σ∗ induced
by this number system is defined so that u precedes v if |u| < |v|, and if |u| = |v|, then u
comes before v in the lexicographic ordering. For example, if Σ = {a, b, c}, a listing of Σ∗ in
the ordering corresponding to the number system begins with

a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc,

aaa, aab, aac, aba, abb, abc, . . . .

This ordering induces a function from Σ∗ to N which is a bijection. Indeed, if u = ai1 · · · ain ,
this function f : Σ∗ → N is given by

f(u) = i1k
n−1 + i2k

n−2 + · · ·+ in−1k + in.

Since we also want a decoding function, we define the coding function Ck : Σ∗ → Σ∗ as
follows:

Ck(ε) = ε, and if u = ai1 · · · ain , then

Ck(u) = a
i1kn−1+i2kn−2+···+in−1k+in
1 .

The function Ck is primitive recursive, because

Ck(ε) = ε,

Ck(xai) = Ck(x)kai1.

The inverse of Ck is a function Dk : {a1}∗ → Σ∗. However, primitive recursive functions are
total, and we need to extend Dk to Σ∗. This is easily done by letting

Dk(x) = Dk(a
|x|
1 )

for all x ∈ Σ∗. It remains to define Dk by primitive recursion over Σ∗ = {a1, . . . , ak}∗. For
this, we introduce three auxiliary functions p, q, r, defined as follows. Let

p(ε) = ε,

p(xai) = xai, if i 6= k,

p(xak) = p(x).

Note that p(x) is the result of deleting consecutive ak’s in the tail of x. Let

q(ε) = ε,

q(xai) = q(x)a1.
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Note that q(x) = a
|x|
1 . Finally, let

r(ε) = a1,

r(xai) = xai+1, if i 6= k,

r(xak) = xak.

The function r is almost the successor function for the ordering. Then the trick is that
Dk(xai) is the successor of Dk(x) in the ordering so usually Dk(xai) = r(Dk(x)), except if

Dk(x) = yaja
n
k

with j 6= k, since the successor of yaja
n
k is yaj+1a

n
1 . Thus, we have

Dk(ε) = ε,

Dk(xai) = r(p(Dk(x)))q(Dk(x)− p(Dk(x))), ai ∈ Σ.

Then both Ck and Dk are primitive recursive, and Dk ◦ Ck = id. Here

u− v =

{
ε if |u| ≤ |v|
w if u = xw and |x| = |v|.

In other words, u − v is u with its first |v| letters deleted. We can show that this function
can be defined by primitive recursion by first defining rdiff(u, v) as v with its first |u| letters
deleted, and then

u− v = rdiff(v, u).

To define rdiff, we use tail given by

tail(ε) = ε

tail(aiu) = u, ai ∈ Σ, u ∈ Σ∗.

We proved in Section 3.7 that tail is primitive recursive. Then

rdiff(ε, v) = v

rdiff(uai, v) = rdiff(u, tail(v)), ai ∈ Σ.

We leave as an exercise to put all these definitions into the proper format of primitive
recursion using projections.

Let ϕ : (Σ∗)n → Σ∗ be a partial function over Σ∗, and let ϕ+ : ({a1}∗)n → {a1}∗ be the
function given by

ϕ+(x1, . . . , xn) = Ck(ϕ(Dk(x1), . . . , Dk(xn))).

Also, for any partial function ψ : ({a1}∗)n → {a1}∗, let ψ] : (Σ∗)n → Σ∗ be the function
given by

ψ](x1, . . . , xn) = Dk(ψ(Ck(x1), . . . , Ck(xn))).
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We claim that if ψ is a partial computable function over ({a1}∗)n, then ψ] is partial com-
putable over (Σ∗)n, and that if ϕ is a partial computable function over (Σ∗)n, then ϕ+ is
partial computable over ({a1}∗)n.

The function ψ can be extended to (Σ∗)n by letting

ψ(x1, . . . , xn) = ψ(a
|x1|
1 , . . . , a

|xn|
1 )

for all x1, . . . , xn ∈ Σ∗, and so, if ψ is partial computable, then so is the extended function,
by composition. It follows that if ψ is partial (or primitive) recursive, then so is ψ].

This seems equally obvious for ϕ and ϕ+, but there is a difficulty. The problem is that
ϕ+ is defined as a composition of functions over Σ∗. We have to show how ϕ+ can be defined
directly over {a1}∗ without using any additional alphabet symbols. This is done in Machtey
and Young [43], see Section 2.2, Lemma 2.2.3.

6.3 Coding of RAM Programs; The Halting Problem

In this section we present a specific encoding of RAM programs which allows us to treat
programs as integers . This encoding will allow us to prove one of the most important
results of computability theory first proven by Turing for Turing machines (1936-1937), the
undecidability of the halting problem for RAM programs (and Turing machines).

Encoding programs as integers also allows us to have programs that take other programs
as input, and we obtain a universal program. Universal programs have the property that
given two inputs, the first one being the code of a program and the second one an input
data, the universal program simulates the actions of the encoded program on the input data.
A coding scheme is also called an indexing or a Gödel numbering, in honor to Gödel, who
invented this technique.

From results of the previous chapter, without loss of generality, we can restrict out atten-
tion to RAM programs computing partial functions of one argument over N. Furthermore,
we only need the following kinds of instructions, each instruction being coded as shown
below. Since we are considering functions over the natural numbers, which corresponds to
a one-letter alphabet, there is only one kind of instruction of the form add and jmp (add
increments by 1 the contents of the specified register Rj).

Recall that a conditional jump causes a jump to the closest address Nk above or below
iff Rj is nonzero, and if Rj is null, the next instruction is executed. We assume that all lines
in a RAM program are numbered. This is always feasible, by labeling unnamed instructions
with a new and unused line number.
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Definition 6.6. Instructions of a RAM program (operating on N) are coded as follows:

Ni add Rj code = 〈1, i, j, 0〉
Ni tail Rj code = 〈2, i, j, 0〉
Ni continue code = 〈3, i, 1, 0〉
Ni Rj jmp Nka code = 〈4, i, j, k〉
Ni Rj jmp Nkb code = 〈5, i, j, k〉

The code of an instruction I is denoted as #I.

To simplify the notation, we introduce the following decoding primitive recursive func-
tions Typ, LNum, Reg, and Jmp, defined as follows:

Typ(x) = Π(1, 4, x),

LNum(x) = Π(2, 4, x),

Reg(x) = Π(3, 4, x),

Jmp(x) = Π(4, 4, x).

The functions yield the type, line number, register name, and line number jumped to, if any,
for an instruction coded by x. Note that we have no need to interpret the values of these
functions if x does not code an instruction.

We can define the primitive recursive predicate INST, such that INST(x) holds iff x codes
an instruction. First, we need the connective ⇒ (implies), defined such that

P ⇒ Q iff ¬P ∨Q.

Definition 6.7. The predicate INST(x) is defined primitive recursively as follows:

[1 ≤ Typ(x) ≤ 5] ∧ [1 ≤ Reg(x)]∧
[Typ(x) ≤ 3⇒ Jmp(x) = 0]∧
[Typ(x) = 3⇒ Reg(x) = 1].

The predicate INST(x) says that if x is the code of an instruction, say x = 〈c, i, j, k〉,
then 1 ≤ c ≤ 5, j ≥ 1, if c ≤ 3, then k = 0, and if c = 3 then we also have j = 1.

Definition 6.8. Program are coded as follows. If P is a RAM program composed of the n
instructions I1, . . . , In, the code of P , denoted as #P , is

#P = 〈n,#I1, . . . ,#In〉.

Recall from Property (∗) in Section 6.1 that

〈n,#I1, . . . ,#In〉 = 〈n, 〈#I1, . . . ,#In〉〉.

Also recall that
〈x, y〉 = ((x+ y)2 + 3x+ y)/2.
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Example 6.1. Consider the following program Padd2 computing the function add2: N→ N
given by

add2(n) = n+ 2.

Padd2:
I1 : 1 add R1
I2 : 2 add R1
I3 : 3 continue

We have

#I1 = 〈1, 1, 1, 0〉4 = 〈1, 〈1, 〈1, 0〉〉〉 = 37

#I2 = 〈1, 2, 1, 0〉4 = 〈1, 〈2, 〈1, 0〉〉〉 = 92

#I3 = 〈3, 3, 1, 0〉4 = 〈3, 〈3, 〈1, 0〉〉〉 = 234

and

#Padd2 = 〈3,#I1,#I2,#I3〉4 = 〈3, 〈37, 〈92, 234〉〉
= 1 018 748 519 973 070 618.

The codes get big fast!

We define the primitive recursive functions Ln, Pg, and Line, such that:

Ln(x) = Π(1, 2, x),

Pg(x) = Π(2, 2, x),

Line(i, x) = Π(i,Ln(x),Pg(x)).

The function Ln yields the length of the program (the number of instructions), Pg yields
the sequence of instructions in the program (really, a code for the sequence), and Line(i, x)
yields the code of the ith instruction in the program. Again, if x does not code a program,
there is no need to interpret these functions. However, note that by a previous exercise, it
happens that

Line(0, x) = Line(1, x), and

Line(Ln(x), x) = Line(i, x), for all i ≥ Ln(x).

The primitive recursive predicate PROG is defined such that PROG(x) holds iff x codes
a program. Thus, PROG(x) holds if each line codes an instruction, each jump has an
instruction to jump to, and the last instruction is a continue.
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Definition 6.9. The primitive recursive predicate PROG(x) is given by

∀i ≤ Ln(x)[i ≥ 1⇒
[INST(Line(i, x)) ∧ Typ(Line(Ln(x), x)) = 3

∧ [Typ(Line(i, x)) = 4⇒
∃j ≤ i− 1[j ≥ 1 ∧ LNum(Line(j, x)) = Jmp(Line(i, x))]]∧
[Typ(Line(i, x)) = 5⇒
∃j ≤ Ln(x)[j > i ∧ LNum(Line(j, x)) = Jmp(Line(i, x))]]]].

Note that we have used Proposition 3.7 which states that if f is a primitive recursive
function and if P is a primitive recursive predicate, then ∃x ≤ f(y)P (x) is primitive recursive.

The last instruction Line(Ln(x), x)) in the program must be a continue, which means
that Typ(Line(Ln(x), x)) = 3. When the ith instruction coded by Line(i, x) of the program
coded by x has its first field Typ(Line(i, x)) = 4, this instruction is a jump above, and there
must be an instruction in line j above instruction in line i, which means that 1 ≤ j ≤ i− 1,
and the line number LNum(Line(j, x)) of the jth instruction must be equal to the jump
address Jmp(Line(i, x)) of the ith instruction. When Typ(Line(i, x)) = 5, this instruction is
a jump below, and the analysis is similar.

We are now ready to prove a fundamental result in the theory of algorithms. This result
points out some of the limitations of the notion of algorithm.

Theorem 6.4. (Undecidability of the halting problem) There is no RAM program Decider
which halts for all inputs and has the following property when started with input x in register
R1 and with input i in register R2 (the other registers being set to zero):

(1) Decider halts with output 1 iff i codes a program that eventually halts when started
on input x (all other registers set to zero).

(2) Decider halts with output 0 in R1 iff i codes a program that runs forever when started
on input x in R1 (all other registers set to zero).

(3) If i does not code a program, then Decider halts with output 2 in R1.

Proof. Assume that Decider is such a RAM program, and let Q be the following program
with a single input:

ProgramQ (code q)


R2 ← R1

P
N1 continue

R1 jmp N1a
continue

Let i be the code of some program P . The key point is that the termination behavior of
Q on input i is exactly the opposite of the termination behavior of Decider on input i and
code i.
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(1) If Decider says that program P coded by i halts on input i, then R1 just after the
continue in line N1 contains 1, and Q loops forever.

(2) If Decider says that program P coded by i loops forever on input i, then R1 just after
continue in line N1 contains 0, and Q halts.

The program Q can be translated into a program using only instructions of type 1, 2, 3,
4, 5, described previously, and let q be the code of the program Q.

Let us see what happens if we run the program Q on input q in R1 (all other registers set
to zero).

Just after execution of the assignment R2 ← R1, the program Decider is started with
q in both R1 and R2. Since Decider is supposed to halt for all inputs, it eventually halts
with output 0 or 1 in R1. If Decider halts with output 1 in R1 (which means that Q halts
on input q), then Q goes into an infinite loop, while if Decider halts with output 0 in R1
(which means that Q loops forever on input q), then Q halts. But then, we see that Decider
says that Q halts when started on input q iff Q loops forever on input q, a contradiction.
Therefore, Decider cannot exist.

The argument used in the proof of 6.4 is quite similar in spirit to “Russell’s Paradox.” If
we identify the notion of algorithm with that of a RAM program which halts for all inputs,
the above theorem says that there is no algorithm for deciding whether a RAM program
eventually halts for a given input. We say that the halting problem for RAM programs is
undecidable (or unsolvable).

The above theorem also implies that the halting problem for Turing machines is unde-
cidable. Indeed, if we had an algorithm for solving the halting problem for Turing machines,
we could solve the halting problem for RAM programs as follows: first, apply the algorithm
for translating a RAM program into an equivalent Turing machine, and then apply the
algorithm solving the halting problem for Turing machines.

The argument is typical in computability theory and is called a “reducibility argument.”

Our next goal is to define a primitive recursive function that describes the computation
of RAM programs.

6.4 Universal RAM Programs

To describe the computation of a RAM program, we need to code not only RAM programs
but also the contents of the registers. Assume that we have a RAM program P using n
registers R1, . . . , Rn, whose contents are denoted as r1, . . . , rn. We can code r1, . . . , rn into a
single integer 〈r1, . . . , rn〉. Conversely, every integer x can be viewed as coding the contents
of R1, . . . , Rn, by taking the sequence Π(1, n, x), . . . ,Π(n, n, x).
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Actually, it is not necessary to know n, the number of registers, if we make the following
observation:

Reg(Line(i, x)) ≤ Line(i, x) ≤ Pg(x) < x

for all i, x ∈ N. If x codes a program, then R1, . . . , Rx certainly include all the registers in
the program. Also note that from a previous exercise,

〈r1, . . . , rn, 0, . . . , 0〉 = 〈r1, . . . , rn, 0〉.

We now define the primitive recursive functions Nextline, Nextcont, and Comp, describing
the computation of RAM programs. There are a lot of tedious technical details that the
reader should skip upon first reading. However, to be rigorous, we must spell out all these
details.

Definition 6.10. Let x code a program and let i be such that 1 ≤ i ≤ Ln(x). The following
functions are defined:

(1) Nextline(i, x, y) is the number of the next instruction to be executed after executing
the ith instruction (the current instruction) in the program coded by x, where the contents
of the registers is coded by y.

(2) Nextcont(i, x, y) is the code of the contents of the registers after executing the ith
instruction in the program coded by x, where the contents of the registers is coded by y.

(3) Comp(x, y,m) = 〈i, z〉, where i and z are defined such that after running the program
coded by x for m steps, where the initial contents of the program registers are coded by y,
the next instruction to be executed is the ith one, and z is the code of the current contents
of the registers.

Proposition 6.5. The functions Nextline, Nextcont, and Comp are primitive recursive.

Proof. (1) Nextline(i, x, y) = i + 1, unless the ith instruction is a jump and the contents of
the register being tested is nonzero:

Nextline(i, x, y) =

max j ≤ Ln(x)[j < i ∧ LNum(Line(j, x)) = Jmp(Line(i, x))]

if Typ(Line(i, x)) = 4 ∧ Π(Reg(Line(i, x)), x, y) 6= 0

min j ≤ Ln(x)[j > i ∧ LNum(Line(j, x)) = Jmp(Line(i, x))]

if Typ(Line(i, x)) = 5 ∧ Π(Reg(Line(i, x)), x, y) 6= 0

i+ 1 otherwise.

For example, if the ith instruction of the program coded by x is a jump above, namely
Typ(Line(i, x)) = 4, then the register being tested is Reg(Line(i, x)), and its contents must
be nonzero for a jump to occur, so the contents of this register, which is obtained from the
code y of all registers as Π(Reg(Line(i, x)), x, y) (remember that we may assume that there
are x registers, by padding with zeros) must be nonzero.
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Note that according to this definition, if the ith line is the final continue, then Nextline
signals that the program has halted by yielding

Nextline(i, x, y) > Ln(x).

(2) We need two auxiliary functions Add and Sub defined as follows.

Add(j, x, y) is the number coding the contents of the registers used by the program coded
by x after register Rj coded by Π(j, x, y) has been increased by 1, and

Sub(j, x, y) codes the contents of the registers after register Rj has been decremented by
1 (y codes the previous contents of the registers). It is easy to see that

Sub(j, x, y) = min z ≤ y[Π(j, x, z) = Π(j, x, y)− 1

∧ ∀k ≤ x[0 < k 6= j ⇒ Π(k, x, z) = Π(k, x, y)]].

The definition of Add is slightly more tricky. We leave as an exercise to the reader to prove
that:

Add(j, x, y) = min z ≤ Large(x, y + 1)

[Π(j, x, z) = Π(j, x, y) + 1 ∧ ∀k ≤ x[0 < k 6= j ⇒ Π(k, x, z) = Π(k, x, y)]],

where the function Large is the function defined in an earlier exercise. Then

Nextcont(i, x, y) =

Add(Reg(Line(i, x), x, y) if Typ(Line(i, x)) = 1

Sub(Reg(Line(i, x), x, y) if Typ(Line(i, x)) = 2

y if Typ(Line(i, x)) ≥ 3.

(3) Recall that Π1(z) = Π(1, 2, z) and Π2(z) = Π(2, 2, z). The function Comp is defined
by primitive recursion as follows:

Comp(x, y, 0) = 〈1, y〉
Comp(x, y,m+ 1) = 〈Nextline(Π1(Comp(x, y,m)), x,Π2(Comp(x, y,m))),

Nextcont(Π1(Comp(x, y,m)), x,Π2(Comp(x, y,m)))〉.

If Comp(x, y,m) = 〈i, z〉, then Π1(Comp(x, y,m)) = i is the number of the next instruction
to be executed and Π2(Comp(x, y,m)) = z codes the current contents of the registers, so

Comp(x, y,m+ 1) = 〈Nextline(i, x, z),Nextcont(i, x, z)〉,

as desired.
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We can now reprove that every RAM computable function is partial computable. Indeed,
assume that x codes a program P .

We would like to define the partial function End so that for all x, y, where x codes a
program and y codes the contents of its registers, End(x, y) is the number of steps for which
the computation runs before halting, if it halts. If the program does not halt, then End(x, y)
is undefined.

If y is the value of the register R1 before the program P coded by x is started, recall that
the contents of the registers is coded by 〈y, 0〉. Noticing that 0 and 1 do not code programs,
we note that if x codes a program, then x ≥ 2, and Π1(z) = Π(1, x, z) is the contents of R1
as coded by z.

Since Comp(x, y,m) = 〈i, z〉, we have

Π1(Comp(x, y,m)) = i,

where i is the number (index) of the instruction reached after running the program P coded
by x with initial values of the registers coded by y for m steps. Thus, P halts if i is the last
instruction in P , namely Ln(x), iff

Π1(Comp(x, y,m)) = Ln(x).

This suggests the following definition.

Definition 6.11. The partial function End(x, y) is defined by

End(x, y) = minm[Π1(Comp(x, y,m)) = Ln(x)].

Note that End is a partial computable function; it can be computed by a RAM program
involving only one while loop searching for the number of steps m. The function involved in
the minimization is primitive recursive. However, in general, End is not a total function.

If ϕ is the partial computable function computed by the program P coded by x, then we
claim that

ϕ(y) = Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))).
This is because if m = End(x, 〈y, 0〉) is the number of steps after which the program P coded
by x halts on input y, then

Comp(x, 〈y, 0〉,m)) = 〈Ln(x), z〉,
where z is the code of the register contents when the program stops. Consequently

z = Π2(Comp(x, 〈y, 0〉,m))

z = Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))).
The value of the register R1 is Π1(z), that is

ϕ(y) = Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))).
The above fact is worth recording as the following proposition which is a variant of a

result known as the Kleene normal form
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Proposition 6.6. (Kleene normal form for RAM programs) If ϕ is the partial computable
function computed by the program P coded by x, then we have

ϕ(y) = Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))) for all y ∈ N.

Observe that ϕ is written in the form ϕ = g◦min f , for some primitive recursive functions
f and g. It will be convenient to denote the function ϕ computed by the RAM program P
coded by x as ϕx. We also denote the program P coded by x as Px.

We can also exhibit a partial computable function which enumerates all the unary partial
computable functions. It is a universal function.

Abusing the notation slightly, we will write ϕ(x, y) for ϕ(〈x, y〉), viewing ϕ as a function
of two arguments (however, ϕ is really a function of a single argument). We define the
function ϕuniv as follows:

ϕuniv(x, y) =
{

Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))) if PROG(x),
undefined otherwise.

The function ϕuniv is a partial computable function with the following property: for every x
coding a RAM program P , for every input y,

ϕuniv(x, y) = ϕx(y),

the value of the partial computable function ϕx computed by the RAM program P coded
by x. If x does not code a program, then ϕuniv(x, y) is undefined for all y.

By Proposition 3.9, the partial function ϕuniv is not computable (recursive).2 Indeed,
being an enumerating function for the partial computable functions, it is an enumerating
function for the total computable functions, and thus, it cannot be computable. Being a
partial function saves us from a contradiction.

The existence of the universal function ϕuniv is sufficiently important to be recorded in
the following proposition.

Proposition 6.7. (Universal RAM program) For the indexing of RAM programs defined
earlier, there is a universal partial computable function ϕuniv such that, for all x, y ∈ N, if
ϕx is the partial computable function computed by the program Px coded by x, then

ϕx(y) = ϕuniv(〈x, y〉).

The program UNIV computing ϕuniv can be viewed as an interpreter for RAM programs.
By giving the universal program UNIV the “program” x and the “data” y, we get the result
of executing program Px on input y. We can view the RAM model as a stored program
computer .

2The term recursive function is now considered old-fashion. Many researchers have switched to the term
computable function.
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By Theorem 6.4 and Proposition 6.7, the halting problem for the single program UNIV
is undecidable. Otherwise, the halting problem for RAM programs would be decidable, a
contradiction. It should be noted that the program UNIV can actually be written (with a
certain amount of pain).

The existence of the function ϕuniv leads us to the notion of an indexing of the RAM
programs.

6.5 Indexing of RAM Programs

We can define a listing of the RAM programs as follows. If x codes a program (that is, if
PROG(x) holds) and P is the program that x codes, we call this program P the xth RAM
program and denote it as Px. If x does not code a program, we let Px be the program that
diverges for every input:

N1 add R1
N1 R1 jmp N1a
N1 continue

Therefore, in all cases, Px stands for the xth RAM program. Thus, we have a listing
of RAM programs, P0, P1, P2, P3, . . ., such that every RAM program (of the restricted type
considered here) appears in the list exactly once, except for the “infinite loop” program. For
example, the program Padd2 (adding 2 to an integer) appears as

P1 018 748 519 973 070 618.

In particular, note that ϕuniv being a partial computable function, it is computed by
some RAM program UNIV that has a code univ and is the program Puniv in the list.

Having an indexing of the RAM programs, we also have an indexing of the partial com-
putable functions.

Definition 6.12. For every integer x ≥ 0, we let Px be the RAM program coded by x as
defined earlier, and ϕx be the partial computable function computed by Px.

For example, the function add2 (adding 2 to an integer) appears as

ϕ1 018 748 519 973 070 618.

Remark: Kleene used the notation {x} for the partial computable function coded by x.
Due to the potential confusion with singleton sets, we follow Rogers, and use the notation
ϕx; see Rogers [53], page 21.

It is important to observe that different programs Px and Py may compute the same
function, that is, while Px 6= Py for all x 6= y, it is possible that ϕx = ϕy. For example,
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the program Py coded by y may be the program obtained from the program Px coded by x
obtained by adding and subtracting 1 a million times to a register not in the program Px.
In fact, it is undecidable whether ϕx = ϕy.

The object of the next section is to show the existence of Kleene’s T -predicate. This
will yield another important normal form. In addition, the T -predicate is a basic tool in
recursion theory.

6.6 Kleene’s T -Predicate

In Section 6.3, we have encoded programs. The idea of this section is to also encode com-
putations of RAM programs. Assume that x codes a program, that y is some input (not a
code), and that z codes a computation of Px on input y.

Definition 6.13. The predicate T (x, y, z) is defined as follows:

T (x, y, z) holds iff x codes a RAM program, y is an input, and z codes a halting compu-
tation of Px on input y.

The code z of a computation packs the consecutive “states” of the computation, namely
the pairs 〈ij, yj〉, where ij is the physical location of the next instruction to be executed and
each yj codes the contents of the registers just before execution of this instruction. We will
show that T is primitive recursive.

First we need to encode computations . We say that z codes a computation of length
n ≥ 1 if

z = 〈n+ 2, 〈1, y0〉, 〈i1, y1〉, . . . , 〈in, yn〉〉,

where each ij is the physical location of the next instruction to be executed and each yj
codes the contents of the registers just before execution of the instruction at the location ij.
Also, y0 codes the initial contents of the registers, that is, y0 = 〈y, 0〉, for some input y.

We let Lz(z) = Π1(z) (not to be confused with Ln(x)).

Note that ij denotes the physical location of the next instruction to be executed in the
sequence of instructions constituting the program coded by x, and not the line number (label)
of this instruction. Thus, the first instruction to be executed is in location 1, 1 ≤ ij ≤ Ln(x),
and in−1 = Ln(x). Since the last instruction which is executed is the last physical instruction
in the program, namely, a continue, there is no next instruction to be executed after that,
and in is irrelevant. Writing the definition of T is a little simpler if we let in = Ln(x) + 1.
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Definition 6.14. The T -predicate is the primitive recursive predicate defined as follows:

T (x, y, z) iff PROG(x) and (Lz(z) ≥ 3) and

∀j ≤ Lz(z)− 3[0 ≤ j ⇒
Nextline(Π1(Π(j + 2,Lz(z), z)), x,Π2(Π(j + 2,Lz(z), z))) = Π1(Π(j + 3,Lz(z), z)) and

Nextcont(Π1(Π(j + 2,Lz(z), z)), x,Π2(Π(j + 2,Lz(z), z))) = Π2(Π(j + 3,Lz(z), z)) and

Π1(Π(Lz(z)− 1,Lz(z), z)) = Ln(x) and

Π1(Π(2,Lz(z), z)) = 1 and

y = Π1(Π2(Π(2,Lz(z), z))) and Π2(Π2(Π(2,Lz(z), z))) = 0].

The reader can verify that T (x, y, z) holds iff x codes a RAM program, y is an input,
and z codes a halting computation of Px on input y. For example, since

z = 〈n+ 2, 〈1, y0〉, 〈i1, y1〉, . . . , 〈in, yn〉〉,

we have Π(j + 2,Lz(z), z) = 〈ij−1, yj−1〉 and Π(j + 3,Lz(z), z) = 〈ij, yj〉, so Π1(Π(j +
2,Lz(z), z)) = Π1(〈ij−1, yj−1〉) = ij−1, Π2(Π(j + 2,Lz(z), z)) = Π2(〈ij−1, yj−1〉) = yj−1, and
similarly Π1(Π(j+3,Lz(z), z)) = ij, Π2(Π(j+3,Lz(z), z)) = yj, so the T predicate expresses
that Nextline(ij−1, yj−1) = ij and Nextcont(ij−1, yj−1) = yj.

In order to extract the output of Px from z, we define the primitive recursive function
Res as follows:

Res(z) = Π1(Π2(Π(Lz(z),Lz(z), z))).

The explanation for this formula is that if Π(Lz(z),Lz(z), z) = 〈in, yn〉, then Π2(Π(Lz(z),
Lz(z), z)) = yn, the code of the registers, and since the output is returned in Register R1,
Res(z) is the contents of register R1 when Px halts, that is, Π1(yLz(z)). Using the T -predicate,
we get the so-called Kleene normal form.

Theorem 6.8. (Kleene Normal Form) Using the indexing of the partial computable functions
defined earlier, we have

ϕx(y) = Res[min z(T (x, y, z))],

where T (x, y, z) and Res are primitive recursive.

Note that the universal function ϕuniv can be defined as

ϕuniv(x, y) = Res[min z(T (x, y, z))].

There is another important property of the partial computable functions, namely, that
composition is effective (computable). We need two auxiliary primitive recursive functions.
The function Conprogs creates the code of the program obtained by concatenating the pro-
grams Px and Py, and for i ≥ 2, Cumclr(i) is the code of the program which clears registers
R2, . . . , Ri. To get Cumclr, we can use the function clr(i) such that clr(i) is the code of the
program
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N1 tail Ri
N1 Ri jmp N1a
N continue

We leave it as an exercise to prove that clr, Conprogs, and Cumclr, are primitive recursive.

Theorem 6.9. There is a primitive recursive function c such that

ϕc(x,y) = ϕx ◦ ϕy.

Proof. If both x and y code programs, then ϕx ◦ ϕy can be computed as follows: Run Py,
clear all registers but R1, then run Px. Otherwise, let loop be the index of the infinite loop
program:

c(x, y) =

{
Conprogs(y,Conprogs(Cumclr(y), x)) if PROG(x) and PROG(y)
loop otherwise.

6.7 A Non-Computable Function; Busy Beavers

Total functions that are not computable must grow very fast and thus are very complicated .
Yet, in 1962, Radó published a paper in which he defined two functions Σ and S (involving
computations of Turing machines) that are total and not computable.

Consider Turing machines with a tape alphabet Γ = {1, B} with two symbols (B being
the blank). We also assume that these Turing machines have a special final state qF , which is
a blocking state (there are no transitions from qF ). We do not count this state when counting
the number of states of such Turing machines. The game is to run such Turing machines
with a fixed number of states n starting on a blank tape, with the goal of producing the
maximum number of (not necessarily consecutive) ones (1).

Definition 6.15. The function Σ (defined on the positive natural numbers) is defined as
the maximum number Σ(n) of (not necessarily consecutive) 1’s written on the tape after a
Turing machine with n ≥ 1 states started on the blank tape halts. The function S is defined
as the maximum number S(n) of moves that can be made by a Turing machine of the above
type with n states before it halts, started on the blank tape.3

Definition 6.16. A Turing machine with n states that writes the maximum number Σ(n)
of 1’s when started on the blank tape is called a busy beaver .

3The function S defined here is obviously not the successor function from Definition 3.16.
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Busy beavers are hard to find, even for small n. First, it can be shown that the number
of distinct Turing machines of the above kind with n states is (4(n + 1))2n. Second, since
it is undecidable whether a Turing machine halts on a given input, it is hard to tell which
machines loop or halt after a very long time.

Here is a summary of what is known for 1 ≤ n ≤ 6. Observe that the exact value of Σ(6)
and S(6) is unknown.

n Σ(n) S(n)
1 1 1
2 4 6
3 6 21
4 13 107
5 4098 47, 176, 870
6 ≥ 95, 524, 079 ≥ 8, 690, 333, 381, 690, 951
6 ≥ 3.515× 1018267 ≥ 7.412× 1036534

The first entry in the table for n = 6 corresponds to a machine due to Heiner Marxen
(1999). This record was surpassed by Pavel Kropitz in 2010, which corresponds to the second
entry for n = 6. The machines achieving the record in 2017 for n = 4, 5, 6 are shown below,
where the blank is denoted ∆ instead of B, and where the special halting state is denoted
H:

4-state busy beaver:

A B C D
∆ (1, R,B) (1, L, A) (1, R,H) (1, R,D)
1 (1, L,B) (∆, L, C) (1, L,D) (∆, R,A)

The above machine output 13 ones in 107 steps. In fact, the output is

1 ∆ 1 1 1 1 1 1 1 1 1 1 1 1 .

5-state busy beaver:

A B C D E
∆ (1, R,B) (1, R, C) (1, R,D) (1, L, A) (1, R,H)
1 (1, L, C) (1, R,B) (∆, L, E) (1, L,D) (∆, L, A)

The above machine output 4098 ones in 47, 176, 870 steps. The tape actually contains a
total of 12289 symbols, 4098 if which are 1’s, and the other the blank ∆.

The fact that this machine is a busy beaver was established in 2024 with the help of the
Coq proof assistant. The proof is an enumeration of roughly 180 million machines, which
are checked for termination with specialized deciders that recognize specific behaviors. This
is quite a “tour de force.”
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6-state contender (Heiner Marxen):

A B C D E F
∆ (1, R,B) (1, L, C) (∆, R, F ) (1, R,A) (1, L,H) (∆, L, A)
1 (1, R,A) (1, L,B) (1, L,D) (∆, L, E) (1, L, F ) (∆, L, C)

The above machine outputs 96, 524, 079 ones in 8, 690, 333, 381, 690, 951 steps.

6-state best contender (Pavel Kropitz):

A B C D E F
∆ (1, R,B) (1, R, C) (1, L,D) (1, R,E) (1, L, A) (1, L,H)
1 (1, L, E) (1, R, F ) (∆, R,B) (∆, L, C) (∆, R,D) (1, R, C)

The above machine output at least 3.515× 1018267 ones!

The reason why it is so hard to compute Σ and S is that they are not computable!

Theorem 6.10. The functions Σ and S are total functions that are not computable (not
recursive).

Proof sketch. The proof consists in showing that Σ (and similarly for S) eventually outgrows
any computable function. More specifically, we claim that for every computable function f ,
there is some positive integer kf such that

Σ(n+ kf ) ≥ f(n) for all n ≥ 0.

We simply have to pick kf to be the number of states of a Turing machine Mf computing
f . Then we can create a Turing machine Mn,f that works as follows. Using n of its states,
it writes n ones on the tape, and then it simulates Mf with input 1n. Since the ouput of
Mn,f started on the blank tape consists of f(n) ones, and since Σ(n + kf ) is the maximum
number of ones that a turing machine with n+ kf states will ouput when it stops, we must
have

Σ(n+ kf ) ≥ f(n) for all n ≥ 0.

Next observe that Σ(n) < Σ(n + 1), because we can create a Turing machine with n + 1
states which simulates a busy beaver machine with n states, and then writes an extra 1 when
the busy beaver stops, by making a transition to the (n+ 1)th state. It follows immediately
that if m < n then Σ(m) < Σ(n). If Σ was computable, then so would be the function g
given by g(n) = Σ(2n). By the above, we would have

Σ(n+ kg) ≥ g(n) = Σ(2n) for all n ≥ 0,

and for n > kg, since 2n > n+ kg, we would have Σ(n+ ng) < Σ(2n), contradicting the fact
that Σ(n+ ng) ≥ Σ(2n).

Since by definition S(n) is the maximum number of moves that can be made by a Turing
machine of the above type with n states before it halts, S(n) ≥ Σ(n). Then the same
reasoning as above shows that S is not a computable function.

The zoo of computable and non-computable functions is illustrated in Figure 6.1.
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Figure 6.1: Computability Classification of Functions.
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Chapter 7

Elementary Recursive Function
Theory

7.1 Acceptable Indexings

In Chapter 6, we have exhibited a specific indexing of the partial computable functions by
encoding the RAM programs. Using this indexing, we showed the existence of a universal
function ϕuniv and of a computable function c, with the property that for all x, y ∈ N,

ϕc(x,y) = ϕx ◦ ϕy.

It is natural to wonder whether the same results hold if a different coding scheme is used or
if a different model of computation is used, for example, Turing machines. In other words,
we would like to know if our results depend on a specific coding scheme or not.

Our previous results showing the characterization of the partial computable functions
being independent of the specific model used, suggests that it might be possible to pinpoint
certain properties of coding schemes which would allow an axiomatic development of recursive
function theory. What we are aiming at is to find some simple properties of “nice” coding
schemes that allow one to proceed without using explicit coding schemes, as long as the
above properties hold.

Remarkably, such properties exist. Furthermore, any two coding schemes having these
properties are equivalent in a strong sense (called effectively equivalent), and so, one can pick
any such coding scheme without any risk of losing anything else because the wrong coding
scheme was chosen. Such coding schemes, also called indexings, or Gödel numberings, or
even programming systems, are called acceptable indexings .

Definition 7.1. An indexing of the partial computable functions is an infinite sequence
ϕ0, ϕ1, . . . , of partial computable functions that includes all the partial computable func-
tions of one argument (there might be repetitions, this is why we are not using the term
enumeration). An indexing is universal if it contains the partial computable function ϕuniv

327
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such that
ϕuniv(i, x) = ϕi(x) for all i, x ∈ N. (∗univ)

An indexing is acceptable if it is universal and if there is a total computable function c for
composition, such that

ϕc(i,j) = ϕi ◦ ϕj for all i, j ∈ N. (∗compos)

An indexing may fail to be universal because it is not “computable enough,” in the sense
that it does not yield a function ϕuniv satisfying (∗univ). It may also fail to be acceptable
because it is not “computable enough,” in the sense that it does not yield a function ϕuniv
satisfying (∗compos).

From Chapter 6, we know that the specific indexing of the partial computable functions
given for RAM programs is acceptable. Another characterization of acceptable indexings left
as an exercise is the following: an indexing ψ0, ψ1, ψ2, . . . of the partial computable functions
is acceptable iff there exists a total computable function f translating the RAM indexing of
Section 6.3 into the indexing ψ0, ψ1, ψ2, . . ., that is,

ϕi = ψf(i) for all i ∈ N.

A very useful property of acceptable indexings is the so-called “s-m-n Theorem”. Using
the slightly loose notation ϕ(x1, . . . , xn) for ϕ(〈x1, . . . , xn〉), the s-m-n Theorem says the
following. Given a function ϕ considered as having m+ n arguments, if we fix the values of
the first m arguments and we let the other n arguments vary, we obtain a function ψ of n
arguments. Then the index of ψ depends in a computable fashion upon the index of ϕ and
the first m arguments x1, . . . , xm. We can “pull” the first m arguments of ϕ into the index
of ψ.

Theorem 7.1. (The “s-m-n Theorem”) For any acceptable indexing ϕ0, ϕ1, . . . , there is a
total computable function s : Nn+2 → N, such that, for all i,m, n ≥ 1, for all x1, . . . , xm and
all y1, . . . , yn, we have

ϕs(i,m,x1,...,xm)(y1, . . . , yn) = ϕi(x1, . . . , xm, y1, . . . , yn).

Proof. First, note that the above identity is really

ϕs(i,m,〈x1,...,xm〉)(〈y1, . . . , yn〉) = ϕi(〈x1, . . . , xm, y1, . . . , yn〉).

Recall that there is a primitive recursive function Con such that

Con(m, 〈x1, . . . , xm〉, 〈y1, . . . , yn〉) = 〈x1, . . . , xm, y1, . . . , yn〉

for all x1, . . . , xm, y1, . . . , yn ∈ N. Hence, a computable function s such that

ϕs(i,m,x)(y) = ϕi(Con(m,x, y))
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will do. We define some auxiliary primitive recursive functions as follows:

P (y) = 〈0, y〉 and Q(〈x, y〉) = 〈x+ 1, y〉.

Since we have an indexing of the partial computable functions, there are indices p and q such
that P = ϕp and Q = ϕq. Let R be defined such that

R(0) = p,

R(x+ 1) = c(q, R(x)),

where c is the computable function for composition given by the indexing. We prove by
induction of x that

ϕR(x)(y) = 〈x, y〉 for all x, y ∈ N.

For this we use the existence of the universal function ϕuniv.

For the base case x = 0, we have

ϕR(0)(y) = ϕuniv(〈R(0), y〉)
= ϕuniv(〈p, y〉)
= ϕp(y) = P (y) = 〈0, y〉.

For the induction step, we have

ϕR(x+1)(y) = ϕuniv(〈R(x+ 1), y〉)
= ϕuniv(〈c(q, R(x)), y〉)
= ϕc(q,R(x))(y)

= (ϕq ◦ ϕR(x))(y)

= ϕq(〈x, y〉) = Q(〈x, y〉) = 〈x+ 1, y〉.

Also, recall that 〈x, y, z〉 = 〈x, 〈y, z〉〉, by definition of pairing. Then we have

ϕR(x) ◦ ϕR(y)(z) = ϕR(x)(〈y, z〉) = 〈x, y, z〉.

Finally, let k be an index for the function Con, that is, let

ϕk(〈m,x, y〉) = Con(m,x, y).

Define s by
s(i,m, x) = c(i, c(k, c(R(m), R(x)))).

Then we have

ϕs(i,m,x)(y) = ϕi ◦ ϕk ◦ ϕR(m) ◦ ϕR(x)(y) = ϕi(Con(m,x, y)),

as desired. Notice that if the composition function c is primitive recursive, then s is also
primitive recursive. In particular, for the specific indexing of the RAM programs given in
Section 6.3, the function s is primitive recursive.
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In practice, when using the s-m-n Theorem we usually denote the function s(i,m, x)
simply as s(x).

As a first application of the s-m-n Theorem, we show that any two acceptable indexings
are effectively inter-translatable, that is, computably inter-translatable.

Theorem 7.2. Let ϕ0, ϕ1, . . . , be a universal indexing, and let ψ0, ψ1, . . . , be any indexing
with a total computable s-1-1 function, that is, a function s such that

ψs(i,1,x)(y) = ψi(x, y)

for all i, x, y ∈ N. Then there is a total computable function t such that ϕi = ψt(i).

Proof. Let ϕuniv be a universal partial computable function for the indexing ϕ0, ϕ1, . . .. Since
ψ0, ψ1, . . . , is also an indexing ϕuniv occurs somewhere in the second list, and thus, there is
some k such that ϕuniv = ψk. Then we have

ψs(k,1,i)(x) = ψk(i, x) = ϕuniv(i, x) = ϕi(x),

for all i, x ∈ N. Therefore, we can take the function t to be the function defined such that

t(i) = s(k, 1, i)

for all i ∈ N.

Using Theorem 7.2, if we have two acceptable indexings ϕ0, ϕ1, . . . , and ψ0, ψ1, . . ., there
exist total computable functions t and u such that

ϕi = ψt(i) and ψi = ϕu(i)

for all i ∈ N.

Also note that if the composition function c is primitive recursive, then any s-m-n function
is primitive recursive, and the translation functions are primitive recursive. Actually, a
stronger result can be shown. It can be shown that for any two acceptable indexings, there
exist total computable injective and surjective translation functions. In other words, any two
acceptable indexings are recursively isomorphic (Roger’s isomorphism theorem); see Machtey
and Young [43]. Next we turn to algorithmically unsolvable, or undecidable, problems.

7.2 Undecidable Problems

We saw in Section 6.3 that the halting problem for RAM programs is undecidable. In this
section, we take a slightly more general approach to study the undecidability of problems,
and give some tools for resolving decidability questions.

First, we prove again the undecidability of the halting problem, but this time, for any
indexing of the partial computable functions.
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Theorem 7.3. (Halting Problem, Abstract Version) Let ψ0, ψ1, . . . , be any indexing of the
partial computable functions. Then the function f defined such that

f(x, y) =

{
1 if ψx(y) is defined,
0 if ψx(y) is undefined,

is not computable.

Proof. Assume that f is computable, and let g be the function defined such that

g(x) = f(x, x)

for all x ∈ N. Then g is also computable. Let θ be the function defined such that

θ(x) =

{
0 if g(x) = 0,
undefined if g(x) = 1.

We claim that θ is not even partial computable. Observe that θ is such that

θ(x) =

{
0 if ψx(x) is undefined,
undefined if ψx(x) is defined.

If θ was partial computable, it would occur in the list as some ψi, and we would have

θ(i) = ψi(i) = 0 iff ψi(i) is undefined,

a contradiction. Therefore, f and g can’t be computable.

Observe that the proof of Theorem 7.3 does not use the fact that the indexing is univer-
sal or acceptable, and thus, the theorem holds for any indexing of the partial computable
functions.

Given any set, X, for any subset, A ⊆ X, of X, recall that the characteristic function,
CA (or χA), of A is the function, CA : X → {0, 1}, defined so that, for all x ∈ X,

CA(x) =
{

1 if x ∈ A
0 if x /∈ A.

The function g defined in the proof of Theorem 7.3 is the characteristic function of an
important set denoted as K.

Definition 7.2. Given any indexing (ψi) of the partial computable functions, the set K is
defined by

K = {x | ψx(x) is defined}.

The set K is an abstract version of the halting problem. It is example of a set which is
not computable (or not recursive). Since this fact is quite important, we give the following
definition:
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Definition 7.3. A subset A of Σ∗ (or a subset A of N) is computable, or recursive,1 or
decidable iff its characteristic function, CA, is a total computable function.

Using Definition 7.3, Theorem 7.3 can be restated as follows.

Proposition 7.4. For any indexing ϕ0, ϕ1, . . . of the partial computable functions (over Σ∗

or N), the set K = {x | ϕx(x) is defined} is not computable (not recursive).

Computable (recursive) sets allow us to define the concept of a decidable (or undecidable)
problem. The idea is to generalize the situation described in Section 6.3 and Section 6.6,
where a set of objects, the RAM programs, is encoded into a set of natural numbers, using
a coding scheme. For example, we would like to discuss the notion of computability of sets
of trees or sets of graphs.

Definition 7.4. Let C be a countable set of objects, and let P be a property of objects in
C. We view P as the set

{a ∈ C | P (a)}.
A coding-scheme is an injective function #: C → N that assigns a unique code to each object
in C. The property P is decidable (relative to #) iff the set {#(a) | a ∈ C and P (a)} is
computable (recursive). The property P is undecidable (relative to #) iff the set {#(a) | a ∈
C and P (a)} is not computable (not recursive).

Observe that the decidability of a property P of objects in C depends upon the coding
scheme #. Thus, if we are cheating in using a non-effective (i.e not computable by a
computer program) coding scheme, we may declare that a property is decidable even though
it is not decidable in some reasonable coding scheme. Consequently, we require a coding
scheme # to be effective in the following sense. Given any object a ∈ C, we can effectively
(i.e. algorithmically) determine its code #(a). Conversely, given any integer n ∈ N, we
should be able to tell effectively if n is the code of some object in C, and if so, to find this
object. In practice, it is always possible to describe the objects in C as strings over some
(possibly complex) alphabet Σ (sets of trees, graphs, etc). In such cases, the coding schemes
are computable functions from Σ∗ to N = {a1}∗.

For example, let C = N×N, where the property P is the equality of the partial functions
ϕx and ϕy. We can use the pairing function 〈−,−〉 as a coding function, and the problem is
formally encoded as the computability (recursiveness) of the set

{〈x, y〉 | x, y ∈ N, ϕx = ϕy}.

In most cases, we don’t even bother to describe the coding scheme explicitly, knowing
that such a description is routine, although perhaps tedious.

We now show that most properties about programs (except the trivial ones) are unde-
cidable.

1Since 1996, the term recursive has been considered old-fashioned by many researchers, and the term
computable has been used instead.
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7.3 Reducibility and Rice’s Theorem

First, we show that it is undecidable whether a RAM program halts for every input. In
other words, it is undecidable whether a procedure is an algorithm. We actually prove a
more general fact.

Proposition 7.5. For any acceptable indexing ϕ0, ϕ1, . . . of the partial computable functions,
the set

TOTAL = {x | ϕx is a total function}
is not computable (not recursive).

Proof. The proof uses a technique known as reducibility. We try to reduce a set A known
to be noncomputable (nonrecursive) to TOTAL via a computable function f : A→ TOTAL,
so that

x ∈ A iff f(x) ∈ TOTAL.

If TOTAL were computable (recursive), its characteristic function g would be computable,
and thus, the function g ◦ f would be computable, a contradiction, since A is assumed to be
noncomputable (nonrecursive). In the present case, we pick A = K. To find the computable
function f : K → TOTAL, we use the s-m-n Theorem. Let θ be the function defined below:
for all x, y ∈ N,

θ(x, y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K.

Note that θ does not depend on y. The function θ is partial computable. Indeed, we have

θ(x, y) = ϕx(x) = ϕuniv(x, x).

Thus, θ has some index j, so that θ = ϕj, and by the s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y).

Let f be the computable function defined such that

f(x) = s(j, 1, x)

for all x ∈ N. Then we have

ϕf(x)(y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K

for all y ∈ N. Thus, observe that ϕf(x) is a total function iff x ∈ K, that is,

x ∈ K iff f(x) ∈ TOTAL,

where f is computable. As we explained earlier, this shows that TOTAL is not computable
(not recursive).
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The above argument can be generalized to yield a result known as Rice’s theorem. Let
ϕ0, ϕ1, . . . be any indexing of the partial computable functions, and let C be any set of partial
computable functions. We define the set PC as

PC = {x ∈ N | ϕx ∈ C}.

We can view C as a property of some of the partial computable functions. For example

C = {all total computable functions}.

Observe that if ϕi ∈ C for some partial computable function ϕi, equivalently i ∈ PC ,
then j ∈ PC for all j ∈ N such that ϕj = ϕi. In other words, if PC contains the code i of
some program Pi computing a partial computable function ϕi ∈ C, then PC contains the
code of every program computing ϕi. Steve Cook calls such a set PC a function index set .
Note that PC is always infinite, unless PC = ∅.
Definition 7.5. We say that a set C of partial computable functions (over N) is nontrivial
if C is neither empty nor the set of all partial computable functions. Equivalently C is
nontrivial iff PC 6= ∅ and PC 6= N. We also say that C is trivial if PC = ∅ or PC = N.

Theorem 7.6. (Rice’s Theorem, 1953) For any acceptable indexing ϕ0, ϕ1, . . . of the partial
computable functions, for any set C of partial computable functions, the set

PC = {x ∈ N | ϕx ∈ C}

is not computable (not recursive) unless C is trivial.

Proof. Assume that C is nontrivial. A set is computable (recursive) iff its complement
is computable (recursive) (the proof is trivial). Hence, we may assume that the totally
undefined function is not in C, and since C 6= ∅, let ψ be some other function in C. We
produce a computable function f such that

ϕf(x)(y) =

{
ψ(y) if x ∈ K,
undefined if x /∈ K,

for all y ∈ N. We get f by using the s-m-n Theorem. Let ψ = ϕi, and define θ as follows:

θ(x, y) = ϕuniv(i, y) + (ϕuniv(x, x) ·− ϕuniv(x, x)),

where ·− is the primitive recursive function monus for truncated subtraction; see Section 3.7.
Recall that ϕuniv(x, x) ·− ϕuniv(x, x) is defined iff ϕuniv(x, x) is defined iff x ∈ K, and so

θ(x, y) = ϕuniv(i, y) = ϕi(y) = ψ(y) iff x ∈ K

and θ(x, y) is undefined otherwise. Clearly θ is partial computable, and we let θ = ϕj. By
the s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y)
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for all x, y ∈ N. Letting f be the computable function such that

f(x) = s(j, 1, x),

by definition of θ, we get

ϕf(x)(y) = θ(x, y) =
{
ψ(y) if x ∈ K,
undefined if x /∈ K.

Thus, f is the desired reduction function. Now we have

x ∈ K iff f(x) ∈ PC ,

and thus, the characteristic function CK of K is equal to CP ◦f , where CP is the characteristic
function of PC . Therefore, PC is not computable (not recursive), since otherwise, K would
be computable, a contradiction.

Rice’s theorem shows that all nontrivial properties of the input/output behavior of pro-
grams are undecidable!

It is important to understand that Rice’s theorem says that the set PC of indices of all
partial computable functions equal to some function in a given set C of partial computable
functions is not computable if C is nontrivial, not that the set C is not computable if C
is nontrivial. The second statement does not make any sense because our machinery only
applies to sets of natural numbers (or sets of strings). For example, the set C = {ϕi0}
consisting of a single partial computable function is nontrivial, and being finite, under the
second wrong interpretation it would be computable. But we need to consider the set

PC = {n ∈ N | ϕn = ϕi0}

of indices of all partial computable functions ϕn that are equal to ϕi0 , and by Rice’s theorem,
this set is not computable. In other words, it is undecidable whether an arbitrary partial
computable function is equal to some fixed partial computable function.

The scenario to apply Rice’s theorem to a class C of partial functions is to show that
some partial computable function belongs to C (C is not empty), and that some partial
computable function does not belong to C (C is not all the partial computable functions).
This demonstrates that C is nontrivial.

In particular, the following properties are undecidable.

Proposition 7.7. The following properties of partial computable functions are undecidable.

(a) A partial computable function is a constant function.

(b) Given any integer y ∈ N, is y in the range of some partial computable function.

(c) Two partial computable functions ϕx and ϕy are identical. More precisely, the set
{〈x, y〉 | ϕx = ϕy} is not computable.
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(d) A partial computable function ϕx is equal to a given partial computable function ϕa.

(e) A partial computable function yields output z on input y, for any given y, z ∈ N.

(f) A partial computable function diverges for some input.

(g) A partial computable function diverges for all input.

The above proposition is left as an easy exercise. For example, in (a), we need to exhibit
a constant (partial) computable function, such as zero(n) = 0, and a nonconstant (partial)
computable function, such as the identity function (or succ(n) = n+ 1).

A property may be undecidable although it is partially decidable. By partially decidable,
we mean that there exists a computable function g that enumerates the set PC = {x | ϕx ∈
C}. This means that there is a computable function g whose range is PC . We say that PC is
listable, or computably enumerable, or recursively enumerable. Indeed, g provides a recursive
enumeration of PC , with possible repetitions. Listable sets are the object of the next section.

7.4 Listable (Recursively Enumerable) Sets

In this section and the next our focus is on subsets of N rather than on numerical functions.
Consider the set

A = {k ∈ N | ϕk(a) is defined},
where a ∈ N is any fixed natural number. By Rice’s theorem, A is not computable (not
recursive); check this. We claim that A is the range of a computable function g. For this,
we use the T -predicate introduced in Definition 6.13. Recall that the predicate T (i, y, z) is
defined as follows:

T (i, y, z) holds iff i codes a RAM program, y is an input, and z codes a halting compu-
tation of program Pi on input y.

We produce a function which is actually primitive recursive. First, note that A is
nonempty (why?), and let x0 be any index in A. We define g by primitive recursion as
follows:

g(0) = x0,

g(x+ 1) =

{
Π1(x) if T (Π1(x), a,Π2(x)),
x0 otherwise.

Since this type of argument is new, it is helpful to explain informally what g does. For
every input x, the function g tries finitely many steps of a computation on input a for some
partial computable function ϕi computed by the RAM program Pi. Since we need to consider
all pairs (i, z) but we only have one variable x at our disposal, we use the trick of packing i
and z into x = 〈i, z〉. Then the index i of the partial function is given by i = Π1(x) and the
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guess for the code of the computation is given by z = Π2(x). Since Π1 and Π2 are projection
functions, when x ranges over N, both i = Π1(x) and z = Π2(x) also range over N. Thus
every partial function ϕi and every code for a computation z will be tried, and whenever
ϕi(a) is defined, which means that there is a correct guess for the code z of the halting
computation of Pi on input a, T (Π1(x), a,Π2(x)) = T (i, a, z) is true, and g(x+ 1) returns i.

Such a process is called a dovetailing computation. This type of argument will be used
over and over again.

Definition 7.6. A subset X of N is listable, or computably enumerable, or recursively enu-
merable2 iff either X = ∅, or X is the range of some total computable function (total recursive
function). Similarly, a subset X of Σ∗ is listable or computably enumerable, or recursively
enumerable iff either X = ∅, or X is the range of some total computable function (total
recursive function).

We will often abbreviate computably enumerable as c.e, (and recursively enumerable as
r.e.). A computably enumerable set is sometimes called a partially decidable or semidecidable
set.

Remark: It should be noted that the definition of a listable set (c.e set or r.e. set) given
in Definition 7.6 is different from an earlier definition given in terms of acceptance by a
Turing machine and it is by no means obvious that these two definitions are equivalent.
This equivalence will be proven in Proposition 7.9 ((1)⇐⇒ (4)).

The following proposition relates computable sets and listable sets (recursive sets and
recursively enumerable sets).

Proposition 7.8. A set A is computable (recursive) iff both A and its complement A are
listable (computably enumerable, recursively enumerable).

Proof. Assume that A is computable. Then it is trivial that its complement is also com-
putable. Hence, we only have to show that a computable set is listable. The empty set is
listable by definition. Otherwise, let y ∈ A be any element. Then the function f defined
such that

f(x) =

{
x iff CA(x) = 1,
y iff CA(x) = 0,

for all x ∈ N is computable and has range A.

Conversely, assume that both A and A are listable. If either A or A is empty, then A is
computable. Otherwise, let A = f(N) and A = g(N), for some computable functions f and
g. We define the function CA as follows:

CA(x) =
{

1 if f(min y[f(y) = x ∨ g(y) = x]) = x,
0 otherwise.

2Since 1996, the term recursively enumerable has been considered old-fashioned by many researchers,
and the terms listable and computably enumerable have been used instead.
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The function CA lists A and A in parallel, waiting to see whether x turns up in A or in A.
Note that x must eventually turn up either in A or in A, so that CA is a total computable
function.

Our next goal is to show that the listable (recursively enumerable) sets can be given
several equivalent definitions.

Proposition 7.9. For any subset A of N, the following properties are equivalent:

(1) A is empty or A is the range of a primitive recursive function (Rosser, 1936).

(2) A is listable (computably enumerable, recursively enumerable).

(3) A is the range of a partial computable function.

(4) A is the domain of a partial computable function.

Proof. The implication (1) ⇒ (2) is trivial, since A is listable iff either it is empty or it is
the range of a (total) computable function.

To prove the implication (2) ⇒ (3), it suffices to observe that the empty set is the
range of the totally undefined function (computed by an infinite loop program), and that a
computable function is a partial computable function.

The implication (3)⇒ (4) is shown as follows. Assume that A is the range of ϕi. Define
the function f such that

f(x) = min k[T (i,Π1(k),Π2(k)) ∧ Res(Π2(k)) = x]

for all x ∈ N. Since A = ϕi(N), we have x ∈ A iff there is some input y ∈ N and some
computation coded by z such that the RAM program Pi on input y has a halting computation
coded by z and produces the output x. Using the T -predicate, this is equivalent to T (i, y, z)
and Res(z) = x. Since we need to search over all pairs (y, z), we pack y and z as k = 〈y, z〉
so that y = Π1(k) and z = Π2(k), and we search over all k ∈ N. If the search succeeds,
which means that T (i, y, z) and Res(z) = x, we set f(x) = k = 〈y, z〉, so that f is a function
whose domain in the range of ϕi (namely A). Note that the value f(x) is irrelevant, but it
is convenient to pick k. Clearly, f is partial computable and has domain A.

The implication (4) ⇒ (1) is shown as follows. The only nontrivial case is when A is
nonempty. Assume that A is the domain of ϕi. Since A 6= ∅, there is some a ∈ N such that
a ∈ A, which means that for some input y the RAM program Pi has a halting computation
coded by z on input a, so if we pack y and z as k = 〈y, z〉, the quantity

min k[T (i,Π1(k),Π2(k))] = min〈y, z〉[T (i, y, z)]

is defined. We can pick a to be

a = Π1(min k[T (i,Π1(k),Π2(k))]).
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We define the primitive recursive function f as follows:

f(0) = a,

f(x+ 1) =

{
Π1(x) if T (i,Π1(x),Π2(x)),
a if ¬T (i,Π1(x),Π2(x)).

Some y ∈ N is in the domain of ϕi (namely A) iff the RAM program Pi has a halting
computation coded by z on input y iff T (i, y, z) is true. If we pack y and z as x = 〈y, z〉,
then T (i, y, z) = T (i,Π1(x),Π2(x)), so if we search over all x = 〈y, z〉 we search over all y
and all z. Whenever T (i, y, z) = T (i,Π1(x),Π2(x)) holds, we set f(x + 1) = y since y ∈ A,
and if T (i, y, z) = T (i,Π1(x),Π2(x)) is false, we return the default value a ∈ A. Our search
will find all y such that T (i, y, z) = T (i,Π1(x),Π2(x)) holds for some z, which means that
all y ∈ A will be in the range of f . By construction, f only has values in A. Clearly, f is
primitive recursive.

More intuitive proofs of the implications (3)⇒ (4) and (4)⇒ (1) can be given. Assume
that A 6= ∅ and that A = range(g), where g is a partial computable function. Assume that
g is computed by a RAM program P . To compute f(x), we start computing the sequence

g(0), g(1), . . .

looking for x. If x turns up as say g(n), then we output n. Otherwise the computation
diverges. Hence, the domain of f is the range of g.

Assume now that A is the domain of some partial computable function g, and that g is
computed by some Turing machine M . Since the case where A = ∅ is trivial, we may assume
that A 6= ∅, and let n0 ∈ A be some chosen element in A. We construct another Turing
machine performing the following steps: On input n,

(0) Do one step of the computation of g(0)

. . .

(n) Do n+ 1 steps of the computation of g(0)

Do n steps of the computation of g(1)

. . .

Do 2 steps of the computation of g(n− 1)

Do 1 step of the computation of g(n)

During this process, whenever the computation of g(m) halts for some m ≤ n, we output
m. Otherwise, we output n0.

In this fashion, we will enumerate the domain of g, and since we have constructed a
Turing machine that halts for every input, we have a total computable function.

The following proposition can easily be shown using the proof technique of Proposition
7.9.
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Proposition 7.10. The following facts hold.

(1) There is a computable function h such that

range(ϕx) = dom(ϕh(x)) for all x ∈ N.

(2) There is a computable function k such that

dom(ϕx) = range(ϕk(x))

and ϕk(x) is total computable, for all x ∈ N such that dom(ϕx) 6= ∅.

The proof of Proposition 7.10 is left as an exercise.

Using Proposition 7.9, we can prove that K is a listable set. Indeed, we have K = dom(f),
where

f(x) = ϕuniv(x, x) for all x ∈ N.

The set
K0 = {〈x, y〉 | ϕx(y) is defined}

is also a listable set, since K0 = dom(g), where

g(z) = ϕuniv(Π1(z),Π2(z)),

which is partial computable. It worth recording these facts in the following proposition.

Proposition 7.11. The sets K and K0 are listable (c.e., r.e.) sets that are not computable
sets (not recursive).

We can now prove that there are sets that are not listable (not c.e., not r.e.).

Proposition 7.12. For any indexing of the partial computable functions, the complement
K of the set

K = {x ∈ N | ϕx(x) is defined}
is not listable (not computably enumerable, not recursively enumerable).

Proof. If K was listable, since K is also listable, by Proposition 7.8, the set K would be
computable, a contradiction.

The sets K and K0 are examples of sets that are not listable (not c.e., not r.e.). This
shows that the listable (c.e., r.e.) sets are not closed under complementation. However, we
leave it as an exercise to prove that the listable (c.e., r.e.) sets are closed under union and
intersection.

We will prove later on that TOTAL is not listable (not c.e., not r.e.). This is rather
unpleasant. Indeed, this means that there is no way of effectively listing all algorithms (all
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total computable functions). Hence, in a certain sense, the concept of partial computable
function (procedure) is more natural than the concept of a (total) computable function
(algorithm).

The next two propositions give other characterizations of the listable (c.e., r.e. sets) and
of the computable sets (recursive sets). The proofs are left as an exercise.

Proposition 7.13. The following facts hold.

(1) A set A is listable (c.e., r.e.) iff either it is finite or it is the range of an injective
computable function.

(2) A set A is listable (c.e., r.e.) if either it is empty or it is the range of a monotonic
partial computable function.

(3) A set A is listable (c.e., r.e.) iff there is a Turing machine M such that, for all x ∈ N,
M halts on x iff x ∈ A.

Proposition 7.14. A set A is computable (recursive) iff either it is finite or it is the range
of a strictly increasing computable function.

Another important result relating the concept of partial computable function and that
of a listable (c.e., r.e.) set is given below.

Theorem 7.15. For every unary partial function f , the following properties are equivalent:

(1) f is partial computable.

(2) The set

{〈x, f(x)〉 | x ∈ dom(f)}
is listable (c.e., r.e.).

Proof. Let g(x) = 〈x, f(x)〉. Clearly, g is partial computable, and

range(g) = {〈x, f(x)〉 | x ∈ dom(f)}.

Conversely, assume that

range(g) = {〈x, f(x)〉 | x ∈ dom(f)}

for some computable function g. Then we have

f(x) = Π2(g(min y[Π1(g(y)) = x)])) for all x ∈ N,

so that f is partial computable.



342 CHAPTER 7. ELEMENTARY RECURSIVE FUNCTION THEORY

Using our indexing of the partial computable functions and Proposition 7.9, we obtain
an indexing of the listable (c.e., r.e.) sets.

Definition 7.7. For any acceptable indexing ϕ0, ϕ1, . . . of the partial computable functions,
we define the enumeration W0,W1, . . . of the listable (c.e., r.e.) sets by setting

Wx = dom(ϕx).

We now describe a technique for showing that certain sets are listable (c.e., r.e.) but
not computable (not recursive), or complements of listable (c.e., r.e.) sets that are not
computable (not recursive), or not listable (not c.e., not r.e.), or neither listable (not c.e.,
not r.e.) nor the complement of a listable (c.e., r.e.) set. This technique is known as
reducibility .

7.5 Reducibility and Complete Sets

We already used the notion of reducibility in the proof of Proposition 7.5 to show that
TOTAL is not computable (not recursive).

Definition 7.8. Let A and B be subsets of N (or Σ∗). We say that the set A is many-one
reducible to the set B if there is a total computable function (or total recursive function)
f : N→ N (or f : Σ∗ → Σ∗) such that

x ∈ A iff f(x) ∈ B for all x ∈ N.

We write A ≤ B, and for short, we say that A is reducible to B. Sometimes, the notation
A ≤m B is used to stress that this is a many-to-one reduction (that is, f is not necessarily
injective).

Intuitively, deciding membership in B is as hard as deciding membership in A. This is
because any method for deciding membership in B can be converted to a method for deciding
membership in A by first applying f to the number (or string) to be tested.

Remark: Besides many-to-one reducibility, there is a also a notion of one-one reducibility
defined as follows: the set A is one-one reducible to the set B if there is a total injective
computable function f : N→ N such that

x ∈ A iff f(x) ∈ B for all x ∈ N.

We write A ≤1 B. Obviously A ≤1 B implies A ≤m B so one-one reducibiity is a stronger
notion. We do not need one-one reducibility for our purposes so we will not discuss it. We
refer the interested reader to Rogers [53] (especially Chapter 7) for more on reducibility.

The following simple proposition is left as an exercise to the reader.
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Proposition 7.16. Let A,B,C be subsets of N (or Σ∗). The following properties hold:

(1) If A ≤ B and B ≤ C, then A ≤ C.

(2) If A ≤ B then A ≤ B.

(3) If A ≤ B and B is listable (c.e., r.e.), then A is listable (c.e., r.e.).

(4) If A ≤ B and A is not listable (not c.e., not r.e.), then B is not listable (not c.e., not
r.e.).

(5) If A ≤ B and B is computable, then A is computable.

(6) If A ≤ B and A is not computable, then B is not computable.

Part (4) of Proposition 7.16 is often useful for proving that some set B is not listable. It
suffices to reduce some set known to be nonlistable to B, for example K. Similarly, Part (6)
of Proposition 7.16 is often useful for proving that some set B is not computable. It suffices
to reduce some set known to be noncomputable to B, for example K.

Observe that A ≤ B implies that A ≤ B, but not that B ≤ A.

Part (3) of Proposition 7.16 may be useful for proving that some set A is listable. It
suffices to reduce A to some set known to be listable, for example K. Similarly, Part (5)
of Proposition 7.16 may be useful for proving that some set A is computable. It suffices to
reduce A to some set known to be computable. In practice, it is often easier to prove directly
that A is computable by showing that both A and A are listable.

Another important concept is the concept of a complete set.

Definition 7.9. A listable (c.e., r.e.) set A is complete w.r.t. many-one reducibility iff every
listable (c.e., r.e.) set B is reducible to A, i.e., B ≤ A.

For simplicity, we will often say complete for complete w.r.t. many-one reducibility .
Intuitively, a complete listable (c.e., r.e.) set is a “hardest” listable (c.e., r.e.) set as far as
membership is concerned.

Theorem 7.17. The following properties hold:

(1) If A is complete, B is listable (c.e, r.e.), and A ≤ B, then B is complete.

(2) K0 is complete.

(3) K0 is reducible to K. Consequently, K is also complete.
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Proof. (1) This is left as a simple exercise.

(2) Let Wx be any listable set (recall Definition 7.7). Then

y ∈ Wx iff 〈x, y〉 ∈ K0,

and the reduction function is the computable function f such that

f(y) = 〈x, y〉 for all y ∈ N.

(3) We use the s-m-n Theorem. First, we leave it as an exercise to prove that there is a

computable function f such that

ϕf(x)(y) =

{
1 if ϕΠ1(x)(Π2(x)) is defined,
undefined otherwise,

for all x, y ∈ N. Then for every z ∈ N,

z ∈ K0 iff ϕΠ1(z)(Π2(z)) is defined,

iff ϕf(z)(y) = 1 for all y ∈ N. However,

ϕf(z)(y) = 1 iff ϕf(z)(f(z)) = 1,

since ϕf(z) is a constant function. This means that

z ∈ K0 iff f(z) ∈ K,

and f is the desired function.

As a corollary of Theorem 7.17, the set K is also complete.

Definition 7.10. Two sets A and B have the same degree of unsolvability or are equivalent
iff A ≤ B and B ≤ A.

Since K and K0 are both complete, they have the same degree of unsolvability in the set
of listable sets.

We will now investigate the reducibility and equivalence of various sets.

Recall that
TOTAL = {x ∈ N | ϕx is total}.

We define EMPTY and FINITE, as follows:

EMPTY = {x ∈ N | ϕx is undefined for all input},
FINITE = {x ∈ N | ϕx is defined only for finitely many input}.
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Obviously, EMPTY ⊂ FINITE, and since

FINITE = {x ∈ N | ϕx has a finite domain},
we have

FINITE = {x ∈ N | ϕx has an infinite domain},
and thus, TOTAL ⊂ FINITE. Since

EMPTY = {x ∈ N | ϕx is undefined for all input}
we have

EMPTY = {x ∈ N | ϕx is defined for some input},
we have FINITE ⊆ EMPTY.

Proposition 7.18. We have K0 ≤ EMPTY.

The proof of Proposition 7.18 follows from the proof of Theorem 7.17. We also have the
following proposition.

Proposition 7.19. The following properties hold:

(1) EMPTY is not listable (not c.e., not r.e.).

(2) EMPTY is listable (c.e., r.e.).

(3) K and EMPTY are equivalent.

(4) EMPTY is complete.

Proof. We prove (1) and (3), leaving (2) and (4) as an exercise (Actually, (2) and (4) follow
easily from (3)). First, we show that K ≤ EMPTY. By the s-m-n Theorem, there exists a
computable function f such that

ϕf(x)(y) =

{
ϕx(x) if ϕx(x) is defined,
undefined if ϕx(x) is undefined,

for all x, y ∈ N. Note that for all x ∈ N,

x ∈ K iff f(x) ∈ EMPTY,

and thus, K ≤ EMPTY. Since K is not listable, EMPTY is not listable.

We now prove (3). By the s-m-n Theorem, there is a computable function g such that

ϕg(x)(y) = min z[T (x,Π1(z),Π2(z))], for all x, y ∈ N.

Note that
x ∈ EMPTY iff g(x) ∈ K for all x ∈ N.

Therefore, EMPTY ≤ K, and since we just showed that K ≤ EMPTY, the sets K and
EMPTY are equivalent.
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Proposition 7.20. The following properties hold:

(1) TOTAL and TOTAL are not listable (not c.e., not r.e.).

(2) FINITE and FINITE are not listable (not c.e, not r.e.).

Proof. Checking the proof of Theorem 7.17, we note that K0 ≤ TOTAL and K0 ≤ FINITE.
Hence, we get K0 ≤ TOTAL and K0 ≤ FINITE, and neither TOTAL nor FINITE is
listable. If TOTAL was listable, then there would be a computable function f such that
TOTAL = range(f). Define g as follows:

g(x) = ϕf(x)(x) + 1 = ϕuniv(f(x), x) + 1

for all x ∈ N. Since f is total and ϕf(x) is total for all x ∈ N, the function g is total
computable. Let e be an index such that

g = ϕf(e).

Since g is total, g(e) is defined. Then we have

g(e) = ϕf(e)(e) + 1 = g(e) + 1,

a contradiction. Hence, TOTAL is not listable. Finally, we show that TOTAL ≤ FINITE.
This also shows that FINITE is not listable. By the s-m-n Theorem, there is a computable
function f such that

ϕf(x)(y) =

{
1 if ∀z ≤ y(ϕx(z) ↓),
undefined otherwise,

for all x, y ∈ N. It is easily seen that

x ∈ TOTAL iff f(x) ∈ FINITE for all x ∈ N.

From Proposition 7.20, we have TOTAL ≤ FINITE. It turns out that FINITE ≤
TOTAL, and TOTAL and FINITE are equivalent.

Proposition 7.21. The sets TOTAL and FINITE are equivalent.

Proof. We show that FINITE ≤ TOTAL. By the s-m-n Theorem, there is a computable
function f such that

ϕf(x)(y) =

{
1 if ∃z ≥ y(ϕx(z) ↓),
undefined if ∀z ≥ y(ϕx(z) ↑),

for all x, y ∈ N. It is easily seen that

x ∈ FINITE iff f(x) ∈ TOTAL for all x ∈ N.

More advanced topics such that the recursion theorem, the extended Rice Theorem, and
creative and productive sets will be discussed in Chapter 8.



Chapter 8

Recursion Theory; More Advanced
Topics

This chapter is devoted to three advanced topics of recursion theory:

(1) The recursion theorem.

(2) The extended Rice theorem.

(3) Creative and productive sets and their use in proving a strong version of Gödel’s first
incompleteness theorem.

The recursion theorem is a deep result and an important technical tool in recursion
theory.

The extended Rice theorem gives a characterization of the sets of partial computable
functions that are listable in terms of extensions of partial computable functions with finite
domains.

Productive and creative sets arise when dealing with truth and provability in arithmetic.
The “royal road” to Gödel’s first incompleteness theorem is to first prove that for any proof
system for arithmetic that only proves true statements (and is rich enough), the set of true
sentences of arithmetic is productive. Productive sets are not listable in a strong sense, so
we deduce that it is impossible to axiomatize the set of true sentences of arithmetic in a
computable manner. The set of provable sentences of arithmetic is creative, which implies
that it is impossible to decide whether a sentence of arithmetic is provable. This also implies
that there are true sentences F such that neither F nor ¬F are provable.

8.1 The Recursion Theorem

The recursion theorem, due to Kleene, is a fundamental result in recursion theory. Let f be
a total computable function. Then it turns out that there is some n such that

ϕn = ϕf(n).

347
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To understand why such a mysterious result is interesting, consider the recursive definition
of the factorial function fact(n) = n! given by

fact(0) = 1

fact(n+ 1) = (n+ 1)fact(n).

The trick is to define the partial computable computable function g (defined on N2) given
by

g(m, 0) = 1

g(m,n+ 1) = (n+ 1)ϕm(n)

for all m,n ∈ N. By the s-m-n Theorem, there is a computable function f such that

g(m,n) = ϕf(m)(n) for all m,n ∈ N.

Then the equations above become

ϕf(m)(0) = 1

ϕf(m)(n+ 1) = (n+ 1)ϕm(n).

Since f is (total) recursive, there is some m0 such that ϕm0 = ϕf(m0), and for m0 we get

ϕm0(0) = 1

ϕm0(n+ 1) = (n+ 1)ϕm0(n),

so the partial recursive function ϕm0 satisfies the recursive definition of factorial , which
means that it is a fixed point of the recursive equations defining factorial. Since factorial is
a total function, ϕm0 = fact, that is, factorial is a total computable function.

More generally, if a function h (over Nk) is defined in terms of recursive equations of the
form

h(z1, . . . , zk) = t(h(y1, . . . , yk))

where y1, . . . , yk, z1, . . . , zk are expressions in some variables x1, . . . , xk ranging over N and
where t is an expression containing recursive occurrences of h, if we can show that the
equations

g(m, z1, . . . , zk) = t(ϕm(y1, . . . , yk))

define a partial computable function g, then we can use the above trick to put them in the
form

ϕf(m)(z1, . . . , zk) = t(ϕm(y1, . . . , yk)).

for some computable function f . Such a formalism is decribed in detail in Chapter XI of
Kleene I.M [36]. By the recursion theorem, there is some m0 such that ϕm0 = ϕf(m0), so ϕm0

satisfies the recursive equations

ϕm0(z1, . . . , zk) = t(ϕm0(y1, . . . , yk)),
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and ϕm0 is a fixed point of these recursive equations. If we can show that ϕm0 is total, then
we found the fixed point of this set of recursive equations and h = ϕm0 is a total computable
function. If ϕm0 is a partial function, it is still a fixed point. However in general there is
more than one fixed point and we don’t which one ϕm0 is (it could be the partial function
undefined everywhere).

Theorem 8.1. (Recursion Theorem, Version 1) Let ϕ0, ϕ1, . . . be any acceptable indexing
of the partial computable functions. For every total computable function f , there is some n
such that

ϕn = ϕf(n).

Proof. Consider the function θ defined such that

θ(x, y) = ϕuniv(ϕuniv(x, x), y) for all x, y ∈ N.

The function θ is partial computable, and there is some index j such that ϕj = θ. By the
s-m-n Theorem, there is a computable function g such that

ϕg(x)(y) = θ(x, y).

Consider the function f◦g. Since it is computable, there is some indexm such that ϕm = f◦g.
Let

n = g(m).

Since ϕm is total, ϕm(m) is defined, and we have

ϕn(y) = ϕg(m)(y) = θ(m, y) = ϕuniv(ϕuniv(m,m), y) = ϕϕuniv(m,m)(y)

= ϕϕm(m)(y) = ϕf◦g(m)(y) = ϕf(g(m))(y) = ϕf(n)(y),

for all y ∈ N. Therefore, ϕn = ϕf(n), as desired.

The recursion theorem can be strengthened as follows.

Theorem 8.2. (Recursion Theorem, Version 2) Let ϕ0, ϕ1, . . . be any acceptable indexing
of the partial computable functions. There is a total computable function h such that for all
x ∈ N, if ϕx is total, then

ϕϕx(h(x)) = ϕh(x).

Proof. The computable function g obtained in the proof of Theorem 8.1 satisfies the condition

ϕg(x) = ϕϕx(x),

and it has some index i such that ϕi = g. Recall that c is a computable composition function
such that

ϕc(x,y) = ϕx ◦ ϕy.
It is easily verified that the function h defined such that

h(x) = g(c(x, i)) for all x ∈ N

does the job.
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A third version of the recursion Theorem is given below.

Theorem 8.3. (Recursion Theorem, Version 3) For all n ≥ 1, there is a total computable
function h of n + 1 arguments, such that for all x ∈ N, if ϕx is a total computable function
of n+ 1 arguments, then

ϕϕx(h(x,x1,...,xn),x1,...,xn) = ϕh(x,x1,...,xn),

for all x1, . . . , xn ∈ N.

Proof. Let θ be the function defined such that

θ(x, x1, . . . , xn, y) = ϕϕx(x,x1,...,xn)(y) = ϕuniv(ϕuniv(x, x, x1, . . . , xn), y)

for all x, x1, . . . , xn, y ∈ N. By the s-m-n Theorem, there is a computable function g such
that

ϕg(x,x1,...,xn) = ϕϕx(x,x1,...,xn).

It is easily shown that there is a computable function c such that

ϕc(i,j)(x, x1, . . . , xn) = ϕi(ϕj(x, x1, . . . , xn), x1, . . . , xn)

for any two partial computable functions ϕi and ϕj (viewed as functions of n+ 1 arguments)
and all x, x1, . . . , xn ∈ N. Let ϕi = g, and define h such that

h(x, x1, . . . , xn) = g(c(x, i), x1, . . . , xn),

for all x, x1, . . . , xn ∈ N. We have

ϕh(x,x1,...,xn) = ϕg(c(x,i),x1,...,xn) = ϕϕc(x,i)(c(x,i),x1,...,xn),

and using the fact that ϕi = g,

ϕϕc(x,i)(c(x,i),x1,...,xn) = ϕϕx(ϕi(c(x,i),x1,...,xn),x1,...,xn),

= ϕϕx(g(c(x,i),x1,...,xn),x1,...,xn),

= ϕϕx(h(x,x1,...,xn),x1,...,xn).

As a first application of the recursion theorem, we can show that there is an index n such
that ϕn is the constant function with output n. Loosely speaking, ϕn prints its own name.
Let f be the computable function such that

f(x, y) = x

for all x, y ∈ N. By the s-m-n Theorem, there is a computable function g such that

ϕg(x)(y) = f(x, y) = x
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for all x, y ∈ N. By the Theorem 8.1, there is some n such that

ϕg(n) = ϕn,

the constant function with value n.

As a second application, we get a very short proof of Rice’s theorem. Let C be such that
PC 6= ∅ and PC 6= N, and let j ∈ PC and k ∈ N− PC . Define the function f as follows:

f(x) =

{
j if x /∈ PC ,
k if x ∈ PC ,

If PC is computable, then f is computable. By the recursion theorem (Theorem 8.1), there
is some n such that

ϕf(n) = ϕn.

But then we have

n ∈ PC iff f(n) /∈ PC
by definition of f , and thus,

ϕf(n) 6= ϕn,

a contradiction. Hence, PC is not computable.

As a third application, we prove the following proposition.

Proposition 8.4. Let C be a set of partial computable functions and let

A = {x ∈ N | ϕx ∈ C}.

The set A is not reducible to its complement A.

Proof. Assume that A ≤ A. Then there is a computable function f such that

x ∈ A iff f(x) ∈ A

for all x ∈ N. By the recursion theorem, there is some n such that

ϕf(n) = ϕn.

But then,

ϕn ∈ C iff n ∈ A iff f(n) ∈ A iff ϕf(n) ∈ C,

contradicting the fact that

ϕf(n) = ϕn.
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The recursion theorem can also be used to show that functions defined by recursive
definitions other than primitive recursion are partial computable, as we discussed a the
beginning of this section. This is the case for the function known as Ackermann’s function
discussed in Section 3.10 and defined recursively as follows:

f(0, y) = y + 1,

f(x+ 1, 0) = f(x, 1),

f(x+ 1, y + 1) = f(x, f(x+ 1, y)).

It can be shown that this function is not primitive recursive. Intuitively, it outgrows all
primitive recursive functions. However, f is computable, but this is not so obvious. We can
use the recursion theorem to prove that f is computable. Using the technique described at
the beginning of this section consider the following definition by cases:

g(n, 0, y) = y + 1,

g(n, x+ 1, 0) = ϕuniv(n, x, 1),

g(n, x+ 1, y + 1) = ϕuniv(n, x, ϕuniv(n, x+ 1, y)).

Clearly, g is partial computable. By the s-m-n Theorem, there is a computable function h
such that

ϕh(n)(x, y) = g(n, x, y).

The equations defining g yield

ϕh(n)(0, y) = y + 1,

ϕh(n)(x+ 1, 0) = ϕn(x, 1),

ϕh(n)(x+ 1, y + 1) = ϕn(x, ϕn(x+ 1, y)).

By the recursion theorem, there is an m such that

ϕh(m) = ϕm.

Therefore, the partial computable function ϕm(x, y) satisfies the equations

ϕm(0, y) = y + 1,

ϕm(x+ 1, 0) = ϕm(x, 1),

ϕm(x+ 1, y + 1) = ϕm(x, ϕm(x+ 1, y))

defining Ackermann’s function. We showed in Section 3.10 that ϕm(x, y) is a total function,
and thus, f = ϕm and Ackermann’s function is a total computable function.

Hence, the recursion theorem justifies the use of certain recursive definitions. However,
note that there are some recursive definitions that are only satisfied by the completely un-
defined function.

In the next section, we prove the extended Rice theorem.
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8.2 Extended Rice Theorem

The extended Rice theorem characterizes the sets of partial computable functions C such that
PC is listable (c.e., r.e.). First, we need to discuss a way of indexing the partial computable
functions that have a finite domain. Using the uniform projection function Π (see Definition
6.3), we define the primitive recursive function F such that

F (x, y) = Π(y + 1,Π1(x) + 1,Π2(x)).

We also define the sequence of partial functions P0, P1, . . . as follows:

Px(y) =
{
F (x, y)− 1 if 0 < F (x, y) and y < Π1(x) + 1,
undefined otherwise.

Proposition 8.5. Every Px is a partial computable function with finite domain, and every
partial computable function with finite domain is equal to some Px.

The proof is left as an exercise. The easy part of the extended Rice theorem is the
following lemma. Recall that given any two partial functions f : A→ B and g : A→ B, we
say that g extends f iff f ⊆ g, which means that g(x) is defined whenever f(x) is defined,
and if so, g(x) = f(x).

Proposition 8.6. Let C be a set of partial computable functions. If there is a listable
(c.e., r.e.) set A such that ϕx ∈ C iff there is some y ∈ A such that ϕx extends Py, then
PC = {x | ϕx ∈ C} is listable (c.e., r.e.).

Proof. Proposition 8.6 can be restated as

PC = {x | ∃y ∈ A, Py ⊆ ϕx}

is listable. If A is empty, so is PC , and PC is listable. Otherwise, let f be a computable
function such that

A = range(f).

Let ψ be the following partial computable function:

ψ(z) =
{

Π1(z) if Pf(Π2(z)) ⊆ ϕΠ1(z),
undefined otherwise.

It is clear that
PC = range(ψ).

To see that ψ is partial computable, write ψ(z) as follows:

ψ(z) =


Π1(z) if ∀w ≤ Π1(f(Π2(z)))

[F (f(Π2(z)), w) > 0⇒ ϕΠ1(z)(w) = F (f(Π2(z)), w)− 1],

undefined otherwise.

This completes the proof.
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To establish the converse of Proposition 8.6, we need two propositions.

Proposition 8.7. If PC is listable (c.e., r.e.) and ϕ ∈ C, then there is some Py ⊆ ϕ such
that Py ∈ C.

Proof. Assume that PC is listable and that ϕ ∈ C. By an s-m-n construction, there is a
computable function g such that

ϕg(x)(y) =

{
ϕ(y) if ∀z ≤ y[¬T (x, x, z)],
undefined if ∃z ≤ y[T (x, x, z)],

for all x, y ∈ N. Observe that if x ∈ K, then ϕg(x) is a finite subfunction of ϕ, and if x ∈ K,
then ϕg(x) = ϕ. Assume that no finite subfunction of ϕ is in C. Then

x ∈ K iff g(x) ∈ PC

for all x ∈ N, that is, K ≤ PC . Since PC is listable, K would also be listable, a contradiction.

As a corollary of Proposition 8.7, we note that TOTAL is not listable.

Proposition 8.8. If PC is listable (c.e., r.e.), ϕ ∈ C, and ϕ ⊆ ψ, where ψ is a partial
computable function, then ψ ∈ C.

Proof. Assume that PC is listable. We claim that there is a computable function h such that

ϕh(x)(y) =

{
ψ(y) if x ∈ K,
ϕ(y) if x ∈ K,

for all x, y ∈ N. Assume that ψ /∈ C. Then

x ∈ K iff h(x) ∈ PC

for all x ∈ N, that is, K ≤ PC , a contradiction, since PC is listable. Therefore, ψ ∈ C. To
find the function h we proceed as follows: Let ϕ = ϕj and define Θ such that

Θ(x, y, z) =

{
ϕ(y) if T (j, y, z) ∧ ¬T (x, y, w), for 0 ≤ w < z
ψ(y) if T (x, x, z) ∧ ¬T (j, y, w), for 0 ≤ w < z
undefined otherwise.

Observe that if x = y = j, then Θ(j, j, z) is multiply defined, but since ψ extends ϕ, we
get the same value ψ(y) = ϕ(y), so Θ is a well defined partial function. Clearly, for all
(m,n) ∈ N2, there is at most one z ∈ N so that Θ(x, y, z) is defined, so the function σ
defined by

σ(x, y) =
{
z if (x, y, z) ∈ dom(Θ)
undefined otherwise
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is a partial computable function. Finally, let

θ(x, y) = Θ(x, y, σ(x, y)),

a partial computable function. It is easy to check that

θ(x, y) =

{
ψ(y) if x ∈ K,
ϕ(y) if x ∈ K,

for all x, y ∈ N. By the s-m-n Theorem, there is a computable function h such that

ϕh(x)(y) = θ(x, y)

for all x, y ∈ N.

Observe that Proposition 8.8 yields a new proof that TOTAL is not listable (not c.e., not
r.e.). Finally we can prove the extended Rice theorem.

Theorem 8.9. (Extended Rice Theorem) The set PC is listable (c.e., r.e.) iff there is a
listable (c.e., r.e) set A such that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).

Proof. Let PC = dom(ϕi). Using the s-m-n Theorem, there is a computable function k such
that

ϕk(y) = Py for all y ∈ N.

Define the listable set A such that

A = dom(ϕi ◦ k).

Then
y ∈ A iff ϕi(k(y)) ↓ iff Py ∈ C.

Next, using Proposition 8.7 and Proposition 8.8, it is easy to see that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).

Indeed, if ϕx ∈ C, by Proposition 8.7, there is a finite subfunction Py ⊆ ϕx such that Py ∈ C,
but

Py ∈ C iff y ∈ A,
as desired. On the other hand, if

Py ⊆ ϕx

for some y ∈ A, then
Py ∈ C,

and by Proposition 8.8, since ϕx extends Py, we get

ϕx ∈ C.



356 CHAPTER 8. RECURSION THEORY; MORE ADVANCED TOPICS

8.3 Creative and Productive Sets; Incompleteness in

Arithmetic

In this section, we discuss some special sets that have important applications in logic: creative
and productive sets. These notions were introduced by Post and Dekker (1944, 1955). The
concepts to be described are illustrated by the following situation. Assume that

Wx ⊆ K

for some x ∈ N (recall that Wx was introduced in Definition 7.7). We claim that

x ∈ K −Wx.

Indeed, if x ∈ Wx, then ϕx(x) is defined, and by definition of K, we get x /∈ K, a contradic-
tion. Therefore, ϕx(x) must be undefined, that is,

x ∈ K −Wx.

The above situation can be generalized as follows.

Definition 8.1. A set A ⊆ N is productive iff there is a total computable function f such
that for every listable set Wx,

if Wx ⊆ A then f(x) ∈ A−Wx for all x ∈ N.

The function f is called the productive function of A. A set A is creative if it is listable (c.e.,
r.e.) and if its complement A is productive.

As we just showed, K is creative and K is productive. It is also easy to see that TOTAL
is productive. But TOTAL is worse than K, because by Proposition 7.20, TOTAL is not
listable.

The following facts are immediate consequences of the definition.

(1) A productive set is not listable (not c.e., not r.e.), since A 6= Wx for all listable sets Wx

(the image of the productive function f is a subset of A −Wx, which can’t be empty
since f is total).

(2) A creative set is not computable (not recursive).

Productiveness is a technical way of saying that a nonlistable set A is not listable in a
rather strong and constructive sense. Indeed, there is a computable function f such that
no matter how we attempt to approximate A with a listable set Wx ⊆ A, then f(x) is an
element in A not in Wx.
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Remark: In Rogers [53] (Chapter 7, Section 3), the definition of a productive set only
requires the productive function f to be partial computable. However, it is proven in Theorem
XI of Rogers that this weaker requirement is equivalent to the stronger requirement of
Definition 8.1.

Creative and productive sets arise in logic. The set of theorems of a logical theory is
often creative. For example, the set of theorems in Peano’s arithmetic is creative, and the
set of true sentences of Peano’s arithmetic is productive. This yields incompleteness results.
We will return to this topic at the end of this section.

Proposition 8.10. If a set A is productive, then it has an infinite listable (c.e., r.e.) subset.

Proof. We first give an informal proof. Let f be the computable productive function of A.
We define a computable function g as follows: Let x0 be an index for the empty set, and let

g(0) = f(x0).

Assuming that
{g(0), g(1), . . . , g(y)}

is known, let xy+1 be an index for this finite set, and let

g(y + 1) = f(xy+1).

Since Wxy+1 ⊆ A, we have f(xy+1) ∈ A.

For the formal proof, following Rogers [53] (Chapter 7, Section 7, Theorem X), we use
the following facts whose proof is left as an exercise:

(1) There is a computable function u such that

Wu(x,y) = Wx ∪Wy.

(2) There is a computable function t such that

Wt(x) = {x}.

Letting x0 be an index for the empty set, we define the function h as follows:

h(0) = x0,

h(y + 1) = u(t(f(y)), h(y)).

We define g such that
g = f ◦ h.

It is easily seen that g does the job.
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Another important property of productive sets is the following.

Proposition 8.11. If a set A is productive, then K ≤ A.

Proof. Let f be a productive function for A. Using the s-m-n Theorem, we can find a
computable function h such that

Wh(y,x) =

{
{f(y)} if x ∈ K,
∅ if x ∈ K.

The above can be restated as follows:

ϕh(y,x)(z) =

{
1 if x ∈ K and z = f(y),
undefined if x ∈ K,

for all x, y, z ∈ N. By the third version of the recursion theorem (Theorem 8.3), there is a
computable function g such that

Wg(x) = Wh(g(x),x) for all x ∈ N.

Let
k = f ◦ g.

We claim that
x ∈ K iff k(x) ∈ A for all x ∈ N.

Subtituting g(x) for y in the equation for Wh(y,x) and using the fact that Wg(x) = Wh(g(x),x)

and k(x) = f(g(x)), we get

Wg(x) =

{
{f(g(x))} = {k(x)} if x ∈ K,
∅ if x ∈ K.

Because f is a productive function for A, if x ∈ K, then Wg(x) = ∅ ⊆ A, so k(x) = f(g(x)) ∈
A. Conversely, assume that k(x) = f(g(x)) ∈ A. If x ∈ K, then Wg(x) = {f(g(x))}, so
Wg(x) ⊆ A, and since f is a productive function for A, we have f(g(x)) ∈ A − Wg(x) =
A − {f(g(x))}, a contradiction. Therefore, x /∈ K and the reduction is achieved. Thus,
K ≤ A.

Using Part (1) of Proposition 8.12 stated next we obtain the converse of Proposition 8.11.
Thus a set A is productive iff K ≤ A. This fact is recorded in the next proposition.

The following results can also be shown.

Proposition 8.12. The following facts hold.

(1) If A is productive and A ≤ B, then B is productive.

(2) A is creative iff A is complete.
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(3) A is creative iff A is equivalent to K.

(4) A is productive iff K ≤ A.

Part (1) is easy to prove; see Rogers [53] (Chapter 7, Theorem V(b)). Part (2) is proven
in Rogers [53] (Chapter 11, Corollary V). Part (3) follows from Part (2) since K is complete.
Part (4) follows from Proposition 8.11 and Part (1).

We conclude with a discussion of the significance of the notions of productive and creative
sets to logic. A more detailed discussion can be found in Rogers [53] (Chapter 7, Section 8).
In Section 2.19 we discussed Peano arithmetic and the reader is invited to review it. It is
convenient to add a countable set of constants 0, 1, 2, . . . , denoting the natural numbers to
the language of arithmetic, and the new axioms

Sn(0) = n, n ∈ N.

By a now fairly routine process (using a pairing function and an extended pairing function),
it is possible to assign a Gödel number #(A) to every first-order sentence A in the language
of arithmetic; see Enderton [14] (Chapter III) or Kleene I.M. [36] (Chapter X). With some
labor, it is possible to construct a formula Fx with one free variable x having the following
property:

n ∈ K iff (Fn is true in N)

n /∈ K iff (Fn is false in N) iff (¬Fx is true in N).

One should not underestimate the technical difficulty of this task. One of Gödel’s most
original steps in proving his first incompleteness theorem was to define a variant of the
formula Fx. Later on, simpler proofs were given, but they are still very technical. The brave
reader should attempt to solve Exercises 7.64 and 7.65 in Rogers [53].

Observe that the sentences Fn are special kinds of sentences of arithmetic but of couse
there are many more sentences of arithmetic. The following “basic lemma” from Rogers [53]
(Chapter 7, Section 8) is easily shown.

Proposition 8.13. For any two subsets S and T of N, if T is listable and if S ∩ T is
productive, then S is productive. In particular, if T is computable and if S ∩T is productive,
then S is productive.

With a slight abuse of notation, we say that a set T is sentences of arithmetic is com-
putable (resp. listable) iff the set of Gödel numbers #(A) of sentences A in T is computable
(resp. listable). Then the following remarkable (historically shocking) facts hold.

Theorem 8.14. (Unaxiomatizability of arithmetic) The following facts hold.

(1) The set of sentences of arithmetic true in N is a productive set. Consequently, the set
of true sentences is not listable.
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(2) The set of sentences of arithmetic false in N is a productive set. Consequently, the set
of false sentences is not listable.

Proof sketch. (1) It is easy to show that the set {¬Fx | x ∈ N} is computable. Since

{n ∈ N | ¬Fn is true in N} = K

is productive and

{A | A is true in N} ∩ {¬Fx | x ∈ N} = {¬Fx | ¬Fx is true in N}
= {¬Fx | x ∈ K},

by Proposition 8.13, the set {A | A is true in N} is also productive.

(2) It is also easy to show that the set {Fx | x ∈ N} is computable. Since

{n ∈ N | Fn is false in N} = K

is productive and

{A | A is false in N} ∩ {Fx | x ∈ N} = {Fx | Fx is false in N}
= {Fx | x ∈ K},

by Proposition 8.13, the set {A | A is false in N} is also productive.

Definition 8.2. A proof system for arithmetic is axiomatizable if the set of provable sen-
tences is listable.

Since the set of provable sentences of an axiomatizable proof system is listable, Theo-
rem 8.14 annihilates any hope of finding an axiomatization of arithmetic. Theorem 8.14
also shows that it is impossible to decide effectively (algorithmically) whether a sentence of
arithmetic is true. In fact the set of true sentences of arithmetic is not even listable.

If we consider proof systems for arithmetic, such as Peano arithmetic, then creative sets
show up.

Definition 8.3. A proof system for arithmetic is sound if every provable sentence is true
(in N). A proof system is consistent if there is no sentence A such that both A and ¬A are
provable.

Clearly, a sound proof system is consistent.

Assume that a proof system for arithmetic is sound and strong enough so that the for-
mula Fx with the free variable x introduced just before Proposition 8.13 has the following
properties:

n ∈ K iff (Fn is provable)

n /∈ K iff (Fn is not provable).

Peano arithmetic is such a proof system. Then we have the following theorem.
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Theorem 8.15. (Undecidability of provability in arithmetic) Consider any axiomatizable
proof system for arithmetic satisfying the hypotheses stated before the statement of the theo-
rem. The following facts hold.

(1) The set of unprovable sentences of arithmetic is a productive set. Consequently, the
set of unprovable sentences is not listable.

(2) The set of provable sentences of arithmetic is a creative set. Consequently, the set of
provable sentences is not computable.

Proof sketch. (1) It is easy to show that the set {Fx | x ∈ N} is computable. Since

{n ∈ N | Fn is not provable} = K

is productive and

{A | A is not provable} ∩ {Fx | x ∈ N} = {Fx | Fx is not provable}
= {Fx | x ∈ K},

by Proposition 8.13, the set {A | A is not provable} is also productive.

(2) Since our proof system is axiomatizable, the set of provable sentences is listable, and
by (1), its complement is productive, so the set of provable sentences is creative.

As a corollary of Theorem 8.15, there is no algorithm to decide whether a sentence of
arithmetic is provable or not. But things are worse. Because the set of unprovable sentences
of arithmetic is productive, there is a recursive function f , which for any attempt to find a
listable subset W of the nonprovable sentences of arithmetic, produces another nonprovable
sentence not in W .

Theorem 8.15 also implies Gödel’s first incompleteness theorem. Indeed, it is immediately
seen that the set {Fx | ¬Fx is provable} is listable (because {¬Fx | x ∈ N} is computable
and {A | A is provable} is listable). But since our proof system is assumed to be sound, ¬Fx
provable implies that Fx is not provable, so by

n /∈ K iff (Fn is not provable),

we have
{x ∈ N | ¬Fx is provable} ⊆ {x ∈ N | Fx is not provable} = K.

Since K is productive and {x ∈ N | ¬Fx is provable} is listable, we have

Wy = {x ∈ N | ¬Fx is provable}

for some y, and if f is the productive function associated with K, then for x0 = f(y) we
have

Fx0 ∈ {Fx | Fx is not provable} − {¬Fx | ¬Fx is provable},
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that is, both Fx0 and ¬Fx0 are not provable. Furthermore, since

n /∈ K iff (Fn is not provable)

and
n /∈ K iff (Fn is false in N)

we see that Fx0 is false in N, and so ¬Fx0 is true in N. In summary, we proved the following
result.

Theorem 8.16. (Incompleteness in arithmetic (Gödel 1931)) Consider any axiomatizable
proof system for arithmetic satisfying the hypotheses stated earlier. Then there exists a
sentence F of arithmetic (F = ¬Fx0) such that neither F nor ¬F are provable. Furthermore,
F is true in N.

Theorem 8.15 holds under the weaker assumption that the proof system is consistent (as
opposed to sound), and that there is a formula G with one free variable x such that

n ∈ K iff (Gn is provable).

The formula G is due to Rosser. The incompleteness theorem (Theorem 8.16) also holds
under the weaker assumption of consistency. See also Kleene [37] (Chapter 5, Theorem VIII
and Corollary 1).

To summarize informally the above negative results:

1. No (effective) axiomatization of mathematics can exactly capture all true statements
of arithmetic.

2. From any (effective) axiomatization which yields only true statements of arithmetic, a
new true statement can be found not provable in that axiomatization.

Fact (2) is what inspired Post to use the term creative for the type of sets arising in
Definition 8.1. Indeed, one has to be creative to capture truth in arithmetic.

Another (relatively painless) way to prove incompleteness results in arithmetic is to use
Diophantine definability; see Section 9.8.



Chapter 9

Listable Sets and Diophantine Sets;
Hilbert’s Tenth Problem

9.1 Diophantine Equations and Hilbert’s

Tenth Problem

There is a deep and a priori unexpected connection between the theory of computable and
listable sets and the solutions of polynomial equations involving polynomials in several vari-
ables with integer coefficients. These are polynomials in n ≥ 1 variables x1, . . . , xn which
are finite sums of monomials of the form

axk11 · · ·xknn ,
where k1, . . . , kn ∈ N are nonnegative integers, and a ∈ Z is an integer (possibly negative).
The natural number k1 + · · ·+ kn is called the degree of the monomial axk11 · · ·xknn .

For example, if n = 3, then

1. 5, −7, are monomials of degree 0.

2. 3x1, −2x2, are monomials of degree 1.

3. x1x2, 2x2
1, 3x1x3, −5x2

2, are monomials of degree 2.

4. x1x2x3, x
2
1x3, −x3

2, are monomials of degree 3.

5. x4
1, −x2

1x
2
3, x1x

2
2x3, are monomials of degree 4.

It is convenient to introduce multi-indices, where an n-dimensional multi-index is an
n-tuple α = (k1, . . . , kn) with n ≥ 1 and ki ∈ N. Let |α| = k1 + · · ·+ kn. Then we can write

xα = xk11 · · ·xknn .
For example, for n = 3,

x(1,2,1) = x1x
2
2x3, x

(0,2,2) = x2
2x

2
3.

363
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Definition 9.1. A polynomial P (x1, . . . , xn) in the variables x1, . . . , xn with integer coeffi-
cients is a finite sum of monomials of the form

P (x1, . . . , xn) =
∑
α

aαx
α,

where the α’s are n-dimensional multi-indices, and with aα ∈ Z. The maximum of the
degrees |α| of the monomials aαx

α is called the total degree of the polynomial P (x1, . . . , xn).
The set of all such polynomials is denoted by Z[x1, . . . , xn].

Sometimes, we write P instead of P (x1, . . . , xn). We also use variables x, y, z etc. instead
of x1, x2, x3, . . ..

For example, 2x− 3y − 1 is a polynomial of total degree 1, x2 + y2 − z2 is a polynomial
of total degree 2, and x3 + y3 + z3 − 29 is a polynomial of total degree 3, and 2x4 + xyz − 1
is a polynomial of total degree 4.

Mathematicians have been interested for a long time in the problem of solving equations
of the form

P (x1, . . . , xn) = 0,

with P ∈ Z[x1, . . . , xn], seeking only integer solutions for x1, . . . , xn. What this means is that
we try to find n-tuples of integers (a1, . . . , an) ∈ Zn such that when we assign the value ai to
the variable xi for i = 1, . . . , n in the polynomial P (x1, . . . , xn) and evaluate P (a1, . . . , an)
we obtain P (a1, . . . , an) = 0.

Diophantus of Alexandria, a Greek mathematician of the 3rd century, was one of the
first to investigate such equations. For this reason, seeking integer solutions of polynomials
in Z[x1, . . . , xn] is referred to as solving Diophantine equations .

This problem is not as simple as it looks. The equation

2x− 3y − 1 = 0

obviously has the solution x = 2, y = 1, and more generally x = −1 + 3a, y = −1 + 2a, for
any integer a ∈ Z.

The equation
x2 + y2 − z2 = 0

has the solution x = 3, y = 4, z = 5, since 32 + 42 = 9 + 16 = 25 = 52. More generally, the
reader should check that

x = t2 − 1, y = 2t, z = t2 + 1

is a solution for all t ∈ Z.

Even solving quadratic Diophantine equations can be harder than it looks. For example,
it can be shown that the smallest positive solution to the equation

x2 − 73y2 − 1 = 0
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is

x = 2, 281, 249, y = 267, 000.

See Niven, Zuckermann and Montgomery [46], Section 7.8. The above equation is a special
case of what is known as Pell’s equation, x2−d2y2 = 1. It plays a crucial role in the negative
solution of Hilbert’s tenth problem (see below).

The equation

x3 + y3 + z3 − 29 = 0

has the solution x = 3, y = 1, z = 1.

What about the equation

x3 + y3 + z3 − 30 = 0?

Amazingly, the only known integer solution is

(x, y, z) = (−283059965,−2218888517, 2220422932),

discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant, and M. Beck, following an approach
suggested by N. Elkies.

And what about solutions of the equation

x3 + y3 + z3 − 33 = 0?

Until 2019 it was still an open problem but Andrew Booker found the following amazing
solution:

(8, 866, 128, 975, 287, 528)3+(−8, 778, 405, 442, 862, 239)3+(−2, 736, 111, 468, 807, 040)3 = 33.

In 1900, at the International Congress of Mathematicians held in Paris, the famous
mathematician David Hilbert presented a list of ten open mathematical problems. Soon
after, Hilbert published a list of 23 problems. The tenth problem is this:

Hilbert’s tenth problem (H10)

Find an algorithm that solves the following problem:

Given as input a polynomial P ∈ Z[x1, . . . , xn] with integer coefficients, return YES or
NO, according to whether there exist integers a1, . . . , an ∈ Z so that P (a1, . . . , an) = 0; that
is, the Diophantine equation P (x1, . . . , xn) = 0 has a solution.

It is important to note that at the time Hilbert proposed his tenth problem, a rigorous
mathematical definition of the notion of algorithm did not exist. In fact, the machinery
needed to even define the notion of algorithm did not exist. It is only around 1930 that
precise definitions of the notion of computability due to Turing, Church, and Kleene were
formulated, and soon after shown to be all equivalent.
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So to be precise, the above statement of Hilbert’s tenth should say: find a RAM program
(or equivalently a Turing machine) that solves the following problem: ...

In 1970, the following somewhat surprising resolution of Hilbert’s tenth problem was
reached:

Theorem (Davis-Putnam-Robinson-Matiyasevich)

Hilbert’s tenth problem is undecidable; that is, there is no algorithm for solving Hilbert’s
tenth problem.

In 1962, Davis, Putnam and Robinson had shown that if a fact known as Julia Robinson
hypothesis could be proven, then Hilbert’s tenth problem would be undecidable. At the time,
the Julia Robinson hypothesis seemed implausible to many, so it was a surprise when in 1970
Matiyasevich found a set satisfying the Julia Robinson hypothesis, thus completing the proof
of the undecidability of Hilbert’s tenth problem. It is also a bit startling that Matiyasevich’s
set involves the Fibonacci numbers.

A detailed account of the history of the proof of the undecidability of Hilbert’s tenth
problem can be found in Martin Davis’ classical paper Davis [10].

Even though Hilbert’s tenth problem turned out to have a negative solution, the knowl-
edge gained in developing the methods to prove this result is very significant. What was
revealed is that polynomials have considerable expressive powers. This is what we discuss
in the next section.

9.2 Diophantine Sets and Listable Sets

We begin by showing that if we can prove that the version of Hilbert’s tenth problem with
solutions restricted to belong to N is undecidable, then Hilbert’s tenth problem (with solutions
in Z is undecidable).

Proposition 9.1. If we had an algorithm for solving Hilbert’s tenth problem (with solutions
in Z), then we would have an algorithm for solving Hilbert’s tenth problem with solutions
restricted to belong to N (that is, nonnegative integers).

Proof. The above statement is not at all obvious, although its proof is short with the help of
some number theory. Indeed, by a theorem of Lagrange (Lagrange’s four square theorem),
every natural number m can be represented as the sum of four squares,

m = a2
0 + a2

1 + a2
2 + a2

3, a0, a1, a2, a3 ∈ Z.

For a proof, see Niven, Zuckermann and Montgomery [46] (Section 6.4, Theorem 6.26) and
Davenport [8] (Chapter V, Section 4). Davenport’s proof is more elementary.

We reduce Hilbert’s tenth problem restricted to solutions in N to Hilbert’s tenth problem
(with solutions in Z). Given a Diophantine equation P (x1, . . . , xn) = 0, we can form the
polynomial

Q = P (u2
1 + v2

1 + y2
1 + z2

1 , . . . , u
2
n + v2

n + y2
n + z2

n)
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in the 4n variables ui, vi, yi, zi (1 ≤ i ≤ n) obtained by replacing xi by u2
i + v2

i + y2
i + z2

i for
i = 1, . . . , n. If Q = 0 has a solution (p1, q1, r1, s1, . . . , pn, qn, rn, sn, ) with pi, qi, ri, si ∈ Z,
then if we set ai = p2

i + q2
i + r2

i + s2
i , obviously P (a1, . . . , an) = 0 with ai ∈ N. Conversely, if

P (a1, . . . , an) = 0 with ai ∈ N, then by Lagrange’s theorem there exist some pi, qi, ri, si ∈ Z
(in fact N) such that ai = p2

i + q2
i + r2

i + s2
i for i = 1, . . . , n, and the equation Q = 0 has the

solution (p1, q1, r1, s1, . . . , pn, qn, rn, sn, ) with pi, qi, ri, si ∈ Z. Therefore Q = 0 has a solution
(p1, q1, r1, s1, . . . , pn, qn, rn, sn, ) with pi, qi, ri, si ∈ Z iff P = 0 has a solution (a1, . . . , an) with
ai ∈ N. If we had an algorithm to decide whether Q has a solution with its components
in Z, then we would have an algorithm to decide whether P = 0 has a solution with its
components in N.

As consequence, the contrapositive of Proposition 9.1 shows that if the version of Hilbert’s
tenth problem restricted to solutions in N is undecidable, so is Hilbert’s original problem
(with solutions in Z).

In fact, the Davis-Putnam-Robinson-Matiyasevich theorem establishes the undecidability
of the version of Hilbert’s tenth problem restricted to solutions in N. From now on, we restrict
our attention to this version of Hilbert’s tenth problem.

A key idea is to use Diophantine equations with parameters to define sets of numbers.

Example 9.1. For example, consider the polynomial

P1(a, y, z) = (y + 2)(z + 2)− a.

For a ∈ N fixed, the equation (y + 2)(z + 2)− a = 0, equivalently

a = (y + 2)(z + 2),

has a solution for some y, z ∈ N iff a is composite. The variables a, y, z do not play the same
role. When we try to solve the equation (y + 2)(z + 2) − a = 0, we assume that a is fixed
and we look for values of y and z that solve the equation. To distinguish between the roles
of a and y, z we call y and z parameters. If no solution exists for y, z, then we reject a, that
is, we do not include it in the set that we are trying to define. Otherwise we include a in the
set that we are defining, namely the set of composites.

Example 9.2. If we now consider the polynomial

P2(a, y, z) = y(2z + 3)− a,

for a ∈ N fixed, the equation y(2z + 3)− a = 0, equivalently

a = y(2z + 3),

has a solution for some y, z ∈ N iff a is not a power of 2. Thus the equation of this example,
where y and z are parameters defines the natural numbers that are not a power of 2.
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Example 9.3. For a slightly more complicated example, consider the polynomial

P3(a, y) = 3y + 1− a2,

where y is the parameter. We leave it as an exercise to show that the natural numbers a for
which there is some y ∈ N such that 3y + 1− a2 = 0, equivalently

(a− 1)(a+ 1) = 3y,

are of the form a = 3k + 1 or a = 3k + 2, for any k ∈ N.

In the first case, if we let S1 be the set of composite natural numbers, then we can write

S1 = {a ∈ N | (∃y, z)((y + 2)(z + 2)− a = 0)},

where it is understood that the existentially quantified variables y, z take their values in N.

In the second case, if we let S2 be the set of natural numbers that are not powers of 2,
then we can write

S2 = {a ∈ N | (∃y, z)(y(2z + 3)− a = 0)}.

In the third case, if we let S3 be the set of natural numbers that are congruent to 1 or 2
modulo 3, then we can write

S3 = {a ∈ N | (∃y)(3y + 1− a2 = 0)}.

A more explicit Diophantine definition for S3 is

S3 = {a ∈ N | (∃y)((a− 3y − 1)(a− 3y − 2) = 0)}.

The natural generalization is as follows.

Definition 9.2. A set S ⊆ N of natural numbers is Diophantine (or Diophantine definable)
if there is a polynomial P (x, y1, . . . , yn) ∈ Z[x, y1, . . . , yn], with n ≥ 01 such that

S = {a ∈ N | (∃y1, . . . , yn)(P (a, y1, . . . , yn) = 0)},

where it is understood that the existentially quantified variables y1, . . . , yn (the parameters)
take their values in N. Thus a ∈ S iff there exist some natural numbers (b1, . . . , bn) ∈ Nn

such that P (a, b1, . . . , bn) = 0. More generally, a relation R ⊆ Nm is Diophantine (m ≥ 2) if
there is a polynomial P (x1, . . . , xm, y1, . . . , yn) ∈ Z[x1, . . . , xm, y1, . . . , yn], with n ≥ 0, such
that

R = {(a1, . . . , am) ∈ Nm | (∃y1, . . . , yn)(P (a1, . . . , am, y1, . . . , yn) = 0)},
where it is understood that the existentially quantified variables y1, . . . , yn (parameters) take
their values in N. Thus (a1, . . . am) ∈ R iff there exist some natural numbers (b1, . . . , bn) ∈ Nn

such that P (a1, . . . , am, b1, . . . , bn) = 0.

1We have to allow n = 0. Otherwise singleton sets would not be Diophantine.
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It is important to note that the simpler definition in which n = 0 (there are no parameters)
yields a notion which is far too restrictive. Indeed, given a polynomial P (x) of a single
variable x, there are only finitely many a ∈ N such that P (a) = 0. Thus we only obtain
finite sets. Similarly, given a polynomial P (x1, . . . , xn) with n ≥ 2, for any a1, . . . , an−1 ∈ N,
there there are only finitely many an ∈ N such that P (a1, . . . , an) = 0. Again, this class of
relations is too restrictive.

The definition of Diophantine definability has the following interpretation as a computa-
tional mechanism for defining a set S ⊆ N in terms of acceptance or rejection. Given a ∈ N,
we can view the search for natural numbers (b1, . . . , bm) ∈ Nm such that P (a, b1, . . . , bm) = 0
as a computation. If a solution (b1, . . . , bm) is found (making P (a, b1, . . . , bm) = 0), then
a is accepted, and by definition a ∈ S. If either it can be established that the equation
P (a, y1, . . . , ym) = 0 has no solution (for y1, . . . , ym) or if the search goes on forever, then a
is rejected and a /∈ S. The undecidability of Hilbert’s tenth implies that we can’t decide if
the second alternative arises. Mathematically it is appealing that we obtain a model of com-
putability with universal power that does not require any machine model for its definition.

In Definition 9.2, to define when a set S ⊆ N is Diophantine we used the variables
y1, . . . , yn to denote the parameters occurring in the polynomial P (x, y1, . . . , yn). We did
this because in generalizing this notion to m-ary relations it is natural to replace the single
variable x by x1, . . . , xm, so the use of the variables y1, . . . , yn prevents a clash with the
variables x1, . . . , xm. However, when we define a set S to be Diophantine we often use the
variables x1, . . . , xn instead of y1, . . . , yn since there is very little risk of confusing the variable
x with the variables x1, . . . , xm.

Example 9.4. The strict order relation a1 < a2 is defined as follows:

a1 < a2 iff (∃y)(a1 + 1 + y − a2 = 0),

and the divisibility relation a1 | a2 (a1 divides a2) is defined as follows:

a1 | a2 iff (∃z)(a1z − a2 = 0).

Example 9.5. What about the ternary relation R ⊆ N3 given by

(a1, a2, a3) ∈ R if a1 | a2 and a1 < a3?

At first glance it is not obvious how to “convert” a conjunction of Diophantine definitions
into a single Diophantine definition, but we can do this using the following squaring trick:
given any n ≥ 2 Diophantine equations in the variables x1, . . . , xm,

P1 = 0, P2 = 0, . . . , Pn = 0, (∗)

observe that (∗) has a solution (a1, . . . , am), which means that Pi(a1, . . . , am) = 0 for i =
1, . . . , n, iff the single equation

P 2
1 + P 2

2 + · · ·+ P 2
n = 0 (∗∗)
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also has the solution (a1, . . . , am), namely

(P 2
1 + P 2

2 + · · ·+ P 2
n)(a1, . . . am) = P1(a1, . . . am)2 + · · ·+ Pn(a1, . . . am)2 = 0.

This is because, since the P1(a1, . . . , am)2 for i = 1 . . . , n, are all nonnegative, their sum is
equal to zero iff they are all equal to zero, that is Pi(a1, . . . , am)2 = 0 for i = 1 . . . , n, which
is equivalent to Pi(a1, . . . , am) = 0 for i = 1 . . . , n.

As a consequence, the set S ⊆ N defined by n polynomials P1, . . . , Pn in Z[x, y1, . . . , yp]
as

{a ∈ N | (∃y1, . . . , yp)(P1(a, y1, . . . , yp) = 0, . . . , Pn(a, y1, . . . , yp) = 0)}
is actually the Diophantine set defined by

{a ∈ N | (∃y1, . . . , yp)(P1(a, y1, . . . , yp)
2 + · · ·+ Pn(a, y1, . . . , yp)

2 = 0)}.

This method also applies to relations R ⊆ Nm with m ≥ 2, where we use polynomials
P1(x1, . . . , xm, y1, . . . , yp), . . . , Pn(x1, . . . , xm, y1, . . . , yp) in Z[x1, . . . , xm, y1, . . . , yp].

Using this trick, we see that

(a1, a2, a3) ∈ R iff (∃u, v)((a1u− a2)2 + (a1 + 1 + v − a3)2 = 0).

We can use the above technique to show that the Diophantine sets are closed under
intersection.

Since (P1P2)(a1, . . . , am) = 0 iff P1(a1, . . . , am) = 0 or P2(a1, . . . , am) = 0, using this
fact it is easily shown that the Diophantine sets are closed under union. However, they are
not closed under complementation. This is not easy to show directly but it is an immediate
consequence of Theorem 9.8 which asserts that the family of Diophantine sets and the family
of listable sets coincide.

We can also define the notion of Diophantine function.

9.3 Diophantine Funtions

Definition 9.3. A partial function f : Nn → N is Diophantine iff its graph {(a1, . . . , an,
an+1) ⊆ Nn+1 | an+1 = f(a1, . . . , an)} is Diophantine. This means that there is a polyno-
mial P (x1, . . . , xn+1, y1, . . . , yp) ∈ Z[x1, . . . , xn+1, y1, . . . , yp], with p ≥ 0, such that an+1 =
f(a1, . . . , an) iff there exist some natural numbers (b1, . . . , bp) ∈ Np such that P (a1, . . . , an+1,
b1, . . . , bp) = 0. A function f : Nn → N is Diophantine iff it is Diophantine as a partial
function and if it is total, that is, for all (a1, . . . , an) ∈ Nn, if an+1 = f(a1, . . . , an), then the
equation P (a1, . . . , an+1, y1, . . . , yp) = 0 has a solution (in the variables y1, . . . , yp)).
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Example 9.6. The pairing function J and the projection functions K,L due to Cantor
introduced in Section 6.1 are Diophantine, since

z = J(x, y) iff (x+ y)(x+ y + 1) + 2x− 2z = 0

x = K(z) iff (∃y)((x+ y)(x+ y + 1) + 2x− 2z = 0)

y = L(z) iff (∃x)((x+ y)(x+ y + 1) + 2x− 2z = 0).

The definition of J uses no parameter but the definitions of K and L use one parameter.

How extensive is the family of Diophantine sets? The remarkable fact proven by Davis-
Putnam-Robinson-Matiyasevich is that they coincide with the listable sets (the recursively
enumerable sets). This is a highly nontrivial result. Actually, the crucial point is that a
total function is Diophantine iff it is computable. Then this result can be used to prove that
a set is Diophantine iff it is listable.

The proof that a total function is Diophantine iff it is computable uses a bit of arithmetic
that we now review.

9.4 GCD’s, Bezout Identity, Chinese Remainder The-

orem

Recall the notion of divisibility from Example 9.4.

Definition 9.4. Given any two integers m,n ∈ Z, we say that m divides n, often written
m | n, if there is some q ∈ Z such that n = mq. In this case, we call n a multiple of m.
If m 6= 0, the integer q such that n = mq is unique and it is called the quotient and it is
denoted by n/m.

Observe that if 0 divides n, namely n = 0q for some q, then n = 0. So only 0 is divisible
by 0. On the other hand, since 0 = 0q for all q ∈ Z, 0 is divisible by all integers. So even
though 0 is divisible by 0, the quotient 0/0 is undefined since 0 = 0q for all q ∈ Z. We
usually avoid division by 0.

Definition 9.5. Given any two integers m,n ∈ Z, the greatest nonnegative common divisor
(for short gcd) of m and n is the unique natural number d ∈ N such that:

(i) The number d divides both m and n.

(ii) For any h ∈ Z, if h divides m and n, then h divides d.

The gcd of m and n is denoted as gcd(m,n).

The reader should check that gcd(0, 0) = 0, gcd(a, 0) = |a| if a 6= 0, and gcd(0, b) = |b| if
b 6= 0.
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Example 9.7. Since 15 = 3× 5 and 21 = 3× 7, we see that gcd(15, 21) = 3.

Since 657 = 9 × 73 and 963 = 9 × 107, we see that 9 is a divisor of 657 and 963. Since
73 and 107 are prime (check this fact), 9 is the gcd of 657 and 963.

The following result gives a useful characterization of the gcd in terms of a linear equation.

Proposition 9.2. (Bezout Identity) For any two integers m,n ∈ Z, there is a unique natural
number d ∈ N and some integers a, b ∈ Z, such that d divides both m and n and

am+ bn = d.

We have d = 0 iff m = 0 and n = 0. Furthermore, d is the nonnegative gcd of m and n.

Proof. If d = 0, since d divides both m and m, we must have m = n = 0, and a, b can be
chosen arbitrarily. Conversely, if m = n = 0, then for any a, b ∈ Z, we have d = a0 + b0 = 0.

Let us now assume that m 6= 0 or n 6= 0. Consider the set of integers

J = {hm+ kn | h, k ∈ Z}.

For h = 1 and k = 0 we have m ∈ J, and for h = 0 and k = 1 we have n ∈ J. Since either
m 6= 0 or n 6= 0, we see that J contains some positive natural number (if m > 0 we are done,
else if m < 0 then (−1)m ∈ J, with a similar reasoning with n 6= 0). Since J contains some
positive natural number, it contains a smallest one, say d.

We claim that
J = dZ = {dk | k ∈ Z}. (†B)

Since d ∈ J, by definition of J, we have dZ ⊆ J.

Conversely pick any s ∈ J. If we divide s by d, we obtain

s = dq + r,

for some q ∈ Z and some r such that 0 ≤ r < d. If r > 0, since s ∈ J and d ∈ J, they can be
expressed as s = h1m+ k1n and d = h2m+ k2n for some h1, h2, k1, k2 ∈ Z. Then we have

r = s− dq = h1m+ k1n− (h2m+ k2n)q = (h1 − h2q)m+ (k1 − k2q)n,

which shows that r ∈ J. But then we have r ∈ J with r > 0 and r < d, contradicting the
fact that d is the smallest positive integer in J. Therefore r = 0, and we proved that s ∈ dZ.
Consequently, (†B) holds. Since m,n ∈ J = dZ, we see that d divides both m and n. Since
d ∈ J, there exist a, b ∈ Z such that

am+ bn = d.

By construction, d ∈ N divides m and n. If any d′ ∈ Z divides both m and n, since
d = am+ bn, d′ also divides d. Therefore d is the nonnegative gcd of m and n.
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Example 9.8. We saw in Example 9.7 that gcd(15, 21) = 3. We see immediately that

3× 15 + (−2)× 21 = 3

We also found that gcd(657, 963) = 9. The reader will check that

22× 657 + (−15)× 963 = 9.

A good algorithmic method for finding gcd’s and numbers a, b such that am + bn =
gcd(m,n) is the Euclidean algorithm; see Niven, Zuckermann and Montgomery [46], Theorem
1.11. For example, we find that

gcd(42823, 6409) = 17

and that
(−22)× 42823 + 147× 6409 = 17.

Definition 9.6. Given any two integers m,n ∈ Z, not both zero, we say that m and n are
relatively prime if gcd(m,n) = 1.

Proposition 9.2 has the following very useful corollary.

Proposition 9.3. (Bezout Criterion) Given any two integers m,n ∈ Z, not both zero, m
and n are relatively prime if and only if there exists some integers a, b ∈ Z such that

am+ bn = 1.

Proof. If m 6= 0 or n 6= 0 and d = gcd(m,n) = 1, then Proposition 9.2 implies that exists
some integers a, b ∈ Z such that

am+ bn = 1.

Conversely, any integer d dividing both m and n must divide 1, so gcd(m,n) = 1.

Example 9.9. It is easy to check that 42823 = 17 × 2519 and 6409 = 17 × 377. Since
gcd(42823, 6409) = 17, we must have gcd(2519, 377) = 1, so 2519 and 377 are relatively
prime. We also have

(−22)× 2519 + 147× 377 = 1.

Neither 2519 nor 377 is prime, as the reader should check.

We now prove a classical result (and a gem) of elementary number theory.

Theorem 9.4. (Chinese Remainder Theorem) Let n1, . . . , nm (m ≥ 1) be any positive inte-
gers that are pairwise relatively prime (which means that ni and nj are relatively prime for
all i < j), and let a1, . . . , am be any integers (ai ∈ Z). Then there is some x ∈ Z such that

x ≡ ai (mod ni) i = 1, . . . ,m. (C)

If x0 is any solution of the system of congruences (C), then x ∈ Z is a solution of the system
(C) iff x ≡ x0 (mod n), where n = n1 · · ·nm.
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Proof. The proof given in Niven, Zuckermann and Montgomery [46] is one of the simplest
proofs we are aware of; see Section 2.3, Theorem 2.18. It relies on two simple facts about
gcd’s:

(1) If m, p, q are positive natural numbers and if m is relatively prime with p and q, then
m is relatively prime with pq. This follows easily from Proposition 9.3. See Niven,
Zuckermann and Montgomery [46], Theorem 1.8.

(2) If m and n are positive natural numbers and if m and n are relatively prime, then
there is some integer x such that mx ≡ 1 (mod n). Again, this follows immediately
from Proposition 9.3. See Niven, Zuckermann and Montgomery [46], Theorem 2.9.

The case where m = 1 is trivial since we can can pick x = a1, so we assume that m ≥ 2.
Let n = n1 · · ·nm. Each n/ni is a natural number, and by induction using (1), we see that
gcd(n/nj, nj) = 1 for j = 1, . . . ,m. Hence by (2), there is some integer bj such that

(n/nj)bj ≡ 1 (mod nj), j = 1, . . . ,m. (1)

Since n/nj contains ni for i 6= j, we have

(n/nj)bj ≡ 0 (mod ni), i 6= j. (2)

We claim that a solution of the system of congruences (C) is given by

x0 =
m∑
j=1

n

nj
bjaj, (3)

as we now verify. By (1), we have (n/nj)bjaj ≡ aj (mod nj) for j = 1, . . . ,m, and by (2)
(n/nj)bjaj ≡ 0 (mod ni) if i 6= j, so from (3) by taking the residue modulo ni we get

x0 ≡
n

ni
biai ≡ ai (mod ni),

which means that x0 is a solution of the system (C).

If x ∈ Z is another solution of the system

x ≡ ai (mod ni) i = 1, . . . ,m, (C)

then by subtraction we obtain

x ≡ x0 (mod ni), i = 1, . . . ,m,

which is easily seen to be equivalent to x ≡ x0 (mod n). Finally, if x ≡ x0 (mod n), then
we deduce immediately that x is a solution of the system (C).
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Remark: If m,n > 0 and gcd(m,n) = 1, an inverse x of m modulo n, namely an inte-
ger x such that mx ≡ 1 (mod n), can be computed using the Euclidean algorithm; see
Niven, Zuckermann and Montgomery [46], Theorem 1.11. Thus the proof of Theorem 9.4 is
constructive.

Example 9.10. Consider the system of congruences

x ≡ 5 (mod 7)

x ≡ 7 (mod 11)

x ≡ 3 (mod 13).

We easily check that n1 = 7, n2 = 11, n3 = 13 are pairwise relatively prime. We also have
a1 = 5, a2 = 7, a3 = 3, and n = 7× 11× 13 = 1001. The reader should check that

(−2)× n2n3 + 21× n1 = 1

4× n1n3 + (−33)× n2 = 1

(−1)× n1n2 + 6× n3 = 1.

Consequently, we can pick b1 = −2 as the inverse of n2n3 modulo n1, b2 = 4 as the inverse
of n1n3 modulo n2, and b3 = −1 as the inverse of n1n2 modulo n3. Theorem 9.4 tells us that
a solution is given by

x0 = 11× 13× (−2)× 5 + 7× 13× 4× 7 + 7× 11× (−1)× 3 = 887.

We can then check that x0 = 887 works, and since 887 < 1001, it is the smallest positive
solution.

9.5 Proof of the DPRM: Main Steps

The easier direction is the following result.

Proposition 9.5. Every Diophantine (total) function is computable. Every Diophantine
subset of N is listable (recursively enumerable).

Proof sketch. First we propose an informal argument for the second statement. Suppose S
is given as

S = {a ∈ N | (∃x1, . . . , xn)(P (a, x1, . . . , xn) = 0)},
Using the extended pairing function 〈x1, . . . , xn〉n of Section 6.1, we enumerate all n-tuples
(x1, . . . , xn) ∈ Nn, and during this process we compute P (a, x1, . . . , xn). If P (a, x1, . . . , xn)
is zero, then we output a, else we go on. This way, S is the range of a computable function,
and it is listable.

A more rigorous argument of Proposition 9.5 presented by Martin Davis in [10] proceeds
by first proving that if a total function is Diophantine, then it is computable. Then in a
second step it is shown that a Diophantine set is listable. To prove this it is necessary to
tweak the characterization of a listable set as follows.
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Proposition 9.6. A set S ⊆ N is listable iff there are two (total) computable functions
f, g : N× N→ N such that

S = {a ∈ N | (∃x)(f(a, x) = g(a, x))}.
Proof. If S = ∅, then we let f be the constant function equal to 0 and g be the constant
function equal to 1. If S 6= ∅ is listable, then by Definition 7.6 (see also Proposition 7.9),
there is a total computable function h : N→ N such that S is equal to the range of h. If we
let f be given by f(a, x) = a and g(a, x) = h(x) for all a, x ∈ N, then

S = range(h) = {a ∈ N | (∃x)(a = h(x))} = {a ∈ N | (∃x)(f(a, x) = g(a, x))}.
Conversely, assume that

S = {a ∈ N | (∃x)(f(a, x) = g(a, x))}
with f, g total computable. Observe that for any fixed a ∈ N, the equation f(a, x) = g(a, x)
has a solution x ∈ N iff the function

h(x) = min x(f(a, x) = g(a, x))

is defined, so S is equal to the domain of h. Since f and g are computable and the equality
predicate is primitive recursive, the function h is partial computable and by Proposition 7.9,
its domain dom(h) = S is listable.

A key technical result used in the proof of Proposition 9.5 and Theorem 9.8 is the se-
quence number theorem. This is a variant of a result that Gödel proved to establish his first
incompleteness theorem.

Theorem 9.7. (Sequence Number Theorem) There is a (total) Diophantine function (i, u) 7→
S(i, u) such that

(1) S(i, u) ≤ u for all i, u ∈ N.

(2) For any N ∈ N − {0} and any sequence (a1, . . . , an) ∈ NN , there is some u ∈ N such
that

S(i, u) = ai for 1 ≤ i ≤ N.

We have w = S(i, u) iff w is the remainder of the division of K(u) by 1 + iL(u).

Sketch of proof. Theorem 9.7 is Theorem 1.3 in Davis [10]. The proof needs a slight adjust-
ment because Davis assumes that all numbers in question are positive natural numbers, but
we don’t. The function (i, u) 7→ w = S(i, u) is defined by the following set of equations
where z, v are the parameters:

2u = (x+ y)(x+ y + 1) + 2x

x = w + z(1 + iy)

1 + iy = w + v + 1.
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In view of Example 9.6, we have u = J(x, y), so

x = K(u) and y = L(u).

The third equation asserts that w < 1 + iy, so together with the second equation x =
w + z(1 + iy), we deduce that w is the remainder of the division of x by 1 + iy 6= 0.
Thus the above equations define a total function S. The second equation implies that
w ≤ x = K(u) ≤ u, which is (1).

To prove Condition (2) we use the Chinese remainder theorem, Theorem 9.4.

One might worry that Davis assumes that the numbers ai are strictly positive, but as we
just saw the Chinese remainder theorem is valid even if ai = 0, so there is no problem.

We can now prove that Condition (2) holds as follows. Consider any sequence (a1, . . . , aN)
∈ NN . If N = 1, pick y = a1 + 1 and proceed to the step where the Chinese remainder
theorem is used. If N ≥ 2, choose y ∈ N so that y > ai for i = 1, . . . , N and y is divisible by
i for i = 1, . . . , N − 1. For example y = (max{ai} + 1)(N − 1)! will do. We claim that the
natural numbers 1 + y, 1 + 2y, . . . , 1 +Ny are pairwise relatively prime.

If not, some natural number d ≥ 1 divides both 1 + iy and 1 + jy for some i, j such that
1 ≤ i < j ≤ N . Then d divides j(1 + iy)− i(1 + jy) = j − i, which implies that 1 ≤ d < N .
However y was chosen so that it is divisible by k for k = 1, . . . , N − 1, so d would divide y,
and since d also divides 1 + iy, we must have d = 1.

We can now apply the Chinese remainder theorem with ni = 1 + id for i = 1, . . . , N .
Therefore there is some x ∈ N such that

x ≡ a1 (mod 1 + y)

x ≡ a2 (mod 1 + 2y)

...

x ≡ aN (mod 1 +Ny).

Let u = J(x, y) so that x = K(u) and y = L(u). We have

K(u) ≡ ai (mod 1 + iL(u)), i = 1, . . . , N.

By definition of y, we also have ai < y = L(u) < 1 + iL(u), and then we see that ai is the
remainder of the division of K(u) by 1 + iL(u), which is equal to S(i, u) by definition of
S.

Interestingly, Davis states that the function S is primitive recursive, but does not provide
a proof. However, a proof can be extracted from his book Davis [9]; see Chapter 3, Sections
1 and 2.

The proof that S is primitive recursive uses the remainder function rem : N × N → N
defined such that if n > 0, then rem(m,n) = r is the remainder of the division of m by n,
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namely the unique r ∈ N such that r < n and m = nq+r for some q ∈ N, else rem(m, 0) = m.
We leave it as an exercise to prove that rem is primitive recursive. Using rem we define S
as

S(i, u) = rem(K(u), 1 + iL(u)).

See the proof of Theorem 2.4 in Davis [9], observing that since here the index i ranges from
1 to N , the term 1 + L(u)(i+ 1) of Davis’ proof can be replaced by 1 + iL(u).

Let us now assume that the total function f : Nm → N is Diophantine, so that there is a
polynomial P (x1, . . . , xn, z, y1, . . . , yp) such that

c = f(a1, . . . , an) iff (∃b1, . . . , bp)(P (a1, . . . , am, c, b1, . . . , bp) = 0).

By grouping the monomials with positive coefficients together and the monomials with neg-
ative coefficients together we can write

P (x1, . . . , xn, z, y1, . . . , yp) = Q(x1, . . . , xn, z, y1, . . . , yp)−R(x1, . . . , xn, z, y1, . . . , yp),

where Q(x1, . . . , xn, z, y1, . . . , yp) and R(x1, . . . , xn, z, y1, . . . , yp) have positive integer coeffi-
cients . Using Q and R we can express the definition of f as

c = f(a1, . . . , an) iff (∃b1, . . . , bp)(Q(a1, . . . , am, c, b1, . . . , bp) = R(a1, . . . , am, c, b1, . . . , bp)).

Using the sequence number theorem we we can find u ∈ N such that c = S(1, u), b1 =
S(2, u), . . . , bp = S(p+ 1, u), and we deduce that

f(a1, . . . , an) = S(1,minu[Q(a1, . . . , am, S(1, u), S(2, u), . . . , S(p+ 1, u))

= R(a1, . . . , am, S(1, u), S(2, u), . . . , S(p+ 1, u))]).

Now we explained before that the polynomials Q and R having positive integer coefficients
compute primitive recursive functions, which are special kinds of total functions. Since S
is also primitive recursive, using the fact that the computable functions are closed under
composition and minimization if it yields a total function (which is the case since f is
assumed to be total), we deduce that f is computable.

We can now tackle Diophantine sets. Assume that S is Diophantine so that there is a
polynomial P (x, y1, . . . , yp) such that

a ∈ S iff (∃b1, . . . , bp)(P (a, b1, . . . , bp) = 0).

As above, we can write

P (x, y1, . . . , yp) = Q(x, y1, . . . , yp)−R(x, y1, . . . , yp),

where Q(x, y1, . . . , yp) and R(x, y1, . . . , yp) have positive integer coefficients . Then we have

a ∈ S iff (∃b1, . . . , bp)(Q(a, b1, . . . , bp) = R(a, b1, . . . , bp)),
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and by the sequence number theorem we can find u ∈ N such that b1 = S(1, u), . . . , bp =
S(p, u), so

a ∈ S iff (∃u)(Q(a, S(1, u), . . . , S(p, u)) = R(a, S(1, u), . . . , S(p, u))).

Since Q and R compute primitive recursive functions and S is primitive recursive, by Propo-
sition 9.6, S is listable

The main theorem of the theory of Diophantine sets and functions is the following deep
result.

Theorem 9.8. (Davis-Putnam-Robinson-Matiyasevich, 1970) Every total computable func-
tion is Diophantine. Every listable subset of N is Diophantine.

Theorem 9.8 is often referred to as the DPRM theorem. A complete proof of Theorem
9.8 is provided in Davis [10]. We provide all the steps except the most technical one, the
fact that the exponential function h(n, k) = nk is Diophantine.

Almost complete proof. As noted by Davis, although the proof is certainly long and non-
trivial, it only uses elementary facts of number theory, nothing more sophisticated than the
Chinese remainder theorem. Nevetherless, the proof is a tour de force.

One of the most difficult steps is to show that the exponential function h(n, k) = nk

is Diophantine. This is done using the Pell equation. According to Martin Davis, the
proof given in Davis [10] uses a combination of ideas from Matiyasevich and Julia Robinson.
Matiyasevich’s proof used the Fibonacci numbers.

We now provide details for all the steps of the proof, except the first one.

Step 1 . The most difficult and most technical step is to prove that the exponential function
(n, k) 7→ nk is Diophantine. This involves proving twenty four “easy lemmas,” which takes six
pages (this is Section 2). The fact that the exponential function is Diophantine is established
in Section 3; this is Theorem 3.3 (Section 3 has four pages).

There is a small issue, which is that Davis [10] assumes that all variables range over
positive integers , so his proof that the exponential function h(n, k) = nk is Diophantine works
only for n, k > 0. However, as in the 1976 survey paper by Davis, Matiyasevich and Robinson
[11], we assume that the variables may take the value 0, that is, belong to N. This problem
is easily taken care of. If E is the set of Equations I-XII (with parameters) listed on Pages
244 and 247 of Davis [10] in which the variables (n, k,m) define the exponential function
h in the sense that there are values of the parameters that satisfy E iff m = h(n, k) = nk,
create the new equation with the extra new parameters n′, k′, k′′,

((n− n′ − 1)2 + (k − k′ − 1)2 + E2)(k2 + (m− 1)2)(n2 + (k − k′′ − 1)2 +m2) = 0. (∗)

The above equation has a solution with respect to the parameters iff

(n− n′ − 1)2 + (k − k′ − 1)2 + E2 = 0 (∗1)
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or
k2 + (m− 1)2 = 0 (∗2)

or
n2 + (k − k′′ − 1)2 +m2 = 0. (∗3)

The Equation (∗1) is equivalent to

n = n′ + 1

k = k′ + 1

E = 0,

which are equivalent to
n > 0, k > 0, E = 0. (∗4)

These equations have a solution in the parameters iff n, k > 0 and m = nk.

The Equation (∗2) is equivalent to

k = 0, m = 1, (∗5)

which defines the exponential for k = 0 since n0 = 1 for all n ∈ N.

The Equation (∗3) is equivalent to

n = 0

k = k′′ + 1

m = 0,

which is equivalent to
n = 0, k > 0, m = 0, (∗6)

which define the exponential for n = 0 and k > 0 since 0k = 0 for all k > 0. In summary,
the Equation (∗) defines the exponential function m = nk for all m, k ∈ N.

Step 2 . Use the fact that the exponential is Diophantine to prove that two crucial functions
are Diophantine:

f(n, k) =

(
n

k

)
g(n) = n!.

This is proven in Theorem 4.1. We prove that the functions f and g are Diophantine provided
that the exponential function is Diophantine in Section 9.7.

At this stage we know that the Diophantine relations are closed under conjunction,
disjunction, and existential quantifiers. In order to prove that the Diophantine functions are
closed under primitive recursion and minimization (if the function obtained by minimization
is total) it is critical to prove closure under bounded universal quantification. This is the
next step.

Step 3 .
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Definition 9.7. Call a predicate (relation) ϕ a Diophantine predicate if it is of the form

ϕ(x1, . . . , xn) ≡ (∃y1, . . . , yp)(P (x1, . . . , xm, y1, . . . , yp) = 0)

where P (x1, . . . , xm, y1, . . . , yp) is a polynomial with integer coefficients.

Of course, for any (a1, . . . , am) ∈ Nm, ϕ(a1, . . . , am) holds (equivalently (a1, . . . , am) ∈ ϕ)
iff there is some (b1, . . . , bp) ∈ Np such that P (a1, . . . , am, b1, . . . , bp) = 0.

It is convenient to abbreviate (∃y1, . . . , yp) as (∃y). Given two Diophantine predicates
ϕ = (∃u)(P (x1, . . . , xm, u) = 0) and ψ = (∃v)(Q(x1, . . . , xm, v) = 0) over the same variables
x1, . . . , xm, we define the predicates

ϕ ∧ ψ ≡ (∃u)(P (x1, . . . , xm, u) = 0) ∧ (∃v)(Q(x1, . . . , xm, v) = 0)

ϕ ∨ ψ ≡ (∃u)(P (x1, . . . , xm, u) = 0) ∨ (∃v)(Q(x1, . . . , xm, v) = 0)

∃zϕ ≡ ∃z(∃u)(P (x1, . . . , xm, u) = 0),

where z is any variable occurring or not in ϕ. We may rename variables so that u and v are
disjoint and that z does not occur in u.

The above predicates are Diophantine (using the squaring trick and the product trick)
because

ϕ ∧ ψ ≡ (∃u)(∃v)(P (x1, . . . , xm, u)2 +Q(x1, . . . , xm, v)2 = 0)

ϕ ∨ ψ ≡ (∃u)(∃v)(P (x1, . . . , xm, u)Q(x1, . . . , xm, v) = 0)

∃zϕ ≡ ∃z(∃u)(P (x1, . . . , xm, u) = 0).

Observe that if z = xi for some variable xi, then m ≥ 2 and ∃zϕ is a predicate only involving
the variables x1, . . . , xi−1, xi+1, . . . , xm, so that it defines a subset of Nm−1. We will use these
closure properties when constructing Diophantine predicates.

In general universal quantification applied to a Diophantine predicate does not yield a
Diophantine predicate, but bounded universal quantification does.

Definition 9.8. Given a polynomial P (y, z, x1, . . . , xm, y1, . . . , yp) with integer coefficients,
the bounded existentially quantified predicate

(∃z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds iff for any a1, . . . , am ∈ N and any b ∈ N, there is some c ≤ b and some b1, . . . , bp ∈
N such that P (b, c, a1, . . . , am, b1, . . . , bp) = 0 holds. The bounded universally quantified
predicate

(∀z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds iff for any a1, . . . , am ∈ N and any b ∈ N, for every c ≤ b, there are some b1, . . . , bp ∈ N
such that P (b, c, a1, . . . , am, b1, . . . , bp) = 0 holds.
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Proposition 9.9. Given a polynomial P (y, z, x1, . . . , xm, y1, . . . , yp) with integer coefficients,
the predicate

(∀z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds iff the predicate

(∃u)(∀z ≤ y)(∃y1 ≤ u) · · · (∃yp ≤ u)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds.

Proof. The second statement obviously implies the first. If the predicate

(∀z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds, then for any b ∈ N and any a1, . . . , am ∈ N, for each k = 0, . . . , b, there exist
b

(k)
1 , . . . , b

(k)
p ∈ N such that P (b, k, a1, . . . , am, b

(k)
1 , . . . , b

(k)
p ) = 0 for k = 0, . . . , b. If we pick

u = max{b(k)
j | 0 ≤ k ≤ b, 1 ≤ j ≤ p},

then
(∃u)(∀z ≤ y)(∃y1 ≤ u) · · · (∃yp ≤ u)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds.

We have the following key theorem.

Theorem 9.10. (Bounded Quantifier Theorem) Given any polynomial P (y, z, x1, . . . , xm,
y1, . . . , yp) with integer coefficients, the bounded existentially quantified predicate

(∃z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

and the bounded universally quantified predicate

(∀z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

are also Diophantine.

Recall that x ≤ y is Diophantine definable as y = x + x′. The first statement is easy to
prove since

(∃z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds iff
(∃z, y1, . . . , yp)[(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0) ∧ (z ≤ y)].

The proof of the second statement is far more complicated. In particular is uses the fact
that the factorial function n 7→ n! and the binomial

(
n
k

)
are Diophantine (both of which use

the fact that the exponential function (n, k) 7→ nk is Diophantine). One proof is given in
Davis [10]; see Theorem 5.1. A slightly shorter proof is given in Davis, Matiyasevich and
Robinson [11]; see Section 4. Here is this crucial result and its very beautiful and clever
proof.
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Proposition 9.11. Let P (x, y, k, z1, . . . , zν) be a polynomial with x, y and k among its pa-
rameters and z1, . . . , zν its variables. Then

(∀k ≤ x)(∃z1 ≤ y) · · · (∃zν ≤ y)(P (x, y, k, z1, . . . , zν) = 0) (†1)

holds if and only if

(∃b1, . . . , bν)

[(
b1

y + 1

)
≡ · · · ≡

(
bν

y + 1

)
≡ P (x, y,Q!− 1, b1, . . . , bν)

≡ 0

(
mod

(
Q!− 1

x+ 1

))]
(†2)

holds, where Q(x, y) is a polynomial such that

Q(x, y) > |P (x, y, k, z1, . . . , zν)|+ 2x+ y + 1, (∗1)

for all k ≤ x and all z1 ≤ y, . . . , zν ≤ y. Also b1, . . . , bν may be chosen such that bi ≤
(
Q!−1
x+1

)
.

Proof. Consider the product(
Q!− 1

x+ 1

)
=

(Q!− 1)!

(x+ 1)!(Q!− 1− (x+ 1))!
=

(Q!− 1)(Q!− 2) · · · (Q!− 1− (x+ 1) + 1)

(x+ 1)!

= (Q!− 1)

(
Q!

2
− 1

)
· · ·
(

Q!

x+ 1
− 1

)
.

Since Q(x, y) > |P (x, y, k, z1, . . . , zν)| + 2x + y + 1 ≥ 2x + 2 > x + 1, all the factors on the
right-hand side are integers.

Claim 1 . If a prime p divides
(
Q!−1
x+1

)
, then p > Q.

For this we prove that every prime p ≤ Q divides Q!/(k + 1) for all k ≤ x. Indeed, since
Q ≥ 2x+ 2 and k ≤ x, we have 2(k + 1) ≤ 2x+ 2, so

Q! = Q(Q− 1) · · · (2x+ 2) · · · 2(k + 1) · · · (k + 1)k!.

If p = k+ 1, then k+ 1 still occurs in Q!/(k+ 1), and if p ≤ Q and p 6= k+ 1, then p occurs
in Q!/(k + 1).

Now if a prime p divides
(
Q!−1
x+1

)
, then p divides some factor Q!

k+1
− 1 (with k ≤ x), so if

p ≤ Q, then from the previous fact p divides Q!/(k + 1), which implies that p divides 1, a
contradiction.

Claim 2 . Any two distinct factors Q!
i+1
− 1 and Q!

j+1
− 1 (i, j ≤ x) are relatively prime.

If a prime p divides both Q!
i+1
− 1 and Q!

j+1
− 1, then Q!

i+1
− 1 = k1p and Q!

j+1
− 1 = k2p for

some natural numbers k1, k2, so

Q!− i− 1 = k1(i+ 1)p, Q!− j − 1 = k2(j + 1)p,
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and by substraction
j − i = (k1(i+ 1)− k2(j + 1))p,

which means that p divides |j − i|. However, i, j ≤ Q and by Claim 1, p > Q, so i = j,
which means that Q!

i+1
− 1 and Q!

j+1
− 1 (i, j ≤ x) are relatively prime if i 6= j.

Claim 3 . If a prime pk divides Q!
k+1
− 1 (k ≤ x), then

Q!− 1 ≡ k (mod pk).

Since Q!
k+1
− 1 = qpk for some natural number q, we have Q!− k − 1 = q(k + 1)pk, so

Q!− 1 = k + q(k + 1)pk,

namely Q!− 1 ≡ k (mod pk).

Claim 4 . For any choice of a prime pk dividing Q!
k+1
− 1 for k ≤ x, we have

P (x, y,Q!− 1, b1, . . . , bν) ≡ P (x, y, k,Rem(b1, pk), . . . ,Rem(bν , pk)) (mod pk), k ≤ x, (∗2)

where Rem(bi, pk) is the remainder of the division of bi by pk.

Claim 4 follows immediately from Claim 3 by taking residues modulo pk in the polynomial
P (x, y,Q!− 1, b1, . . . , bν).

We are now ready for the proof itself.

Step a. First we prove that (†2) implies (†1). Assume that there exists some natural numbers
b1, . . . , bν such that(

b1

y + 1

)
≡ · · · ≡

(
bν

y + 1

)
≡ P (x, y,Q!− 1, b1, . . . , bν) ≡ 0

(
mod

(
Q!− 1

x+ 1

))
.

Since any chosen prime pk dividing Q!
k+1
− 1 also divides divides

(
Q!−1
x+1

)
, we deduce from the

congruence (
bi

y + 1

)
≡ 0

(
mod

(
Q!− 1

x+ 1

))
that pk divides bi(bi − 1) · · · (bi − y) for i = 1, . . . , ν, so pk divides some factor bi − h with
h ≤ y, which implies that Rem(bi, pk) ≤ y for i = 1, . . . , ν. By (∗1) and Claim 1, we have

|P (x, y, k,Rem(b1, pk), . . . ,Rem(bν , pk))| ≤ Q < pk. (∗3)

By hypothesis, since pk divides
(
Q!−1
x+1

)
, we have

P (x, y,Q!− 1, b1, . . . , bν) ≡ 0 (mod pk),

for all k ≤ x, and by (∗2) and (∗3), we deduce that

P (x, y, k,Rem(b1, pk), . . . ,Rem(bν , pk)) = 0,



9.5. PROOF OF THE DPRM: MAIN STEPS 385

which is (†1) of our proposition with zi = Rem(bi, pk).

Step b. Now we prove that (†1) implies (†2). Suppose that there are some natural numbers
z1k ≤ y, . . . , zνk ≤ y such that

P (x, y, k, z1k, . . . , zνk) = 0, for all k ≤ x. (∗4)

Since there are finitely many tuples of natural numbers (k, z1, . . . , zν) such that k ≤ x and
zi ≤ y for i = 1, . . . , ν, we can find a polynomial Q(x, y) satisfying (∗1). For example, we
can choose Q(x, y) = 2x+ y+ 2 +C, for C ≥ 0 large enough. By Claim 2, since the distinct
factors Q!

i+1
−1 and Q!

j+1
−1 (i, j ≤ x) are relatively prime, by the Chinese remainder theorem

(Theorem 9.4) there exist b1, . . . , bν <
(
Q!−1
x+1

)
such that

bi ∼= zik

(
mod

Q!

k + 1
− 1

)
, k ≤ x. (∗5)

Since zik ≤ y, one of the factors in the product zik(zik−1) · · · (zik−y) is zero, so (∗5) implies
that

bi(bi − 1) · · · (bi − y) ∼= 0

(
mod

Q!

k + 1
− 1

)
, 1 ≤ i ≤ ν. (∗6)

By Claim 2, since the divisors Q!
k+1
− 1 are pairwise relatively prime, their product

(
Q!−1
x+1

)
divides bi(bi − 1) · · · (bi − y), that is,

bi(bi − 1) · · · (bi − y) ≡ 0

(
mod

(
Q!− 1

x+ 1

))
, 1 ≤ i ≤ ν, x ≤ k.

By Claim 1 and (∗1) , since all the primes dividing
(
Q!−1
x+1

)
(k ≤ x) are greater than Q > y+1,

we deduce that (
bi

y + 1

)
≡ 0

(
mod

(
Q!− 1

x+ 1

))
, 1 ≤ i ≤ ν. (∗7)

Finally, since

Q!− 1− k = (k + 1)

(
Q!

k + 1
− 1

)
,

we have

Q!− 1 ≡ k

(
mod

Q!

k + 1
− 1

)
,

so by (∗5), we have

P (x, y,Q!− 1, b1, . . . , bν) ≡ P (x, y, k, z1k, . . . , zνk)

(
mod

Q!

k + 1
− 1

)
. (∗8)

Since by hypothesis (∗4), P (x, y, k, z1k, . . . , zνk) = 0, and the moduli Q!
k+1
− 1 are pairwise

relatively prime, we conclude that

P (x, y,Q!− 1, b1, . . . , bν) ≡ 0

(
mod

(
Q!− 1

x+ 1

))
. (∗9)

But (∗7) and (∗9) are the conjuncts in (†2) of our proposition, and this finishes the proof.
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Since by Step 2 the factorial function and the binomial coefficient functions are Diophan-
tine, and since the divisibility relation n ≡ 0 (mod m) is Diophantine (since n ≡ 0 (mod m)
iff (∃k)(n = km)), the right-hand side (†2) in Proposition 9.11 is Diophantine. This proves
the hard part of Theorem 9.10, namely that applying bounded universal quantification to a
Diophantine predicate yields a Diophantine predicate.

Davis et al. [11] (Section 4) show how Theorem 9.10 can be used to construct a Diophan-
tine polynomial F with one parameter a such that the equation F = 0 has a solution for
any fixed a > 0 iff some planar graph cannot be colored with a colors. The positive solution
of the four color conjecture implies that the equation F = 0 has no solution for a = 4 (for
sure, it has no solution for a = 5).

We have completed the hard work and the next step is relatively simple in comparison.

Step 4 . To prove that every (total) computable function is Diophantine, we simply have
to prove that the base functions are Diophantine and that the Diophantine functions are
closed under (extended) composition, primitive recursion, and minimization (yielding total
functions). Since the class of computable functions is the smallest class with these properties,
it is contained in the class of Diophantine functions.

(1) The zero function y = Z(x) is defined by the Diophantine equation

y = 0.

The successor function y = Succ(x) = x+ 1 is defined by the Diophantine equation

y = x+ 1.

The projection function y = P n
i (x1, . . . , xn) is defined by the Diophantine equation

y = xi.

(2) Suppose that the m functions gi : Nn → N are Diophantine and that f : Nm → N is
also Diophantine. This means that each gi has a Diophantine definition

(∃yi)(Pi(x1, . . . , xn, zi, yi) = 0)

which holds iff zi = gi(x1, . . . , xn), where yi denotes a sequence of parameters, and f
has a Diophantine definition

(∃t)(Q(u1, . . . , um, v, t) = 0)

which holds iff v = f(u1, . . . , vm), where t denotes a sequence of parameters. By
renaming the parameters we may assume that they are disjoint and also disjoint from
the variables z. Then the Diophantine definition

(∃z)(∃y1) · · · (∃ym)(∃t)[(P1(x1, . . . , xn, z1, y1) = 0) ∧ · · · ∧ (Pm(x1, . . . , xn, zm, ym) = 0)

∧ (Q(z1, . . . , zm, v, t) = 0)]
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holds iff
v = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

We can use the squaring trick to convert the conjunction of equations into a single
equation. This proves closure under composition.

(3) Suppose g : Nm → N and h : Nm+2 → N are Diophantine. We wish to define f : Nm+1 →
N by primitive recursion by

f(0, x1, . . . , xm) = g(x1, . . . , xm)

f(x+ 1, x1, . . . , xm) = h(x, f(x, x1, . . . , xm), x1, . . . , xm).

This is achieved using the sequence number theorem and the bounded quantifier the-
orem as follows. Assume that g has a Diophantine definition

(∃s)(P (x1, . . . , xm, v, s) = 0)

which holds iff v = g(x1, . . . , xm), where s denotes a sequence of parameters, and h has
a Diophantine definition

(∃z)(Q(t1, t2, x1, . . . , xm, w, z) = 0)

which holds iff w = h(t1, t2, x1, . . . , xm), where z denotes a sequence of parameters. We
rename variables so that s and z are disjoint. Theorem 9.7 shows that S is Diophantine,
so we claim that the Diophantine definition

∃u [∃v ((v = S(1, u)) ∧ (∃s)(P (x1, . . . , xm, v, s) = 0))

∧ (∀t ≤ x)[(t = x) ∨ ∃w((w = S(t+ 2, u))

∧ (∃z)(Q(t, S(t+ 1, u), x1, . . . , xm, w, z) = 0))]

∧ (y = S(x+ 1, u))]

holds iff
y = f(x, x1, . . . , xm).

We used the fact that the Diophantine predicates are closed under conjunction, dis-
junction, existential quantification, and composition. The equations v = S(1, u), w =
S(t + 2, u) and y = S(x + 1, u) should be replaced by the Diophantine definition of
S from Theorem 9.7, and the equation Q(t, S(t + 1, u), x1, . . . , xm, w, z) = 0 involves
a composition so it should also use the Diophantine definition of S. We leave the
details and the verification that this works to the reader. The idea is that u is used
to record the values f(0, x1, . . . , xm), . . . , f(x, x1, . . . , xm) as S(1, u), . . . , S(x + 1, u).
Since in Theorem 9.7 the index i used to index sequences starts from 1 and not 0,
as t ranges from 0 to x have to use the index t + 1 which ranges from 1 to x + 1.
This is also the reason why we have to compute S(t+ 2, u) = f(t+ 1, x1 . . . , xm) from
S(t+ 1, u) = f(t, x1, . . . , xm).
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Since A =⇒ B is logically equivalent to ¬A ∨B, the formula

(∀t ≤ x)[(t = x) ∨ ∃w((w = S(t+ 2, u)) ∧ (∃z)(Q(t, S(t+ 1, u), x1, . . . , xm, w, z) = 0))]

asserts that for all t such that 0 ≤ t ≤ x, if t 6= x, so in fact if 0 ≤ t < x, then

[∃w((w = S(t+ 2, u)) ∧ (∃z)(Q(t, S(t+ 1, u), x1, . . . , xm, w, z) = 0))]

holds. Since S(t+ 1, u) = f(t, x1, . . . , xm), the Diophantine definition

(∃z)(Q(t, S(t+ 1, u), x1, . . . , xm, w, z) = 0))]

computes w = h(t, f(t, x1, . . . , xm), x1, . . . , xm) = f(t+ 1, x1 . . . , xm), which is saved in
S(t+ 2, u).

(4) Assume that g : Nm+1 → N is Diophantine and that for all (a1, . . . , am) ∈ Nm there
is some a ∈ N such that g(a, a1, . . . , am) = 0. We wish to show that the function
f : Nm → N given by minimization as

f(a1, . . . , am) = min x (g(x, a1, . . . am) = 0)

is also Diophantine. Assume that g has a Diophantine definition

(∃s)(P (x, x1, . . . , xm, z, s) = 0)

which holds iff z = g(x, x1, . . . , xm), where s denotes a sequence of parameters. We
claim that the Diophantine definition

(∃s)(P (y, x1, . . . , xm, 0, s) = 0)

∧ [(∀t ≤ y)[(t = y) ∨ ∃z(∃u) ((P (t, x1, . . . , xm, z, u) = 0) ∧ (z > 0)]]

holds if

y = f(a1, . . . , am) = min x (g(x, a1, . . . am) = 0).

The predicate

(∃s)(P (y, x1, . . . , , xm, 0, s) = 0)

asserts that g(y, x1, . . . , xm) = 0, and the predicate

(∀t ≤ y)[(t = y) ∨ ∃z(∃u) ((P (t, x1, . . . , xm, z, u) = 0) ∧ (z > 0)]

asserts that g(t, x1, . . . , xm) > 0 for all t < y, so y is indeed the smallest number for
which g(y, x1, . . . , xm) = 0.
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Therefore we have finally proven that every (total) computable function is Diophantine.

Step 5 . Every listable set is Diophantine.

By Proposition 9.6, a set S ⊆ N is listable iff there are two (total) computable functions
f, g : N× N→ N such that

S = {a ∈ N | (∃x)(f(a, x) = g(a, x))}.

But then

a ∈ S iff ∃x∃z((z = f(a, x)) ∧ (z = g(a, x))).

By Step 4, the computable functions f and g have Diophantine definitions

(∃u)(P (y, x, z, u) = 0)

iff z = f(y, x) and

(∃v)(Q(y, x, z, v) = 0)

iff z = g(y, x), so a ∈ S has the Diophantine definition

∃x∃z[(∃u)(P (a, x, z, u) = 0) ∧ (∃v)(Q(a, x, z, v) = 0)].

This is the famous result that we were seeking.

Using some results from the theory of computation it is now easy to deduce that Hilbert’s
tenth problem is undecidable. To achieve this, recall that there are listable sets that are not
computable. For example, it is shown in Lemma 7.11 that K = {x ∈ N | ϕx(x) is defined}
is listable but not computable. Since K is listable, by Theorem 9.8, it is defined by some
Diophantine equation

P (a, x1, . . . , xn) = 0,

which means that

K = {a ∈ N | (∃x1 . . . , xn)(P (a, x1, . . . , xn) = 0)}.

We have the following strong form of the undecidability of Hilbert’s tenth problem, in the
sense that it shows that Hilbert’s tenth problem is already undecidable for a fixed Diophan-
tine equation in one parameter.

Theorem 9.12. There is no algorithm which takes as input the polynomial P (a, x1, . . . , xn)
defining K and any natural number a ∈ N and decides whether

P (a, x1, . . . , xn) = 0.

Consequently, Hilbert’s tenth problem is undecidable.
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Proof. If there was such an algorithm, then K would be decidable, a contradiction.

Any algorithm for solving Hilbert’s tenth problem could be used to decide whether or
not P (a, x1, . . . , xn) = 0, but we just showed that there is no such algorithm.

It is an open problem whether Hilbert’s tenth problem is undecidable if we allow rational
solutions (that is, x1, . . . , xn ∈ Q).

Alexandra Shlapentokh proved that various extensions of Hilbert’s tenth problem are
undecidable. These results deal with some algebraic number theory beyond the scope of
these notes. Incidentally, Alexandra was an undergraduate at Penn, and she worked on a
logic project for me (finding a Gentzen system for a subset of temporal logic).

Having now settled once and for all the undecidability of Hilbert’s tenth problem, we
now briefly explore some interesting consequences of Theorem 9.8.

The fact that a set is listable if and only if it is Diophantine also holds for m-ary relations.

9.6 The DPRM For Relations

Definition 9.9. A relation R ⊆ Nm (m ≥ 2) is listable if the set

R̂ = {〈x1, . . . , xm〉m ∈ N | (x1, . . . , xm) ∈ R}

is listable, where 〈x1, . . . , xm〉m is the extended pairing function of Definition 6.2.

Proposition 9.6 is easily generalized to the following characterization of listable relations.

Proposition 9.13. A relation R ⊆ Nm (m ≥ 2) is listable iff there are two (total) computable
functions f, g : Nm+1 → N such that

R = {(a1, . . . am) ∈ Nm | (∃x)(f(a1, . . . , am, x) = g(a1, . . . , am, x))}.

Proof. If R = ∅, then we let f be the constant function equal to 0 and g be the constant
function equal to 1. If R 6= ∅ is listable, then by Definition 7.6 (see also Proposition 7.9),

there is a total computable function h : N → N such that R̂ is equal to the range of h.
If we let f be given by f(a1, . . . , am, x) = 〈a1, . . . , am〉m (which is primitive recursive) and
g(a1, . . . , am, x) = h(x) for all a, x ∈ N, then

R = {(a1, . . . , am) ∈ Nm | (∃x)(〈a1, . . . , am〉m = h(x))}
= {(a1, . . . , am) ∈ Nm | (∃x)(f(a1, . . . , am, x) = g(a1, . . . , am, x))}.

Conversely, assume that

R = {(a1, . . . am) ∈ Nm | (∃x)(f(a1, . . . , am, x) = g(a1, . . . , am, x))}
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with f, g total computable. Using the uniform projection function Π of Definition 6.3, which
is primitive recursive, we have

R̂ = {a ∈ N | (∃x)(f(Π(1,m, a), . . . ,Π(m,m, a), x) = g(Π(1,m, a), . . . ,Π(m,m, a), x))}.

As a composition of (total) computable functions, f̂ and ĝ given by

f̂(a, x) = f(Π(1,m, a), . . . ,Π(m,m, a), x)

ĝ(a, x) = g(Π(1,m, a), . . . ,Π(m,m, a), x)

are total computable, so by Proposition 9.6 the set R̂ is listable.

Using Proposition 9.13 it is easy to generalize the DPRM to relations.

Theorem 9.14. (DPRM for Relations) A relation R ⊆ Nm (m ≥ 2) is listable if and only
if it is Diophantine.

Proof. Assume that R is Diophantine so that there is a polynomial P (x1, . . . , xm, y1, . . . , yp)
such that

(a1, . . . , am) ∈ R iff (∃b1, . . . , bp)(P (a1, . . . , am, b1, . . . , bp) = 0).

By grouping monomials with the same sign together we can write

P (x1, . . . , xm, y1, . . . , yp) = Q(x1, . . . , xm, y1, . . . , yp)−R(x1, . . . , xm, y1, . . . , yp),

whereQ(x1, . . . , xm, y1, . . . , yp) andR(x1, . . . , xm, y1, . . . , yp) have positive integer coefficients.
Then we have

(a1, . . . , am) ∈ R iff (∃b1, . . . , bp)(Q(a1, . . . , am, b1, . . . , bp) = R(a1, . . . , am, b1, . . . , bp)),

and by the sequence number theorem we can find u ∈ N such that b1 = S(1, u), . . . , bp =
S(p, u), so

(a1, . . . , am) ∈ R iff (∃u)(Q(a1, . . . , am, S(1, u), . . . , S(p, u))

= R(a1, . . . , am, S(1, u), . . . , S(p, u))).

Since Q and R compute primitive recursive functions and S is primitive recursive, by Propo-
sition 9.13, R is listable.

Conversely, assume that R is listable. By Proposition 9.13, a relation R ⊆ Nm is listable
iff there are two (total) computable functions f, g : Nm+1 → N such that

R = {(a1, . . . am) ∈ Nm | (∃x)(f(a1, . . . , am, x) = g(a1, . . . , am, x))}.
But then

(a1, . . . , am) ∈ R iff ∃x∃z((z = f(a1, . . . , am, x)) ∧ (z = g(a1, . . . , am, x))).

By Theorem 9.8, the computable functions f and g have Diophantine definitions and we
finish the proof as in Step 5 of Theorem 9.8 to obtain a Diophantine definition of R.
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9.7 Some Applications of the DPRM Theorem

The first application of the DRPM theorem is a particularly striking way of defining the
listable subsets of N as the nonnegative ranges of polynomials with integer coefficients. This
result is due to Hilary Putnam.

Theorem 9.15. For every listable subset S of N, there is some polynomial Q(x, x1, . . . , xn)
with integer coefficients such that

S = {Q(a, b1, . . . , bn) | Q(a, b1, . . . , bn) ∈ N, a, b1, . . . , bn ∈ N}.

Proof. By the DPRM theorem (Theorem 9.8), there is some polynomial P (x, x1, . . . , xn)
with integer coefficients such that

S = {a ∈ N | (∃x1, . . . , xn)(P (a, x1, . . . , xn) = 0)}.

Let Q(x, x1, . . . , xn) be given by

Q(x, x1, . . . , xn) = (x+ 1)(1− P 2(x, x1, . . . , xn))− 1.

We claim that Q satisfies the statement of the theorem. If a ∈ S, then P (a, b1, . . . , bn) = 0
for some b1, . . . , bn ∈ N, so

Q(a, b1, . . . , bn) = (a+ 1)(1− 0)− 1 = a.

This shows that all a ∈ S show up the the nonnegative range of Q. Conversely, assume that
Q(a, b1, . . . , bn) ≥ 0 for some a, b1, . . . , bn ∈ N. Then by definition of Q we must have

(a+ 1)(1− P 2(a, b1, . . . , bn))− 1 ≥ 0,

that is,
(a+ 1)(1− P 2(a, b1, . . . , bn)) ≥ 1,

and since a ∈ N, this implies that P 2(a, b1, . . . , bn) < 1, but since P is a polynomial with in-
teger coefficients and a, b1, . . . , bn ∈ N, the expression P 2(a, b1, . . . , bn) must be a nonnegative
integer, so we must have

P (a, b1, . . . , bn) = 0,

which shows that a ∈ S.

Remark: It should be noted that in general, the polynomials Q arising in Theorem 9.15
may take on negative integer values, and to obtain all listable sets, we must restrict ourself
to their nonnegative range.

As an example, the set S3 of natural numbers that are congruent to 1 or 2 modulo 3 is
given by

S3 = {a ∈ N | (∃y)(3y + 1− a2 = 0)}.
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so by Theorem 9.15, S3 is the nonnegative range of the polynomial

Q(x, y) = (x+ 1)(1− (3y + 1− x2)2))− 1

= −(x+ 1)((3y − x2)2 + 2(3y − x2)))− 1

= (x+ 1)(x2 − 3y)(2− (x2 − 3y))− 1.

Observe that Q(x, y) takes on negative values. For example, Q(0, 0) = −1. Also, in order
for Q(x, y) to be nonnegative, (x2 − 3y)(2 − (x2 − 3y)) must be positive, but this can only
happen if x2 − 3y = 1, that is, x2 = 3y + 1, which is the original equation defining S3.

There is no miracle. The nonnegativity of Q(x, x1, . . . , xn) must subsume the solvability
of the equation P (x, x1, . . . , xn) = 0.

A particularly interesting listable set is the set of primes. By Theorem 9.15, in theory,
the set of primes is the positive range of some polynomial with integer coefficients.

Remarkably, some explicit polynomials have been found. This is a nontrivial task. In
particular, the process involves showing that the exponential function is definable, which
was the stumbling block to the completion of the DPRM theorem for many years.

We now explain how to express primality in terms of equations, provided that we allow
free uses of the exponential function. The key idea is to express primality using the Bezout
identity (Proposition 9.2). We will obtain a set of equations involving the function factorial
(s!). The factorial function can be equationally defined using the binomial coefficient

(
t
s

)
,

which in turn can be defined equationally in terms of the exponential function. This is as
far as we will go, since proving that the exponential function is Diophantine definable is a
long and complicated process.

Recall that Proposition 9.2 (the Bezout identity) implies that for any two integers m,n ∈
Z, if d = gcd(m,n), then there are some integers a, b ∈ Z such that

am+ bn = d.

If both m,n > 0, then d > 0, so if we write m = q1d and n = q2d (with q1, q2 ∈ N), then
for any k ∈ Z we also have

(a+kq2)m+(b−kq1)n = am+bn+kq2m−kq1n = am+bn+kq2q1d−kq1q2d = am+bn = d.

As a consequence, if a < 0, in which case we must have b > 0, we can pick k ∈ Z large
enough so that a+kq2 ≥ 0 and b−kq1 ≤ 0, that is kq2 ≥ −a and kq1 ≥ b, so k ≥ max(−a, b)
will do. Therefore, if m > 0 and n > 0, we may assume that a ≥ 0 and b ≤ 0, or equivalently
that the equation

am− bn = d (∗B)

holds for some a, b ∈ N.
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Remark: By picking k > max(−a, b) we can ensure that a > 0 and b < 0 in am + bn = d,
but we don’t need this stronger condition. Also, if m = 0 and n > 0, or m > 0 and n = 0,
the condition (∗B) needs to be replaced by

am− bn = d or bn− am = d,

for some m,n ∈ N.

Now m,n > 0 are relatively prime iff gcd(d) = 1, which by the Bezout identity and the
above discussion is equivalent to the fact that the equation

am− bn = 1

has a solution for some m,n ∈ N. We can now apply this fact to assert that a number p is
prime.

Observe that by the Bezout identity, if p = s + 1 and q = s!, then we can assert that p
and q are relatively prime (gcd(p, q) = 1) as the fact that the Diophantine equation

ap− bq = 1

is satisfied for some a, b ∈ N. Then p ∈ N is prime iff p ≥ 2 and p has no divisor h such that
1 < h < p iff p ≥ 2 and gcd(p, q) = gcd(p, (p− 1)!) = 1. We leave the details an an exercise.

Then it is not hard to see that p ∈ N is prime iff the following set (P ) of equations has
a solution for a, b, s, r, q ∈ N:

p = s+ 1

p = r + 2

q = s!

ap− bq = 1.

(P )

The problem with the above is that the equation q = s! is not Diophantine. The next
step is to show that the factorial function is Diophantine, and this involves a lot of work.
One way to proceed is to show that the above system is equivalent to a system allowing the
use of the exponential function exp(m,n) = mn.

The first trick is express the factorial function in terms of the exponential function and
the binomial coefficient. Indeed, for t ≥ s ∈ N (with s ≥ 1 fixed), since(

t

s

)
=

t!

s!(t− s)! =
t(t− 1) · · · (t− s+ 1)

s!
,

we have

s! =
t(t− 1) · · · (t− s+ 1)(

t
s

) .
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For s = 1 we have

s! =
t1(
t
1

)
since 1! = 1 and

t1(
t
1

) =
t

t
= 1.

For s ≥ 2, if we replace every term in the product in the numerator by t, we deduce that

s! ≤ ts(
t
s

) =
s!ts

t(t− 1) · · · (t− s+ 1)

= s!

(
1 +

1

t− 1

)
· · ·
(

1 +
s− 1

t− s+ 1

)
.

Observe that if let t go to infinity, then for k = 1, . . . , s− 1

lim
t7→∞

(
1 +

k

t− k

)
= 1,

which implies that

lim
t7→∞

(
1 +

1

t− 1

)
· · ·
(

1 +
s− 1

t− s+ 1

)
= 1,

and so

lim
t7→∞

ts(
t
s

) = s!.

More precisely, it is not hard to see that if t ≥ 2ss+2, then(
1 +

1

t− 1

)
· · ·
(

1 +
s− 1

t− s+ 1

)
≤ 1 +

1

ss−1
,

with ss−1 > s! (since s ≥ 2), and so

s! =

⌊
ts(
t
s

)⌋ = q, (∗!)

where q the largest natural number (the floor) such that

q ≤ ts(
t
s

) < q + 1.

As we already know, the above formula also holds for s = 1. But then after some thinking
we can show that q = s! is equivalent to the following equations (where all the variables
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range over N):

t = 2ss+2 (1)

ts = qu+ w (2)

u =

(
t

s

)
(3)

u = w + x+ 1. (4)

For s = 0, since 02 = 0, the first equation yields t = 0, and then by the third equation,
u =

(
0
0

)
= 1. The fourth equation forces w = x = 0. Since 00 = 1, the second equation

yields q = 1, which is indeed 0!.

Let us now assume that s ≥ 1. From (2) and (3) we have

q =
ts(
t
s

) − w(
t
s

) ,
so

q ≤ ts(
t
s

) .
By (2) and (4) we have

ts = qu+ w = qu+ u− x− 1 = (q + 1)u− x− 1,

so using (3) we get

q + 1 =
ts(
t
s

) +
x+ 1(

t
s

) ,

which implies that
ts(
t
s

) < q + 1,

and since by (1), t = 2ss+2, we get

q =

⌊
ts(
t
s

)⌋ = s!

This astute maneuver shows that s! is equationally definable if we allow the exponential
function exp(m,n) = mn and the binomial coefficient

(
t
s

)
.

Actually, another trick shows that the binomial coefficients are definable in terms of the
exponential function too. Since

(y + 1)t =
t∑
i=0

(
t

i

)
yi,
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if y is large enough, in fact y > 2t will do, then it turns out that the binomial coefficients(
t
i

)
are the digits in the expansion of (y + 1)t in base y.

We claim that u =
(
t
s

)
is equivalent to the following system of equations (where all the

variables range over N):

y = 2t + 1 (5)

z = y + 1 (6)

zt = `ys+1 + uys +m (7)

u+ v = 2t (8)

m+ n+ 1 = ys. (9)

If t = 0, then Equations (5) and (6) yield y = 2, z = 3. Equation (7) yields

1 = `2s+1 + u2s +m.

Since ys+1 = 2s+1 ≥ 2, we must have ` = 0.

If s = 0, then ys = 20 = 1 and Equation (9) yields m + n + 1 = 1, so m = n = 0. We
have 2t = 20 = 1, so Equation (7) implies that u = 1, and then v = 0. We get

(
0
0

)
= u = 1,

as desired.

If s ≥ 1, then ys = 2s ≥ 2, so we must have u = 0. Then Equation (9) implies that
m = 1, and then n = 2s − 1 and v = 1. We get

(
0
s

)
= u = 0, as desired.

If t ≥ 1 and s > t, we claim that y > 2t implies that (y + 1)t < ys. This is because

(y + 1)t < (y + y)t = (2y)t = 2tyt < yt+1.

Assume that t ≥ 1 and s > t. Since z = y + 1 and the equation y = 2t + 1 implies that
y > 2t, the equation

(y + 1)t = zt = `ys+1 + uys +m

and the fact that (y + 1)t < ys implies that ` = u = 0. Then m = (y + 1)t, v = 2t, and
n = ys − (y + 1)t − 1, which is a natural number since (y + 1)t < ys. Therefore

(
t
s

)
= u = 0

if 1 ≤ t < s, as desired.

Finally, assume that t ≥ 1 and 0 ≤ s ≤ t. Using the binomial formula, we have

(y + 1)t =
t∑

k=0

(
t

t− k

)
yt−k

=
t−s−1∑
k=0

(
t

t− k

)
yt−k +

(
t

s

)
ys +

t∑
k=t−s+1

(
t

t− k

)
yt−k

=

(t−s−1∑
k=0

(
t

t− k

)
yt−s−1−k

)
ys+1 +

(
t

s

)
ys +

t∑
k=t−s+1

(
t

t− k

)
yt−k.
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The equation y = 2t+1 implies that y > 2t, and since
(
t
k

)
≤ 2t < y (because of the well-known

identity
∑t

k=0

(
t
k

)
= 2t), we deduce that

(
t
s

)
is the coefficient of ys in the representation of

(y + 1)t in base y > 2t. Consequently, the unique solutions of the equation

(y + 1)t = zt = `ys+1 + uys +m

are

m =
t∑

k=t−s+1

(
t

t− k

)
yt−k

u =

(
s

t

)
` =

t−s−1∑
k=0

(
t

t− k

)
yt−s−1−k.

Since they appear in the representation of (y + 1)t in base y, the numbers u and v satisfy
the inequalities

m < ys

u ≤ 2t,

so the equations

u+ v = 2t

m+ n+ 1 = ys

are satisfied. Therefore, there is a unique solution u =
(
t
s

)
, as desired.

In summary, the binomial coefficients can be equationally defined by the Equations (5)–
(9) (with s, t ∈ N) and the factorial function can be equationally defined by the Equations
(1)–(2) and (4)–(9). In both cases we allow the use of the exponential function. Since
the equation q = s! in the set (P ) of four equations stated earlier can be replaced by the
equations (1)–(2) and (4)–(9) we deduce that any prime p is equationally defined, provided
that we allow the use of the exponential function.

The final step is to show that the exponential function can be eliminated in favor of
polynomial equations. This is the hardest step which was overcome by Matyasevich by
building up on results of Robinson.

We refer the interested reader to the remarkable expository paper by Davis, Matiyasevich
and Robinson [11] for details. Here is a polynomial of total degree 25 in 26 variables (due
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to J. Jones, D. Sato, H. Wada, D. Wiens) which produces the primes as its positive range:

(k + 2)
[
1− ([wz + h+ j − q]2 + [(gk + 2g + k + 1)(h+ j) + h− z]2

+ [16(k + 1)3(k + 2)(n+ 1)2 + 1− f 2]2

+ [2n+ p+ q + z − e]2 + [e3(e+ 2)(a+ 1)2 + 1− o2]2

+ [(a2 − 1)y2 + 1− x2]2 + [16r2y4(a2 − 1) + 1− u2]2

+ [((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2]2

+ [(a2 − 1)l2 + 1−m2]2 + [ai+ k + 1− l − i]2 + [n+ l + v − y]2

+ [p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m]2

+ [q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x]2

+ [z + pl(a− p) + t(2ap− p2 − 1)− pm]2)
]
.

Around 2004, Nachi Gupta, an undergraduate student at Penn, and I tried to produce
the prime 2 as one of the values of the positive range of the above polynomial. It turns out
that this leads to values of the variables that are so large that we never succeeded!

Other interesting applications of the DPRM theorem are the re-statements of famous
open problems, such as the Riemann hypothesis, as the unsolvability of certain Diophantine
equations. For all this, see Davis, Matiyasevich and Robinson [11]. One may also obtain a
nice variant of Gödel’s incompleteness theorem.

9.8 Gödel’s Incompleteness Theorem

Gödel published his famous incompleteness theorem in 1931. At the time, his result rocked
the mathematical world, and certainly the community of logicians.

In order to understand why his result had such impact one needs to step back in time.
In the late 1800’s, Hilbert had advanced the thesis that it should be possible to completely
formalize mathematics in such a way that every true statement should be provable “me-
chanically.” In modern terminology, Hilbert believed that one could design a theorem prover
that should be complete. His quest is known as Hilbert’s program. In order to achieve his
goal, Hilbert was led to investigate the notion of proof, and with some collaborators includ-
ing Ackerman, Hilbert developed a significant amount of what is known as proof theory .
When the young Gödel announced his incompleteness theorem, Hilbert’s program came to
an abrupt halt. Even the quest for a complete proof system for arithmetic was impossible.

It should be noted that when Gödel proved his incompleteness theorem, computability
theory basically did not exist, so Gödel had to start from scratch. His proof is really a tour
de force. Gödel’s theorem also triggered extensive research on the notion of computability
and undecidability between 1931 and 1936, the major players being Church, Gödel himself,
Herbrand, Kleene, Rosser, Turing, and Post.
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In this section we will give a (deceptively) short proof that relies on the DPRM and the
existence of universal functions. The proof is short because the hard work lies in the proof
of the DPRM!

The first step is to translate the fact that there is a universal partial computable function
ϕuniv (see Proposition 6.7), such that for all x, y ∈ N, if ϕx is the xth partial computable
function, then

ϕx(y) = ϕuniv(x, y).

Also recall from Definition 7.7 that for any acceptable indexing of the partial computable
functions, the listable (c.e. r.e.) sets Wx are given by

Wx = dom(ϕx), x ∈ N.

Since ϕuniv is a partial computable function, it can be converted into a Diophantine
equation so that we have the following result.

Theorem 9.16. (Universal Equation Theorem) There is a Diophantine equation
U(m, a, x1, . . . xν) = 0 such that for every listable (c.e., r.e.) set Wm (m ∈ N) we have

a ∈ Wm iff (∃x1, . . . , xν)(U(m, a, x1, . . . , xν) = 0).

Proof. We have
Wm = {a ∈ N | (∃x1)(ϕuniv(m, a) = x1)},

and since ϕuniv is partial computable, by the DPRM (Theorem 9.8), there is Diophantine
polynomial U(m, a, x1, . . . , xν) such that

x1 = ϕuniv(m, a) iff (∃x2, . . . , xν)(U(m, a, x1, . . . , xν) = 0),

and so
Wm = {a ∈ N | (∃x1, . . . , xν)(U(m, a, x1, . . . , xν) = 0)},

as claimed.

The Diophantine equation U(m, a, x1, . . . xν) = 0 is called a universal Diophantine equa-
tion. It is customary to denote U(m, a, x1, . . . xν) by Pm(a, x1, . . . , xν).

Gödel’s incompleteness theorem applies to sets of logical (first-order) formulae of arith-
metic built from the mathematical symbols 0, S,+, ·, < and the logical connectives ∧,∨,¬,⇒
,=,∀,∃. Recall that logical equivalence, ≡, is defined by

P ≡ Q iff (P ⇒ Q) ∧ (Q⇒ P ).

The term
S(S(· · · (S︸ ︷︷ ︸

n

(0)) · · · ))
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is denoted by Sn(0), and represents the natural number n.

For example,
∃x(S(S(S(0))) < (S(S(0)) + x)),

∃x∃y∃z((0 < x) ∧ (0 < y) ∧ (0 < z) ∧ ((x · x+ y · y) = z · z)),

and

∀x∀y∀z((0 < x) ∧ (0 < y) ∧ (0 < z)⇒ ¬((x · x · x · x+ y · y · y · y) = z · z · z · z))

are formulae in the language of arithmetic. All three are true. The first formula is satisfied
by x = S(S(0)), the second by x = S3(0), y = S4(0) and z = S5(0) (since 32 + 42 = 9 + 16 =
25 = 52), and the third formula asserts a special case of Fermat’s famous theorem: for every
n ≥ 3, the equation xn + yn = zn has no solution with x, y, z ∈ N and x > 0, y > 0, z > 0.
The third formula corrresponds to n = 4. Even for this case, the proof is hard.

To be completely rigorous we should explain precisely what is a formal proof. Roughly
speaking, a proof system consists of axioms and inference rule. A proof is a certain kind
of tree whose nodes are labeled with formulae, and this tree is constructed in such a way
that for every node some inference rule is applied. Proof systems are discussed in Chapter 1
and in more detail in Chapter 2. The reader is invited to review this material. Such proof
systems are also presented in Gallier [21, 20].

Given a polynomial P (x1, . . . , xm) in Z[x1, . . . , xm], we need a way to “prove” that some
natural numbers n1, . . . , nm ∈ N are a solution of the Diophantine equation

P (x1, . . . , xm) = 0,

which means that we need to have enough formulae of arithmetric to allow us to simplify
the expression P (n1, . . . , nm) and check whether or not it is equal to zero.

For example, if P (x, y) = 2x− 3y − 1, we have the solution x = 2 and y = 1. What we
do is to group all monomials with positive signs, 2x, and all monomials with negative signs,
3y + 1, plug in the values for x and y, simplify using the arithmetic tables for + and ·, and
then compare the results. If they are equal, then we proved that the equation has a solution.

In our language, x = S2(0), 2x = S2(0) · x, and y = S1(0), 3y+ 1 = S3(0) · y+ S(0). We
need to simplify the expressions

2x = S2(0) · S2(0) and 3y + 1 = S3(0) · S(0) + S(0).

Using the formulae

Sm(0) + Sn(0) = Sm+n(0)

Sm(0) · Sn(0) = Smn(0)

Sm(0) < Sn(0) iff m < n,
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with m,n ∈ N, we simplify S2(0) · S2(0) to S4(0), S3(0) · S(0) + S(0) to S4(0), and we see
that the results are equal.

In general, given a polynomial P (x1, . . . , xm) in Z[x1, . . . , xm], we write it as

P (x1, . . . , xm) = Ppos(x1, . . . , xm)− Pneg(x1, . . . , xm),

where Ppos(x1, . . . , xm) consists of the monomials with positive coefficients, and −Pneg(x1,
. . . , xm) consists of the monomials with negative coefficients. Next we plug in Sn1(0), . . .,
Snm(0) in Ppos(x1, . . . , xm), and evaluate using the formulae for the addition and multiplica-
tion tables obtaining a term of the form Sp(0). Similarly, we plug in Sn1(0), . . . , Snm(0) in
Pneg(x1, . . . , xm), and evaluate using the formulae for the addition and multiplication tables
obtaining a term of the form Sq(0). Then, since exactly one of the formulae

Sp(0) = Sq(0), or Sp(0) < Sq(0), or Sq(0) < Sp(0)

is true, we obtain a proof that either P (n1, . . . , nm) = 0 or P (n1, . . . , nm) 6= 0.

A more economical way that does use not an infinite number of formulae expressing the
addition and multiplication tables is to use various axiomatizations of arithmetic.

One axiomatization known as Robinson arithmetic (R. M. Robinson (1950)) consists of
the following seven axioms:

∀x¬(S(x) = 0)

∀x∀y((S(x) = S(y))⇒ (x = y))

∀y((y = 0) ∨ ∃x(S(x) = y))

∀x(x+ 0 = x)

∀x∀y(x+ S(y) = S(x+ y))

∀x(x · 0 = 0)

∀x∀y(x · S(y) = x · y + x).

Peano arithmetic is obtained from Robinson arithmetic by adding a rule schema express-
ing induction:

[ϕ(0) ∧ ∀n(ϕ(n)⇒ ϕ(n+ 1))]⇒ ∀mϕ(m),

where ϕ(x) is any (first-order) formula of arithmetic. To deal with <, we also have the axiom

∀x∀y(x < y ≡ ∃z(S(z) + x = y)).

It is easy to prove that the formulae

Sm(0) + Sn(0) = Sm+n(0)

Sm(0) · Sn(0) = Smn(0)

Sm(0) < Sn(0) iff m < n,
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are provable in Robinson arithmetic, and thus in Peano arithmetic (with m,n ∈ N).

Gödel’s incompleteness applies to sets A of formulae of arithmetic that are “nice” and
strong enough. A set A of formulae is nice if it is listable and consistent (see Definition 8.3),
which means that it is impossible to prove ϕ and ¬ϕ from A for some formula ϕ. In other
words, A is free of contradictions.

Since the axioms of Peano arithmetic are obviously true statements about N and since
the induction principle holds for N, the set of all formulae provable in Robinson arithmetic
and in Peano arithmetic is consistent.

As in Section 8.3, it is possible to assign a Gödel number #(A) to every first-order
sentence A in the language of arithmetic; see Enderton [14] (Chapter III) or Kleene I.M.
[36] (Chapter X). With a slight abuse of notation, we say that a set T is sentences of
arithmetic is computable (resp. listable) iff the set of Gödel numbers #(A) of sentences A
in T is computable (resp. listable). It can be shown that the set of all formulae provable in
Robinson arithmetic and in Peano arithmetic are listable.

Here is a rather strong version of Gödel’s incompleteness from Davis, Matiyasevich and
Robinson [11].

Theorem 9.17. (Gödel’s Incompleteness Theorem) Let A be a set of formulae of arithmetic
satisfying the following properties:

(a) The set A is consistent.

(b) The set A is listable (c.e., r.e.)

(c) The set A is strong enough to prove all formulae

Sm(0) + Sn(0) = Sm+n(0)

Sm(0) · Sn(0) = Smn(0)

Sm(0) < Sn(0) iff m < n,

for all m,n ∈ N.

Then we can construct a Diophantine equation F (x1, . . . , xν) = 0 corresponding to A such
that F (x1, . . . , xν) = 0 has no solution with x1, . . . , xν ∈ N but the formula

¬(∃x1, . . . , xν)(F (x1, . . . , xν) = 0) (∗)

is not provable from A. In other words, there is a true statement of arithmetic not provable
from A; that is, A is incomplete.

Proof. Define the subset A ⊆ N as follows:

A = {a ∈ N | ¬(∃x1, . . . , xν)(Pa(a, x1, . . . , xν) = 0) is provable from A}, (∗∗)
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where Pm(a, x1, . . . , xν) is defined just after Theorem 9.16. Because by (b) A is listable, it
is easy to see (because the set of formulae provable from a listable set is listable) that A is
listable, so by the DPRM A is Diophantine, and by Theorem 9.16, there is some k ∈ N such
that

A = Wk = {a ∈ N | (∃x1, . . . , xν)(Pk(a, x1, . . . , xν) = 0).

The trick is now to see whether k ∈ Wk or not. We claim that k /∈ Wk.

We proceed by contradiction. Assume that k ∈ Wk. This means that

(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0), (†1)

and since A = Wk, by (∗∗), that

¬(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0) is provable from A. (†2)

By (†1) and (c), since the equation Pk(k, x1, . . . , xν) = 0 has a solution, we can prove the
formula

(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0)

from A. By (†2), the formula ¬(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0) is provable from A, but
since (∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0) is also provable from A, this contradicts the fact
that A is consistent (which is hypothesis (a)).

Therefore we must have k /∈ Wk. This means that Pk(k, x1, . . . , xν) = 0 has no solution
with x1, . . . , xν ∈ N, and since A = Wk, the formula

¬(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0)

is not provable from A, since otherwise, by definition of A = Wk, we would have k ∈ Wk,
contradicting the fact that k /∈ Wk.

Remark: Going back to the proof of Theorem 8.16, observe that A plays the role of {Fx |
¬Fx is provable}, that k plays the role of x0, and that the fact that

¬(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0)

is not provable from A corresponds to ¬Fx0 being true.

As a corollary of Theorem 9.17, since the theorems provable in Robinson arithmetic
satisfy (a), (b), (c), we deduce that there are true theorems of arithmetic not provable in
Robinson arithmetic; in short, Robinson arithmetic is incomplete. Since Robinson arith-
metic does not have induction axioms, this shows that induction is not the culprit behind
incompleteness. Since Peano arithmetic is an extension (consistent) of Robinson arithmetic,
it is also incomplete. This is Gödel’s original incompleteness theorem, but Gödel had to
develop from scratch the tools needed to prove his result, so his proof is very different (and
a tour de force).
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But the situation is even more dramatic. Adding a true unprovable statement to a
set A satisfying (a), (b), (c) preserves properties (a), (b), (c), so there is no escape from
incompleteness (unless perhaps we allow unreasonable sets of formulae violating (b)). The
reader should compare this situation with the results given by Theorem 8.14 and Theorem
8.15.

Gödel’s incomplenetess theorem is a negative result, in the sense that it shows that there
is no hope of obtaining proof systems capable of proving all true statements for various
mathematical theories such as arithmetic. We can also view Gödel’s incomplenetess theorem
positively as evidence that mathematicians will never be replaced by computers! There is
always room for creativity.

The true but unprovable formulae arising in Gödel’s incompleteness theorem are rather
contrived and by no means “natural.” For many years after Gödel’s proof was published
logicians looked for natural incompleteness phenomena. In the early 1980’s such results
were found, starting with a result of Kirby and Paris. Harvey Friedman then found more
spectacular instances of natural incompleteness, one of which involves a finite miniaturization
of Kruskal’s tree theorem. The proof of such results uses some deep methods of proof theory
involving a tool known as ordinal notations. In particular, two ordinals denoted ε0 and Γ0

play an important role in consistency proofs; see Takeuti [60] and Schütte [54]. A survey
of such results can be found in Gallier [15] and an introduction to ordinals and cardinals is
provided in Chapter A.
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Chapter 10

The Post Correspondence Problem;
Applications to Undecidability
Results

10.1 The Post Correspondence Problem

The Post correspondence problem (due to Emil Post) is another undecidable problem that
turns out to be a very helpful tool for proving problems in logic or in formal language theory
to be undecidable.

Definition 10.1. Let Σ be an alphabet with at least two letters. An instance of the Post Cor-
respondence problem (for short, PCP) is given by two nonempty sequences U = (u1, . . . , um)
and V = (v1, . . . , vm) of strings ui, vi ∈ Σ∗. Equivalently, an instance of the PCP is a
sequence of pairs (u1, v1), . . . , (um, vm).

The problem is to find whether there is a (finite) sequence (i1, . . . , ip), with ij ∈ {1, . . . ,m}
for j = 1, . . . , p, so that

ui1ui2 · · ·uip = vi1vi2 · · · vip .
Example 10.1. Consider the following problem:

(abab, ababaaa), (aaabbb, bb), (aab, baab), (ba, baa), (ab, ba), (aa, a).

There is a solution for the string 1234556:

abab aaabbb aab ba ab ab aa = ababaaa bb baab baa ba ba a.

If you are not convinced that this is a hard problem, try solving the following instance
of the PCP:

{(aab, a), (ab, abb), (ab, bab), (ba, aab).}
The shortest solution is a sequence of length 66.

We are beginning to suspect that this is a hard problem. Indeed, it is undecidable!

407
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Theorem 10.1. (Emil Post, 1946) The Post correspondence problem is undecidable, pro-
vided that the alphabet Σ has at least two symbols.

There are several ways of proving Theorem 10.1, but the strategy is more or less the same:
reduce the halting problem to the PCP, by encoding sequences of ID’s as partial solutions of
the PCP. In Machtey and Young [43] (Section 2.6), the undecidability of the PCP is shown
by demonstrating how to simulate the computation of a Turing machine as a sequence of
ID’s. We give a proof involving special kinds of RAM programs (called Post machines in
Manna [44]), which is an adaptation of a proof due to Dana Scott presented in Manna [44]
(Section 1.5.4, Theorem 1.8).

Proof. The first step of the proof is to show that a RAM program with p ≥ 2 registers can be
simulated by a RAM program using a single register. The main idea of the simulation is that
by using the instructions add, tail, and jmp, it is possible to perform cyclic permutations
on the string held by a register.

First we can also assume that RAM programs only uses instructions of the form

(1j) N addj X
(2) N tail X
(6ja) N X jmpj N1a
(6jb) N X jmpj N1b
(7) N continue

We can simulate p ≥ 2 registers with a single register, by encoding the contents r1, . . . , rp
of the p registers as the string

r1#r2# · · ·#rp,
using a single marker #. For instance, if p = 2, the effect of the instruction addb on register
R1 is achieved as follows: Assuming that the initial contents are

aab#baba

using cyclic permutations (also inserting or deleting # whenever necessary), we get

aab#baba

ab#baba#a

b#baba#aa

baba#aab

baba#aabb (add b on the right)

aba#aabb#b

ba#aabb#ba

a#aabb#bab

aabb#baba
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Similarly, the effect of the instruction tail on register R2 is achieved as follows

aab#baba

ab#baba#a

b#baba#aa

baba#aab

aba#aab (delete the leftmost letter)

ba#aab#a

a#aab#ab

aab#aba

Since the halting problem for RAM programs is undecidable and since every RAM pro-
gram can be simulated by another RAM with a single register, the halting problem for RAM
programs with a single register is undecidable.

The second step of the proof is to reduce the halting problem for RAM programs with
one register to the PCP (over an alphabet with at least two symbols).

Recall that Σ = {a1, . . . , ak}. First, it is easily shown that every RAM program P (with
a single register X) is equivalent to a RAM program P ′ such that all instructions are labeled
with distinct line numbers, and such that there is only one occurrence of the instruction
continue at the end of the program.

In order to obtain a reasonably simple reduction of the halting problem for RAM programs
with a single register to the PCP, we modify the jump instructions as follows: the new
instruction

JmpN1, . . . , Nk, Nk+1

tests whether head(X) = aj, with 1 ≤ j ≤ k. Since there is a single register X, it is
omitted in the instruction Jmp. If head(X) = aj, then jump to the instruction labeled Nj

and perform the tail instruction so that X = tail(X), otherwise if X = ε (which implies
that j = k + 1), jump to the instruction labeled Nk+1. The instruction tail is eliminated.
We leave it as an exercise to show how to simulate the new instruction

JmpN1, . . . , Nk, Nk+1

using the instructions tail, jmpj Na and jmpj Nb, and vice-versa. From now on we will use
the second version using the instructions

JmpN1, . . . , Nk, Nk+1.

For the purpose of deciding whether a RAM program terminates, we may assume without
loss of generality that we deal with programs that clear the register X when they halt. In
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fact, by adding an extra symbol # to the alphabet (which now has k + 1 symbols), we may
also assume that in every instruction

JmpN1, . . . , Nk+1, Nk+2,

Nk+2 is the line number of the last instruction in the RAM program, which must be a
continue. This implies that the program clears the register X before it halts. We can
execute the instruction addk+1 X at the very beginning of the program and perform an
addk+1 X after each tail instruction to make sure that in the new program the register X
always has # as its rightmost symbol. When the original program performs an instruction

JmpN1, . . . , Nk+1, Nk+2

with X = ε, the new program performs the instruction

JmpN1, . . . , Nk+2, N1.

SinceX is never empty during execution of the new program, the line numberN1 is irrelevant.
Finally, when the original program halts, the new program clears the register X and then
jumps to the last continue. We leave the details as an exercise.

From now on, we assume that Σ = {a1, . . . , ak,#}. Given a RAM program P sat-
isfying all the restrictions described above, we construct an instance of the PCP as fol-
lows. Assume that P has q lines numbered N1, . . . , Nq. The alphabet ∆ of the PCP is
∆ = Σ ∪ {∗, N0, N1, . . . , Nq}. Indeed, the construction requires one more line number N0 to
force a solution of the PCP to start with some specified pair.

The lists U and V are constructed so that given any nonempty input x = x1 · · ·xm (with
xi ∈ Σ), the only possible U -lists u and V -lists v that could lead to a solution are of the
form

u = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin wn ∗Nin+1 ∗,

where each wi is of the form

wi = ∗ wi,1 ∗ · · · ∗ wi,ni or wi = ε,

with
w0 = ∗ x1 ∗ x2 ∗ · · · ∗ xm,

where wi,j ∈ Σ, 1 ≤ j ≤ ni, 1 ≤ i ≤ n.

The sequence N1, . . . , Nin+1 is the sequence of line numbers of the instructions executed
by the RAM program P after n steps, started on input x, and wj is the value of the (single)
register X just after executing the jth step, i.e., the instruction at line number Nij . We
make sure that the V -list is always ahead of the U -list by one instruction.
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The lists U and V are defined according to the following rules. Rather than defining U
and V explicitly, we define the pairs (ui, vi), where ui ∈ U and vi ∈ V .

To get started: we have the initial pair

(N0, N0 ∗ x1 ∗ x2 ∗ · · · ∗ xm ∗N1 ∗).

To simulate an instruction
Ni addj X,

create the pair
(∗Ni, aj ∗Ni+1 ∗), for all a ∈ Σ.

To simulate an instruction of the form

Ni JmpN1, . . . , Nk+1, Nk+2,

create the pairs
(∗Ni ∗ aj, Nj ∗), 1 ≤ j ≤ k + 1,

and
(∗Ni ∗Nq, Nq).

To build up the register contents, we need pairs

(∗ a, a ∗), for all a ∈ Σ.

Note that we used the alphabet ∆ = Σ ∪ {∗, N0, N1, . . . , Nq}, which uses more than 2
symbols in general. Let us finish our reduction for an instance of the PCP over the alphabet
∆. Then after this construction is finished we will explain how to convert the instance of
the PCP that we obtained to an instance of the PCP over a two-symbol alphabet.

The pairs of the PCP are designed so that the only possible U -lists u and V -lists v that
could lead to a solution are of the form

u = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin wn ∗Nin+1 ∗,

where each wi is of the form

wi = ∗ wi,1 ∗ · · · ∗ wi,ni or wi = ε,

with
w0 = ∗ x1 ∗ x2 ∗ · · · ∗ xm,
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where wi,j ∈ Σ, 1 ≤ j ≤ ni, 1 ≤ i ≤ n, and where v is an encoding of n steps of the
computation of the RAM program P on input x = x1 · · ·xm, and u lags behind v by one
step.

For example, let us see how the U -list and the V -list are updated, assuming that Nin is
the following instruction:

Nin addb X

Just after execution of the instruction at line number Nin , we have

u = N0 w0 ∗N1 w1 ∗ · · · ∗ Nin−1

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin ∗ .

Since wn−1 = ∗wn−1,1 ∗ · · · ∗ wn−1,nn−1 , using the pairs

(∗wn−1,1, wn−1,1∗), (∗wn−1,2, wn−1,2 ∗), · · · , (∗wn−1,nn−1 , wn−1,nn−1 ∗),

we get
u = N0 w0 ∗N1 w1 ∗ · · · ∗ Nin−1 wn−1

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin wn−1 ∗ .

Next we use the pair
(∗Nin , b ∗Nin+1 ∗)

simulating addb, and we get

u = N0 w0 ∗N1 w1 ∗ · · · ∗ Nin−1 wn−1 ∗Nin

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin wn−1 ∗ b ∗Nin+1 ∗ .

Observe that the only chance for getting a solution of the PCP is to start with the pairs
involving N0. It is easy to see that the PCP constructed from P has a solution iff P halts
on input x. However, the halting problem for RAM’s with a single register is undecidable,
and thus, the PCP over the alphabet ∆ is also undecidable.

It remains to show that we can recode the instance of the PCP that we obtained over
the alphabet ∆ = Σ ∪ {∗, N0, N1, . . . , Nq} as an instance of the PCP over the alphabet
{a1, ∗}. To achieve this, we recode each symbol ai in Σ as ∗ai1 (with ak+1 = #) and each
Nj as ∗ak+j+2

1 . This way, we are only using the alphabet ∆ = {a1, ∗}. We need the second
character ∗, whose purpose is to avoid trivial solutions of the form

(u, u).
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This could happen if we had used pairs (a, a) to build up the register. Then we substitute
∗ai1 for ai and ∗ak+j+2

1 for Nj in the pairs that we created. Observe that the pairs (∗a, a∗)
become pairs involving longer strings. It is easy to see that the original PCP over ∆ has a
solution iff the new PCP over {a1, ∗} has a solution, so the PCP over two-letter alphabet is
undecidable.

In the next two sections we present some undecidability results for context-free grammars
and context-free languages.

10.2 Some Undecidability Results for CFG’s

Theorem 10.2. It is undecidable whether a context-free grammar is ambiguous.

Proof. We reduce the PCP to the ambiguity problem for CFG’s. Given any instance U =
(u1, . . . , um) and V = (v1, . . . , vm) of the PCP, let c1, . . . , cm be m new symbols, and consider
the following languages:

LU = {ui1 · · ·uipcip · · · ci1 | 1 ≤ ij ≤ m,

1 ≤ j ≤ p, p ≥ 1},
LV = {vi1 · · · vipcip · · · ci1 | 1 ≤ ij ≤ m,

1 ≤ j ≤ p, p ≥ 1},

and LU,V = LU ∪ LV .

We can easily construct a CFG, GU,V , generating LU,V . The productions are:

S −→ SU

S −→ SV

SU −→ uiSUci

SU −→ uici

SV −→ viSV ci

SV −→ vici.

It is easily seen that the PCP for (U, V ) has a solution iff LU ∩LV 6= ∅ iff G is ambiguous.

Remark: As a corollary, we also obtain the following result: it is undecidable for arbitrary
context-free grammars G1 and G2 whether L(G1) ∩ L(G2) = ∅ (see also Theorem 10.4).

Recall that the computations of a Turing Machine, M , can be described in terms of
instantaneous descriptions, upav.
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We can encode computations

ID0 ` ID1 ` · · · ` IDn

halting in a proper ID, as the language, LM , consisting all of strings

w0#wR1 #w2#wR3 # · · ·#w2k#w
R
2k+1,

or

w0#wR1 #w2#wR3 # · · ·#w2k−2#wR2k−1#w2k,

where k ≥ 0, w0 is a starting ID, wi ` wi+1 for all i with 0 ≤ i < 2k + 1 and w2k+1 is proper
halting ID in the first case, 0 ≤ i < 2k and w2k is proper halting ID in the second case.

The language LM turns out to be the intersection of two context-free languages L0
M and

L1
M defined as follows:

(1) The strings in L0
M are of the form

w0#wR1 #w2#wR3 # · · ·#w2k#w
R
2k+1

or

w0#wR1 #w2#wR3 # · · ·#w2k−2#wR2k−1#w2k,

where w2i ` w2i+1 for all i ≥ 0, and w2k is a proper halting ID in the second case.

(2) The strings in L1
M are of the form

w0#wR1 #w2#wR3 # · · ·#w2k#w
R
2k+1

or

w0#wR1 #w2#wR3 # · · ·#w2k−2#wR2k−1#w2k,

where w2i+1 ` w2i+2 for all i ≥ 0, w0 is a starting ID, and w2k+1 is a proper halting ID
in the first case.

Theorem 10.3. Given any Turing machine M , the languages L0
M and L1

M are context-free,
and LM = L0

M ∩ L1
M .

Proof. We can construct PDA’s accepting L0
M and L1

M . It is easily checked that LM =
L0
M ∩ L1

M .

As a corollary, we obtain the following undecidability result:

Theorem 10.4. It is undecidable for arbitrary context-free grammars G1 and G2 whether
L(G1) ∩ L(G2) = ∅.
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Proof. We can reduce the problem of deciding whether a partial recursive function is unde-
fined everywhere to the above problem. By Rice’s theorem, the first problem is undecidable.

However, this problem is equivalent to deciding whether a Turing machine never halts in
a proper ID. By Theorem 10.3, the languages L0

M and L1
M are context-free. Thus, we can

construct context-free grammars G1 and G2 so that L0
M = L(G1) and L1

M = L(G2). Then M
never halts in a proper ID iff LM = ∅ iff (by Theorem 10.3), LM = L(G1) ∩ L(G2) = ∅.

Given a Turing machineM , the language LM is defined over the alphabet ∆ = Γ∪Q∪{#}.
The following fact is also useful to prove undecidability:

Theorem 10.5. Given any Turing machine M , the language ∆∗ − LM is context-free.

Proof. One can easily check that the conditions for not belonging to LM can be checked by
a PDA.

As a corollary, we obtain:

Theorem 10.6. Given any context-free grammar, G = (V,Σ, P, S), it is undecidable whether
L(G) = Σ∗.

Proof. We can reduce the problem of deciding whether a Turing machine never halts in a
proper ID to the above problem.

Indeed, given M , by Theorem 10.5, the language ∆∗ − LM is context-free. Thus, there
is a CFG, G, so that L(G) = ∆∗ − LM . However, M never halts in a proper ID iff LM = ∅
iff L(G) = ∆∗.

As a consequence, we also obtain the following:

Theorem 10.7. Given any two context-free grammar, G1 and G2, and any regular language,
R, the following facts hold:

(1) L(G1) = L(G2) is undecidable.

(2) L(G1) ⊆ L(G2) is undecidable.

(3) L(G1) = R is undecidable.

(4) R ⊆ L(G2) is undecidable.

In contrast to (4), the property L(G1) ⊆ R is decidable!
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10.3 More Undecidable Properties of Languages;

Greibach’s Theorem

We discuss a nice theorem of S. Greibach, which is a sort of version of Rice’s theorem for
families of languages.

Let L be a countable family of languages. We assume that there is a coding function
c : L → N and that this function can be extended to code the regular languages (all alphabets
are subsets of some given countably infinite set).

We also assume that L is effectively closed under union, and concatenation with the
regular languages.

This means that given any two languages L1 and L2 in L, we have L1 ∪ L2 ∈ L, and
c(L1 ∪ L2) is given by a recursive function of c(L1) and c(L2), and that for every regular
language R, we have L1R ∈ L, RL1 ∈ L, and c(RL1) and c(L1R) are recursive functions of
c(R) and c(L1).

Given any language, L ⊆ Σ∗, and any string, w ∈ Σ∗, we define L/w by

L/w = {u ∈ Σ∗ | uw ∈ L}.

Theorem 10.8. (Greibach) Let L be a countable family of languages that is effectively closed
under union and concatenation with the regular languages, and assume that the problem
L = Σ∗ is undecidable for L ∈ L and any given sufficiently large alphabet Σ. Let P be any
nontrivial property of languages that is true for the regular languages, so that if P (L) holds
for any L ∈ L, then P (L/a) also holds for any letter a. Then P is undecidable for L.

Proof. Since P is nontrivial for L, there is some L0 ∈ L so that P (L0) is false.

Let Σ be large enough, so that L0 ⊆ Σ∗, and the problem L = Σ∗ is undecidable for
L ∈ L.

We show that given any L ∈ L, with L ⊆ Σ∗, we can construct a language L1 ∈ L, so
that L = Σ∗ iff P (L1) holds. Thus, the problem L = Σ∗ for L ∈ L reduces to property P
for L, and since for Σ big enough, the first problem is undecidable, so is the second.

For any L ∈ L, with L ⊆ Σ∗, let

L1 = L0#Σ∗ ∪ Σ∗#L.

Since L is effectively closed under union and concatenation with the regular languages, we
have L1 ∈ L.

If L = Σ∗, then L1 = Σ∗#Σ∗, a regular language, and thus, P (L1) holds, since P holds
for the regular languages.

Conversely, we would like to prove that if L 6= Σ∗, then P (L1) is false.
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Since L 6= Σ∗, there is some w /∈ L. But then,

L1/#w = L0.

Since P is preserved under quotient by a single letter, by a trivial induction, if P (L1) holds,
then P (L0) also holds. However, P (L0) is false, so P (L1) must be false.

Thus, we proved that L = Σ∗ iff P (L1) holds, as claimed.

Greibach’s theorem can be used to show that it is undecidable whether a context-free
grammar generates a regular language.

It can also be used to show that it is undecidable whether a context-free language is
inherently ambiguous.

10.4 Undecidability of Validity in First-Order Logic

The PCP can also be used to give a quick proof of Church’s famous result stating that validity
in first-order logic is undecidable. Here we are considering first-order formulae as defined
in Section 2.16. Given a first-order language L consisting of constant symbols c, function
symbols f , and predicate symbols P , a first-order structure M consists of a nonempty
domain M , of an assigment of some element of cM ∈ M to every constant symbol c, of a
function fM : Mn →M to every n-ary function symbol f , and to a boolean-valued function
PM : Mm → {T,F} to any m-ary predicate symbol P .

Then given any assignment ρ : X →M to the first-order variables xi ∈ X, we can define
recursively the truth value ϕM[ρ] of every first-order formula ϕ. If ϕ is a sentence, which
means that ϕ has no free variables, then the truth value ϕM[ρ] is independent of ρ, so we
simply write ϕM. Details can be found in Gallier [21], Enderton [14], or Shoenfield [56]. The
formula ϕ is valid in M if ϕM[ρ] = T for all ρ. We also say thatM is a model of ϕ and we
write

M |= ϕ.

The formula ϕ is valid (or universally valid) if it is valid in every first-order structure M;
this denoted by

|= ϕ.

The validity problem in first-order logic is to decide whether there is algorithm to decide
whether any first-order formula is valid.

Theorem 10.9. (Church, 1936) The validity problem for first-order logic is undecidable.

Proof. The following proof due to R. Floyd is given in Manna [44] (Section 2.16). The proof
consists in reducing the PCP over the alphabet {0, 1} to the validity problem. Given an
instance S = (U, V ) of the PCP, we construct a first-order sentence ΦS (using a computable
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function) such that S has a solution if and only if ΦS is valid. Since the PCP is undecidable,
so is the validity problem for first-order logic.

For this construction, we need a constant symbol a, two unary function symbols f0 and
f1, and a binary predicate symbol P . We denote the term

fsp(· · · (fs2(fs1(x)) · · · )

as fs1s2···sp , where si ∈ {0, 1}. Suppose S is the set of pairs

S = {(u1, v1), . . . , (um, vm)}.

The key ingredent is the sentence

ΦS ≡
( m∧
i=1

P (fui(a), fvi(a)) ∧ ∀x∀y
(
P (x, y)⇒

m∧
i=1

P (fui(x), fvi(x))
))

⇒ ∃zP (z, z).

We claim that the PCP S has a solution iff ΦS is valid.

Step 1 . We prove that if ΦS is valid, then the PCP has a solution. Consider the first-
order structure M with domain {0, 1}∗, with aM = ε, (f0)M is concatenation on the right
with 0 ((f0)M(x) = x0), (f1)M is concatenation on the right with 1 ((f1)M(x) = x1), and

P (x, y) = T iff x = ui1ui2 · · ·uin , y = vi1vi2 · · · vin ,

for some nonempty sequence i1, i2, . . . , in with 1 ≤ ij ≤ m.

Since ΦS is valid, it must be valid in M, but then we see immediately that both

m∧
i=1

P (fui(a), fvi(a))

and

∀x∀y
(
P (x, y)⇒

m∧
i=1

P (fui(x), fvi(x))
)

are valid in M, thus
∃zP (z, z)

is also valid in M. This means that there is some nonempty sequence i1, i2, . . . , in with
1 ≤ ij ≤ m such that

z = ui1ui2 · · ·uin = vi1vi2 · · · vin ,
and so we have a solution of the PCP.

Step 2 . We prove that if the PCP has a solution, then ΦS is valid. Let i1, i2, . . . , in be a
nonempty sequence with 1 ≤ ij ≤ m such that

ui1ui2 · · ·uin = vi1vi2 · · · vin ,
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which means that i1, i2, . . . , in is a solution of the PCP S. We prove that for every first-order
structure M, if

m∧
i=1

P (fui(a), fvi(a))

and

∀x∀y
(
P (x, y)⇒

m∧
i=1

P (fui(x), fvi(x))
)

are valid in M, then
∃zP (z, z)

is also valid inM. But then ΦS is valid in every first-order structureM, and thus it is valid.

To finish the proof, assume that M is any first-order structure such that

m∧
i=1

P (fui(a), fvi(a)) (∗1)

and

∀x∀y
(
P (x, y)⇒

m∧
i=1

P (fui(x), fvi(x))
)

(∗2)

are valid in M. Using (∗1), by repeated application on (∗2), we deduce that

P (fui1ui2 ···uin (a), fvi1vi2 ···vin (a)),

is valid in M. For example, since (ui1 , vi1) is a pair in the PCP instance, by (∗1) the
proposition P (fui1 (a), fvi1 (a)) holds, so by (∗2) with x = fui1 (a) and v = fvi1 (a), we get the
implication

P (fui1 (a), fvi1 (a))⇒
m∧
i=1

P (fui(fui1 (a)), fvi(fvi1 (a))),

and since P (fui1 (a), fvi1 (a)) holds, we deduce that
∧m
i=1 P (fui(fui1 (a)), fvi(fvi1 (a))) holds,

and consequently P (fui2 (fui1 (a)), fvi2 (fvi1 (a))) = P (fui1ui2 (a), fvi1v21 (a)) holds.

Since by hypothesis
ui1ui2 · · ·uin = vi1vi2 · · · vin ,

we deduce that ∃zP (z, z) is valid in M, and so ΦS is valid in M, as claimed.

There are other ways of proving Church’s theorem. Among other sources, see Shoenfield
[56] (Section 6.8) and Machtey and Young [43] (Chapter 4, theorem 4.3.6). These proofs are
rather long and involve complicated arguments. Floyd’s proof has the virtue of being quite
short and transparent, if we accept the undecidability of the PCP.

Lewis shows the stronger result than even with a single unary function symbol f , one
constant a, and one binary predicate symbol P , the validity problem is undecidable; see
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Lewis [41] (Chapter IIC). Lewis’ proof is a very clever reduction of a tiling problem. Lewis’
book also contains an extensive classification of undecidable classes of first-order sentences.
On the positive side, Dreben and Goldfarb [12] contains a very complete study of classes of
first-order sentences for which the validity problem is decidable.



Chapter 11

Computational Complexity;
P and NP

11.1 The Class P
In the previous two chapters, we clarified what it means for a problem to be decidable
or undecidable. This chapter is heavily inspired by Lewis and Papadimitriou’s excellent
treatment [42].

In principle, if a problem is decidable, then there is an algorithm (i.e., a procedure that
halts for every input) that decides every instance of the problem.

However, from a practical point of view, knowing that a problem is decidable may be
useless, if the number of steps (time complexity) required by the algorithm is excessive, for
example, exponential in the size of the input, or worse.

For instance, consider the traveling salesman problem, which can be formulated as follows:

We have a set {c1, . . . , cn} of cities, and an n×n matrix D = (dij) of nonnegative integers,
the distance matrix , where dij denotes the distance between ci and cj, which means that
dii = 0 and dij = dji for all i 6= j.

The problem is to find a shortest tour of the cities, that is, a permutation π of {1, . . . , n}
so that the cost

C(π) = dπ(1)π(2) + dπ(2)π(3) + · · ·+ dπ(n−1)π(n) + dπ(n)π(1)

is as small as possible (minimal).

One way to solve the problem is to consider all possible tours, i.e., n! permutations.
Actually, since the starting point is irrelevant, we need only consider (n− 1)! tours, but this
still grows very fast. For example, when n = 40, it turns out that 39! exceeds 1045, a huge
number.

421
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Consider the 4× 4 symmetric matrix given by

D =


0 2 1 1
2 0 1 1
1 1 0 3
1 1 3 0

 ,

and the budget B = 4. The tour specified by the permutation

π =

(
1 2 3 4
1 4 2 3

)
has cost 4, since

c(π) = dπ(1)π(2) + dπ(2)π(3) + dπ(3)π(4) + dπ(4)π(1)

= d14 + d42 + d23 + d31

= 1 + 1 + 1 + 1 = 4.

The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).

Remark: The permutation π shown above is described in Cauchy’s two-line notation,

π =

(
1 2 3 4
1 4 2 3

)
,

where every element in the second row is the image of the element immediately above it in
the first row: thus

π(1) = 1, π(2) = 4, π(3) = 2, π(4) = 3.

Thus, to capture the essence of practically feasible algorithms, we must limit our com-
putational devices to run only for a number of steps that is bounded by a polynomial in the
length of the input.

We are led to the definition of polynomially bounded computational models.

We talked about problems being decidable in polynomial time. Obviously, this is equiv-
alent to deciding some property of a certain class of objects, for example, finite graphs.

Our framework requires that we first encode these classes of objects as strings (or num-
bers), since P consists of languages.

Thus, when we say that a property is decidable in polynomial time, we are really talking
about the encoding of this property as a language. Thus, we have to be careful about these
encodings, but it is rare that encodings cause problems.
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Definition 11.1. A deterministic Turing machine M is said to be polynomially bounded if
there is a polynomial p(X) so that the following holds: for every input x ∈ Σ∗, there is no
ID IDn so that

ID0 ` ID1 `∗ IDn−1 ` IDn, with n > p(|x|),
where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is polynomially decidable if there is a polynomially bounded Turing
machine that accepts L. The family of all polynomially decidable languages is denoted by
P .

Remark: Even though Definition 11.1 is formulated for Turing machines, it can also be
formulated for other models, such as RAM programs. The reason is that the conversion of
a Turing machine into a RAM program (and vice versa) produces a program (or a machine)
whose size is polynomial in the original device.

The following proposition, although trivial, is useful:

Proposition 11.1. The class P is closed under complementation.

Of course, many languages do not belong to P . One way to obtain such languages is
to use a diagonal argument. But there are also many natural languages that are not in P ,
although this may be very hard to prove for some of these languages.

Let us consider a few more problems in order to get a better feeling for the family P .

11.2 Directed Graphs, Paths

Recall that a directed graph, G, is a pair G = (V,E), where E ⊆ V × V . Every u ∈ V is
called a node (or vertex) and a pair (u, v) ∈ E is called an edge of G.

We will restrict ourselves to simple graphs , that is, graphs without edges of the form
(u, u); equivalently, G = (V,E) is a simple graph if whenever (u, v) ∈ E, then u 6= v.

Given any two nodes u, v ∈ V , a path from u to v is any sequence of n+ 1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge, (u, v).)

A graph G is strongly connected if for every pair (u, v) ∈ V × V , there is a path from u
to v. A closed path, or cycle, is a path from some node u to itself.

We will restrict out attention to finite graphs, i.e. graphs (V,E) where V is a finite set.

Definition 11.2. Given a graph G, an Eulerian cycle is a cycle in G that passes through
all the nodes (possibly more than once) and every edge of G exactly once. A Hamiltonian
cycle is a cycle that passes through all the nodes exactly once (note, some edges may not be
traversed at all).



424 CHAPTER 11. COMPUTATIONAL COMPLEXITY; P AND NP

Eulerian Cycle Problem: Given a graph G, is there an Eulerian cycle in G?

Hamiltonian Cycle Problem: Given a graph G, is there an Hamiltonian cycle in G?

11.3 Eulerian Cycles

The following graph is a directed graph version of the Königsberg bridge problem, solved by
Euler in 1736.

The nodes A,B,C,D correspond to four areas of land in Königsberg and the edges to
the seven bridges joining these areas of land.

B

A

C

D

Figure 11.1: A directed graph modeling the Königsberg bridge problem.

The problem is to find a closed path that crosses every bridge exactly once and returns
to the starting point.

In fact, the problem is unsolvable, as shown by Euler, because some nodes do not have
the same number of incoming and outgoing edges (in the undirected version of the problem,
some nodes do not have an even degree.)

It may come as a surprise that the Eulerian Cycle Problem does have a polynomial time
algorithm, but that so far, not such algorithm is known for the Hamiltonian Cycle Problem.
The reason why the Eulerian Cycle Problem is decidable in polynomial time is the following
theorem due to Euler:

Theorem 11.2. A graph G = (V,E) has an Eulerian cycle iff the following properties hold:

(1) The graph G is strongly connected.

(2) Every node has the same number of incoming and outgoing edges.
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Proving that properties (1) and (2) hold if G has an Eulerian cycle is fairly easy. The
converse is harder, but not that bad (try!).

Theorem 11.2 shows that it is necessary to check whether a graph is strongly connected.
This can be done by computing the transitive closure of E, which can be done in polynomial
time (in fact, O(n3)).

Checking property (2) can clearly be done in polynomial time. Thus, the Eulerian cy-
cle problem is in P . Unfortunately, no theorem analogous to Theorem 11.2 is known for
Hamiltonian cycles.

11.4 Hamiltonian Cycles

A game invented by Sir William Hamilton in 1859 uses a regular solid dodecahedron whose
twenty vertices are labeled with the names of famous cities.

The player is challenged to “travel around the world” by finding a closed cycle along
the edges of the dodecahedron which passes through every city exactly once (this is the
undirected version of the Hamiltonian cycle problem). See Figure 11.2.

Figure 11.2: A tour “around the world.”
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In graphical terms, assuming an orientation of the edges between cities, the graph D
shown in Figure 11.2 is a plane projection of a regular dodecahedron and we want to know
if there is a Hamiltonian cycle in this directed graph. Finding a Hamiltonian cycle in this
graph does not appear to be so easy!

A solution is shown in Figure 11.3 below.

v18
v17

v11
v12 v13

v10
v6

v5

v4

v14

v19

v9

v8

v7 v3

v2

v15

v16

v1

v20

Figure 11.3: A Hamiltonian cycle in D.

11.5 Propositional Logic and Satisfiability

We define the syntax and the semantics of propositions in conjunctive normal form (CNF).

The syntax has to do with the legal form of propositions in CNF. Such propositions are
interpreted as truth functions, by assigning truth values to their variables.

We begin by defining propositions in CNF. Such propositions are constructed from a
countable set, PV, of propositional (or boolean) variables , say

PV = {x1, x2, . . . , },
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using the connectives ∧ (and), ∨ (or) and ¬ (negation).

Definition 11.3. We define a literal (or atomic proposition), L, as L = x or L = ¬x, also
denoted by x, where x ∈ PV.

A clause, C, is a disjunction of pairwise distinct literals,

C = (L1 ∨ L2 ∨ · · · ∨ Lm).

Thus, a clause may also be viewed as a nonempty set

C = {L1, L2, . . . , Lm}.
We also have a special clause, the empty clause, denoted ⊥ or (or {}). It corresponds to
the truth value false.

A proposition in CNF, or boolean formula, P , is a conjunction of pairwise distinct clauses

P = C1 ∧ C2 ∧ · · · ∧ Cn.

Thus, a boolean formula may also be viewed as a nonempty set

P = {C1, . . . , Cn},
but this time, the comma is interpreted as conjunction. We also allow the proposition ⊥,
and sometimes the proposition > (corresponding to the truth value true).

For example, here is a boolean formula:

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)}.

In order to interpret boolean formulae, we use truth assignments.

Definition 11.4. We let BOOL = {F,T}, the set of truth values , where F stands for false
and T stands for true. A truth assignment (or valuation), v, is any function v : PV→ BOOL.

Example 11.1. The function vF : PV→ BOOL given by

vF (xi) = F for all i ≥ 1

is a truth assigmnent, and so is the function vT : PV→ BOOL given by

vT (xi) = T for all i ≥ 1.

The function v : PV→ BOOL given by

v(x1) = T

v(x2) = F

v(x3) = T

v(xi) = T for all i ≥ 4

is also a truth assignment.
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Definition 11.5. Given a truth assignment v : PV → BOOL, we define the truth value
v̂(X) of a literal, clause, and boolean formula, X, using the following recursive definition:

(1) v̂(⊥) = F, v̂(>) = T.

(2) v̂(x) = v(x), if x ∈ PV.

(3) v̂(x) = v(x), if x ∈ PV, where v(x) = F if v(x) = T and v(x) = T if v(x) = F.

(4) v̂(C) = F if C is a clause and iff v̂(Li) = F for all literals Li in C, otherwise T.

(5) v̂(P ) = T if P is a boolean formula and iff v̂(Cj) = T for all clauses Cj in P , otherwise
F.

Since a boolean formula P only contains a finite number of variables, say {xi1 , . . . , xin},
one should expect that its truth value v̂(P ) depends only on the truth values assigned by
the truth assignment v to the variables in the set {xi1 , . . . , xin}, and this is indeed the case.
The following proposition is easily shown by induction on the depth of P (viewed as a tree).

Proposition 11.3. Let P be a boolean formula containing the set of variables {xi1 , . . . , xin}.
If v1 : PV→ BOOL and v2 : PV→ BOOL are any truth assignments agreeing on the set of
variables {xi1 , . . . , xin}, which means that

v1(xij) = v2(xij) for j = 1, . . . , n,

then v̂1(P ) = v̂2(P ).

In view of Proposition 11.3, given any boolean formula P , we only need to specify the
values of a truth assignment v for the variables occurring on P .

Example 11.2. Given the boolean formula

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)},

we only need to specify v(x1), v(x2), v(x3). Thus there are 23 = 8 distinct truth assignments:

F,F,F T,F,F

F,F,T T,F,T

F,T,F T,T,F

F,T,T T,T,T.

In general, there are 2n distinct truth assignments to n distinct variables.

Example 11.3. Here is an example showing the evaluation of the truth value v̂(P ) for the
boolean formula

P = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1) ∧ (x1 ∨ x2 ∨ x3)

= {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)},
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and the truth assignment

v(x1) = T, v(x2) = F, v(x3) = F.

For the literals, we have

v̂(x1) = T, v̂(x2) = F, v̂(x3) = F, v̂(x1) = F, v̂(x2) = T, v̂(x3) = T,

for the clauses

v̂(x1 ∨ x2 ∨ x3) = v̂(x1) ∨ v̂(x2) ∨ v̂(x3) = T ∨ F ∨ F = T,

v̂(x1 ∨ x2) = v̂(x1) ∨ v̂(x2) = F ∨ F = F,

v̂(x2 ∨ x3) = v̂(x2) ∨ v̂(x3) = T ∨ F = T,

v̂(x3 ∨ x1) = v̂(x3) ∨ v̂(x1) = T ∨T = T,

v̂(x1 ∨ x2 ∨ x3) = v̂(x1) ∨ v̂(x2) ∨ v̂(x3) = F ∨T ∨T = T,

and for the conjunction of the clauses,

v̂(P ) = v̂(x1 ∨ x2 ∨ x3) ∧ v̂(x1 ∨ x2) ∧ v̂(x2 ∨ x3) ∧ v̂(x3 ∨ x1) ∧ v̂(x1 ∨ x2 ∨ x3)

= T ∧ F ∧T ∧T ∧T = F.

Therefore, v̂(P ) = F.

Definition 11.6. We say that a truth assignment v satisfies a boolean formula P , if v̂(P ) =
T. In this case, we also write

v |= P.

A boolean formula P is satisfiable if v |= P for some truth assignment v, otherwise, it is
unsatisfiable. A boolean formula P is valid (or a tautology) if v |= P for all truth assignments
v, in which case we write

|= P.

One should check that the boolean formula

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)}

is unsatisfiable.

One may think that it is easy to test whether a proposition is satisfiable or not. Try it,
it is not that easy!

As a matter of fact, the satisfiability problem, testing whether a boolean formula is
satisfiable, also denoted SAT, is not known to be in P . Moreover, it is an NP-complete
problem (see Section 11.6). Most people believe that the satisfiability problem is not in P ,
but a proof still eludes us!

Before we explain what is the class NP , we state the following result.
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Proposition 11.4. The satisfiability problem for clauses containing at most two literals
(2-satisfiability, or 2-SAT) is solvable in polynomial time.

Proof sketch. The first step consists in observing that if every clause in P contains at most
two literals, then we can reduce the problem to testing satisfiability when every clause has
exactly two literals.

Indeed, if P contains some clause (x), then any valuation satisfying P must make x true.
Then all clauses containing x will be true, and we can delete them, whereas we can delete x
from every clause containing it, since x is false.

Similarly, if P contains some clause (x), then any valuation satisfying P must make x
false. Then all clauses containing x will be true, and we can delete them, whereas we can
delete x from every clause containing it.

Thus in a finite number of steps, either all the clauses were satisfied and P is satisfiable,
or we get the empty clause and P is unsatisfiable, or we get a set of clauses with exactly two
literals. The number of steps is clearly linear in the number of literals in P . Here are some
examples illustrating the three possible oucomes.

(1) Consider the conjunction of clauses

P1 = (x1 ∨ x2) ∧ (x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

We must set x2 to T, so (x1 ∨ x2) becomes (x1) and (x2 ∨ x3) becomes T and can be
deleted. We now have

P = (x1) ∧ (x1 ∨ x3).

We must set x1 to T, so (x1 ∨ x3) becomes T and all the clauses are satisfied.

(2) Consider the conjunction of clauses

P2 = (x1) ∧ (x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3).

We must set x1 to T, so (x1 ∨ x2) becomes (x2). We now have

(x3) ∧ (x2) ∧ (x2 ∨ x3).

We must set x3 to T, so (x2 ∨ x3) becomes (¬x2). We now have

(x2) ∧ (x2).

We must set x2 to T, so (x2) becomes the empty clause, which means that P2 is
unsatisfiable.

For the second step, we construct a directed graph from P . The purpose of this graph is
to propagate truth. The nodes of this graph are the literals in P , and edges are defined as
follows:
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(1) For every clause (x ∨ y), there is an edge from x to y and an edge from y to x.

(2) For every clause (x ∨ y), there is an edge from x to y and an edge from y to x

(3) For every clause (x ∨ y), there is an edge from x to y and an edge from y to x.

Then it can be shown that P is unsatisfiable iff there is some x so that there is a cycle
containing x and x. As a consequence, 2-satisfiability is in P .

Example 11.4. Consider the following conjunction of clauses:

P = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3).

It is satisfied by any valuation v such that v(x1) = T, and if v(x2) = F then v(x3) = F. The
construction of the graph associated with P is shown in Figure 11.4.
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Figure 11.4: The graph coresponding to the clauses of Example 11.4.

11.6 The Class NP, Polynomial Reducibility,

NP-Completeness

One will observe that the hard part in trying to solve either the Hamiltonian cycle problem
or the satisfiability problem, SAT, is to find a solution, but that checking that a candidate
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solution is indeed a solution can be done easily in polynomial time.

This is the essence of problems that can be solved nondetermistically in polynomial time:
a solution can be guessed and then checked in polynomial time.

Definition 11.7. A nondeterministic Turing machine M is said to be polynomially bounded
if there is a polynomial p(X) so that the following holds: For every input x ∈ Σ∗, there is
no ID IDn so that

ID0 ` ID1 `∗ IDn−1 ` IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is nondeterministic polynomially decidable if there is a polynomially
bounded nondeterministic Turing machine that accepts L. The family of all nondeterministic
polynomially decidable languages is denoted by NP .

Observe that Definition 11.7 has to do with testing membership of a string w in a language
L. Here the language L consists of the strings encodings all objects satisfying a given
property P . So in this sense, a reason (a certificate) why w ∈ L is not actually produced by
the machine. The machine just decides whether w ∈ L, that is, whether the object coded
by w satisfies the property P .

For example, if the problem is the satisfiability of sets of clauses, then L is the set SAT
of strings encoding all satisfiable propositions in CNF. Given any proposition P in CNF
encoded as a string s(P ), a Turing machine accepting SAT will nondeterminiscally guess a
truth assignment, and check in polynomial time whether this truth assignment satisfies P .

In the case of clauses we can easily design such a language. The key point is that
we can represent the propositional variable xi as a string in binary, namely as the binary
representation bin(xi) of the number i. Our language for encoding clauses uses the alphabet

∆ = {0, 1,∧,∨,¬, (, )}.

The encoding s(P ) (a string in ∆∗) of a proposition P in CNF is defined recursively as
follows.

(1) The variable xi is represented the binary representation s(xi) = bin(i) of the number
i.

(2) The literal ¬xi is represented by the string s(¬xi) = ¬s(xi) = ¬bin(i).

(3) The clause
C = (L1 ∨ · · · ∨ Lm)

is represented by the string

s(C) = (s(L1) ∨ · · · ∨ s(Lm)).
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(3) The proposition P in CNF
P = C1 ∧ · · · ∧ Cp

is represented by the string

s(P ) = s(C1) ∧ · · · ∧ s(Cp).

Example 11.5. The proposition

P = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ ¬x3) ∧ (x2 ∨ x3)

is encoded by the string

s(P ) = (1 ∨ 10 ∨ 11) ∧ (¬1 ∨ ¬10) ∧ (1 ∨ ¬11) ∧ (10 ∨ 11).

If we assign the truth value F to x1, to satisfy the clause (x1 ∨¬x3) we must assign F to
x3, and then to satisfy the clauses (x1 ∨ x2 ∨ x3) and (x2 ∨ x3), we must assign T to x2.

If we assign the truth value T to x1, to satisfy the clause (¬x1 ∨ ¬x2) we must assign F
to x2, and then to satisfy the clause (x2 ∨ x3), we must assign T to x3.

Therefore there are two truth assignments satisfying the proposition P ,

x1 := F, x2 := T, x3 := F

x1 := T, x2 := F, x3 := T.

The language SAT ⊆ ∆∗ consists of all string encodings s(P ) of propositions that are
satisfiable. For example, the string

s(P ) = (1 ∨ 10 ∨ 11) ∧ (¬1 ∨ ¬10) ∧ (1 ∨ ¬11) ∧ (10 ∨ 11)

belongs to the language SAT. On the other hand, the proposition

(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x1) ∧ (¬x1 ∨ ¬x2)

is not satisfiable, and thus its encoding

(1 ∨ 10) ∧ (¬1 ∨ 10) ∧ (¬10 ∨ 1) ∧ (¬1 ∨ ¬10)

does not belong to SAT.

Remark: The language consisting of all string encodings of propositions in CNF, satisfiable
or not, is a context-free language.

Note that a nondeterminitsic Turing machine operating in polynomial time accepting a
string in SAT encoding a satisfiable clause does not actually produce a truth assignment,
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called a certificate, as output. The machine simply accepts or rejects s(P ) depending on
whether P is satisfiable or not.

Similarly, if the problem is the existence of a Hamiltonian cycle, then L is the set of
strings encoding all directed graphs having a Hamiltonian cycle. Given any directed graph
G encoded as a string s(G), a Turing machine accepting L will nondeterminiscally guess a
cycle in G, and check in polynomial time whether this is a Hamiltonian cycle. But such a
Hamiltonian cycle (if any), called a certificate, is not actually produced as output.

Here is a way to encode a simple directed graph G = (V,E). A slight complication arises
with isolated nodes , which are the nodes u ∈ V such that there is no edge (u, v) ∈ E or
(v, u) ∈ E for some v ∈ V , in other words, the nodes that are not the endpoint of any edge.

If V = {v1, . . . , vn}, as in the case of clauses, we encode the node vi as the binary
representation s(vi) = bin(i) of the number i. We use alphabet

∆ = {0, 1,→, (, ),#}.

The string encoding s(G) of the graph G = (V,E) is obtained by concatenating the strings
(s(vi) → s(vj)) in the order where (s(vi) → s(vj)) precedes (s(vk) → s(vl)) if either i = k
and j < l, or i < k, possibly followed by the string

#s(vi1)# · · ·#s(vik)

corresponding to the the isolated vertices, if any, where vi1 , . . . , vik are listed in increasing
order of the indices.

Example 11.6. Consider the graph G = (V,E) shown in Figure 11.5 where V = {v1, . . . , v5}
consists of five nodes and the set of edges is

E = {(v1, v2), (v1, v4), (v1, v5), (v2, v3), (v2, v4), (v3, v1), (v3, v4), (v4, v5), (v5, v3)}.

The string encoding of this graph is

s(G) = (1→ 10)(1→ 100)(1→ 101)(10→ 11)(10→ 100)(11→ 1)(11→ 100)

(100→ 101)(101→ 11).

Observe that the cycle v1 → v2 → v4 → v5 → v3 → v1 is a Hamiltonian cycle.

The language HAM ⊆ ∆∗ consists of all encodings s(G) of directed graphs G that have
a Hamiltonian cycle. Thus for the graph above, s(G) ∈ HAM.

It is possible to give an alternate definition of NP that explicitly involves certificates.
This definition relies on the notion of a polynomially balanced language; see Section 12.3,
Definition 12.3. The trick is to consider strings of form x; y ∈ Σ∗ (with x, y ∈ Σ∗, where ; is
a special symbol not in Σ), such that for some given polynomial p(X), we have |y| ≤ p(|x|).
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Figure 11.5: A pentagonal graph with a Hamiltonian cycle.

If a language L′ consisting of strings of the form x; y with |y| ≤ p(|x|) (for some given p) is
in P , then the language

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}
is in NP , and every language in NP arises in this fashion; see Theorem 12.1. The set of
strings {y ∈ Σ∗ | x; y ∈ L′} can be regarded as the set of certificates for the fact that x ∈ L.
The fact that |y| ≤ p(|x|) ensures that the certificate y is not too big, so that L′ can be
accepted deterministically in polynomial time. We will come back to this point of view in
Section 12.3.

For example, going back to Example 11.5, examples of strings x; y are

(1 ∨ 10 ∨ 11) ∧ (¬1 ∨ ¬10) ∧ (1 ∨ ¬11) ∧ (10 ∨ 11); FTF

and
(1 ∨ 10 ∨ 11) ∧ (¬1 ∨ ¬10) ∧ (1 ∨ ¬11) ∧ (10 ∨ 11); TFT.

This time, a deterministic Turing machine accepts such strings in polynomial time by check-
ing that the certificates FTF or TFT satisfy the proposition.

For Example 11.6 dealing with Hamiltonian cycles, here is an example of a string x; y
where the certificate y is an encoding of a Hamiltonian cycle:

(1→ 10)(1→ 100)(1→ 101)(10→ 11)(10→ 100)(11→ 1)(11→ 100)

(100→ 101)(101→ 11); 1→ 10→ 100→ 101→ 11→ 1.

Returning to the definition ofNP given in Definition 11.7, of course, we have the inclusion

P ⊆ NP ,
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but whether or not we have equality is one of the most famous open problems of theoretical
computer science and mathematics.

In fact, the question P 6= NP is one of the open problems listed by the CLAY Institute,
together with the Poincaré conjecture and the Riemann hypothesis, among other problems,
and for which one million dollar is offered as a reward! Actually the Poincaré conjecture
was setlled by G. Perelman in 2006, but he rejected receiving the prize in 2010! He also
declined the Fields Medal which was awarded to him in 2006.

It is easy to check that SAT is in NP , and so is the Hamiltonian cycle problem.

As we saw in recursion theory, where we introduced the notion of many-one reducibility,
in order to compare the “degree of difficulty” of problems, it is useful to introduce the notion
of reducibility and the notion of a complete set.

Definition 11.8. A function f : Σ∗ → Σ∗ is polynomial-time computable if there is a polyno-
mial p(X) so that the following holds: there is a deterministic Turing machine M computing
it so that for every input x ∈ Σ∗, there is no ID IDn so that

ID0 ` ID1 `∗ IDn−1 ` IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

Given two languages L1, L2 ⊆ Σ∗, a polynomial-time reduction from L1 to L2 is a
polynomial-time computable function f : Σ∗ → Σ∗ so that for all u ∈ Σ∗,

u ∈ L1 iff f(u) ∈ L2.

The notation L1 ≤P L2 is often used to denote the fact that there is polynomial-time
reduction from L1 to L2. Sometimes, the notation L1 ≤Pm L2 is used to stress that this is a
many-to-one reduction (that is, f is not necessarily injective). This type of reduction is also
known as a Karp reduction.

A polynomial reduction f : Σ∗ → Σ∗ from a language L1 to a language L2 is a method
that converts in polynomial time every string u ∈ Σ∗ (viewed as an instance of a problem
A encoded by language L1) to a string f(u) ∈ Σ∗ (viewed as an instance of a problem B
encoded by language L2) in such way that membership in L1, that is u ∈ L1, is equivalent
to membership in L2, that is f(u) ∈ L2.

As a consequence, if we have a procedure to decide membership in L2 (to solve every
instance of problemB), then we have a procedure for solving membership in L1 (to solve every
instance of problem A), since given any u ∈ L1, we can first apply f to u to produce f(u),
and then apply our procedure to decide whether f(u) ∈ L2; the defining property of f says
that this is equivalent to deciding whether u ∈ L1. Furthermore, if the procedure for deciding
membership in L2 runs deterministically in polynomial time, since f runs deterministically
in polynomial time, so does the procedure for deciding membership in L1, and similarly if
the procedure for deciding membership in L2 runs non deterministically in polynomial time.
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For the above reason, we see that membership in L2 can be considered at least as hard
as membership in L1, since any method for deciding membership in L2 yields a method
for deciding membership in L1. Thus, if we view L1 an encoding a problem A and L2 as
encoding a problem B, then B is at least as hard as A.

The following version of Proposition 7.16 for polynomial-time reducibility is easy to prove.

Proposition 11.5. Let A,B,C be subsets of N (or Σ∗). The following properties hold:

(1) If A ≤P B and B ≤P C, then A ≤P C.

(2) If A ≤P B then A ≤P B.

(3) If A ≤P B and B ∈ NP, then A ∈ NP.

(4) If A ≤P B and A /∈ NP, then B /∈ NP.

(5) If A ≤P B and B ∈ P, then A ∈ P.

(6) If A ≤P B and A /∈ P, then B /∈ P.

Intuitively, we see that if L1 is a hard problem and L1 can be reduced to L2 in polynomial
time, then L2 is also a hard problem.

For example, one can construct a polynomial reduction from the Hamiltonian cycle prob-
lem to the satisfiability problem SAT. Given a directed graph G = (V,E) with n nodes, say
V = {1, . . . , n}, we need to construct in polynomial time a set F = τ(G) of clauses such that
G has a Hamiltonian cycle iff τ(G) is satisfiable. We need to describe a permutation of the
nodes that forms a Hamiltonian cycle. For this we introduce n2 boolean variables xij, with
the intended interpretation that xij is true iff node i is the jth node in a Hamiltonian cycle.

To express that at least one node must appear as the jth node in a Hamiltonian cycle,
we have the n clauses

(x1j ∨ x2j ∨ · · · ∨ xnj), 1 ≤ j ≤ n. (1)

The conjunction of these clauses is satisfied iff for every j = 1, . . . , n there is some node i
which is the jth node in the cycle. These n clauses can be produced in time O(n2).

To express that only one node appears in the cycle, we have the clauses

(xij ∨ xkj), 1 ≤ i, j, k ≤ n, i 6= k. (2)

Since (xij ∨ xkj) is equivalent to (xij ∧ xkj), each such clause asserts that no two distinct
nodes may appear as the jth node in the cycle. Let S1 be the set of all clauses of type (1)
or (2). These n3 clauses can be produced in time O(n3).

The conjunction of the clauses in S1 assert that exactly one node appear at the jth node
in the Hamiltonian cycle. We still need to assert that each node i appears exactly once in
the cycle. For this, we have the clauses

(xi1 ∨ xi2 ∨ · · · ∨ xin), 1 ≤ i ≤ n, (3)
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and

(xij ∨ xik), 1 ≤ i, j, k ≤ n, j 6= k. (4)

Let S2 be the set of all clauses of type (3) or (4). These n3 clauses can be produced in time
O(n3).

The conjunction of the clauses in S1 ∪ S2 asserts that the xij represents a bijection of
{1, 2, . . . , n}, in the sense that for any truth assigment v satisfying all these clauses, i 7→ j
iff v(xij) = T defines a bijection of {1, 2, . . . , n}.

It remains to assert that this permutation of the nodes is a Hamiltonian cycle, which
means that if xij and xkj+1 are both true then there there must be an edge (i, k). By

contrapositive, this equivalent to saying that if (i, k) is not an edge of G, then (xij ∧ xkj+1)
is true, which as a clause is equivalent to (xij ∨ xkj+1).

Therefore, for all (i, k) such that (i, k) /∈ E (with i, k ∈ {1, 2, . . . , n}), we have the clauses

(xij ∨ xk j+1 (mod n)), j = 1, . . . , n. (5)

Let S3 be the set of clauses of type (5). These n clauses can be produced in time O(n2).

The conjunction of all the clauses in S1 ∪ S2 ∪ S3 is the boolean formula F = τ(G). It
can be produced in time O(n3).

We leave it as an exercise to prove that G has a Hamiltonian cycle iff F = τ(G) is
satisfiable.

Example 11.7. Here is an example of a graph with four nodes and four edges shown in
Figure 11.6. The Hamiltonian circuit is (x4, x3, x1, x2).

It is also possible to construct a reduction of the satisfiability problem to the Hamiltonian
cycle problem but this is harder. It is easier to construct this reduction in two steps by
introducing an intermediate problem, the exact cover problem, and to provide a polynomial
reduction from the satisfiability problem to the exact cover problem, and a polynomial
reduction from the exact cover problem to the Hamiltonian cycle problem. These reductions
are carried out in Section 12.2.

The above construction of a set F = τ(G) of clauses from a graph G asserting that G
has a Hamiltonian cycle iff F is satisfiable illustrates the expressive power of propositional
logic.

Remarkably, every language in NP can be reduced to SAT. Thus, SAT is a hardest
language in NP (since it is in NP).

Definition 11.9. A language L is NP-hard if there is a polynomial reduction from every
language L1 ∈ NP to L. A language L is NP-complete if L ∈ NP and L is NP-hard.
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Figure 11.6: A directed graph with a Hamiltonian

Thus, an NP-hard language is as hard to decide as any language in NP .

Remark: There are NP-hard languages that do not belong to NP . Such languages are
really difficult. A standard example is K0, which encodes the halting problem. Since K0 is
not computable, it can’t be in NP . Furthermore, since every language L in NP is accepted
nondeterminsticaly in polynomial time p(X), for some polynomial p(X), for every input w
we can try all computations of length at most p(|w|) (there can be exponentially many, but
only a finite number), so every language in NP is computable. Finally, a Turing machine
which takes a clause as input and tries all possible truth assignments and loops iff there is no
satisfying assignment can be constructed. We can use this machine to show that 3-SAT can
be reduced in polynomial time to K0, the details are left as an exercise. Since K0 is defined
in terms of natural numbers and not strings, we need to assume that boolean propositions
are first encoded as natural numbers and that our Turing machine for testing satisfiability
operates on such numbers. Such a machine may not run in polynomial time because of the
steps needed for decoding but this does not matter. What is important is that the reduction
works in polynomnial time. An example of a computable NP-hard language not in NP will
be described after Theorem 11.7.

The importance of NP-complete languages stems from the following theorem which
follows immediately from Proposition 11.5.

Theorem 11.6. Let L be an NP-complete language. Then P = NP iff L ∈ P.

There are analogies between P and the class of computable sets, and NP and the class
of listable sets, but there are also important differences. One major difference is that the
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family of computable sets is properly contained in the family of listable sets, but it is an open
problem whether P is properly contained in NP . We also know that a set L is computable
iff both L and L are listable, but it is also an open problem whether if both L ∈ NP and
L ∈ NP , then L ∈ P . This suggests defining

coNP = {L | L ∈ NP},

that is, coNP consists of all complements of languages in NP . Since P ⊆ NP and P is
closed under complementation,

P ⊆ coNP ,

and thus

P ⊆ NP ∩ coNP ,

but nobody knows whether the inclusion is proper. There are languages in NP ∩ coNP not
known to be in P ; see Section 12.3. It is unknown whether NP is closed under complemen-
tation, that is, nobody knows whether NP = coNP . This is considered unlikely. We will
come back to coNP in Section 12.3.

Next we prove a famous theorem of Steve Cook and Leonid Levin (proven independently):
SAT is NP-complete.

11.7 The Bounded Tiling Problem is NP-Complete

Instead of showing directly that SAT is NP-complete, which is rather complicated, we
proceed in two steps, as suggested by Lewis and Papadimitriou.

(1) First, we define a tiling problem adapted from H. Wang (1961) by Harry Lewis, and
we prove that it is NP-complete.

(2) We show that the tiling problem can be reduced to SAT.

We are given a finite set T = {t1, . . . , tp} of tile patterns , for short, tiles . We assume that
these tiles are unit squares. Copies of these tile patterns may be used to tile a rectangle of
predetermined size 2s× s (s > 1). However, there are constraints on the way that these tiles
may be adjacent horizontally and vertically.

The horizontal constraints are given by a relation H ⊆ T ×T , and the vertical constraints
are given by a relation V ⊆ T × T .

Thus, a tiling system is a triple T = (T , V,H) with V and H as above.

The bottom row of the rectangle of tiles is specified before the tiling process begins.
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Example 11.8. For example, consider the following tile patterns:

a
c ,

a
c

a
, c

a
,

d
e e ,

e
e

b
c d ,

b
c d

b
,

c
d e

c
,

d
e e

d
,

e
e

e

c
d e , c d

b
, d e

c
, e e

d
, e

e

The horizontal and the vertical constraints are that the letters on adjacent edges match
(blank edges do not match).

For s = 3, given the bottom row

a
c

b
c d

c
d e

d
e e

d
e e

e
e

we have the tiling shown below:

c
a

c d
b

d e
c

e e
d

e e
d

e
e

a
c

a

b
c d

b

c
d e

c

d
e e

d

d
e e

d

e
e

e

a
c

b
c d

c
d e

d
e e

d
e e

e
e

Formally, the problem is then as follows:

The Bounded Tiling Problem

Given any tiling system (T , V,H), any integer s > 1, and any initial row of tiles σ0 (of
length 2s)

σ0 : {1, 2, . . . , s, s+ 1, . . . , 2s} → T ,
find a 2s× s-tiling σ extending σ0, i.e., a function

σ : {1, 2, . . . , s, s+ 1, . . . , 2s} × {1, . . . , s} → T
so that
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(1) σ(m, 1) = σ0(m), for all m with 1 ≤ m ≤ 2s.

(2) (σ(m,n), σ(m+ 1, n)) ∈ H, for all m with
1 ≤ m ≤ 2s− 1, and all n, with 1 ≤ n ≤ s.

(3) (σ(m,n), σ(m,n+ 1)) ∈ V , for all m with
1 ≤ m ≤ 2s, and all n, with 1 ≤ n ≤ s− 1.

Example 11.9. In this example the set of tiles is shown in Figure 11.7. The horizontal

Math ! ? IS

YesFun 😜 TILES

😯

🎉

Figure 11.7: A set of tiles

constraints are schematically illustrated in Figure 11.8

Math

{
(m,n) (m+1,n)

2s

{s

Mathσ(m,n) =

Fun

σ(m+1,n) = Fun

( σ(m,n), σ(m+1,n)) = ( , )Math Fun e H

Figure 11.8: Schematic illustration of the horizontal constraints.
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and the vertical constraints are are schematically illustrated in Figure 11.9. The set of

Math

IS

{
(m,n)

(m,n+1)

2s

{s

σ(m,n) Math σ(m,n+1) IS= =

( σ(m,n), σ(m,n+1)) = ( Math

IS ) e V

Figure 11.9: Schematic illustration of the vertical constraints.

horizontal constraints is shown in Figure 11.10

(Math
,
IS ) ( Math

,
IS )

,
( ,

IS )
,

Fun

( , )Yes Math ( , )Math Fun
, ( , )Fun !

( , )Fun ?

,

, ( , )Fun 🎉 , ( , )! 😜

( , )? 😯 , ,

Horizontal Constraints H

( , )😯😯 ( , )😜😜

( , )🎉🎉

Figure 11.10: Horizontal constraints.
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and the set of vertical constraints is shown in Figure. 11.11 A solution to the puzzle

Math !

?

Yes

Fun

Fun

Fun

( Math

IS )
,
( Math

IS ) ( IS )
,

( Math )
,

( IS )
,
( ) ( )

,

Fun

,

( )
,

?

Vertical Constraints V

🎉( )😯

,

😯

😜( )
Figure 11.11: Vertical constraints.

(tiling problem) is shown in Figure 11.12, assuming that the bottom row is given as part of
the input.

😜Math IS Fun !

MathIS Fun ? 😯

MathYes FunIS 🎉

😜
😯

🎉

Figure 11.12: A solution to the tiling problem.

Formally, an instance of the tiling problem is a triple ((T , V,H), ŝ, σ0), where (T , V,H)
is a tiling system, ŝ is the string representation of the number s ≥ 2, in binary and σ0 is an
initial row of tiles (the bottom row).

For example, if s = 1025 (as a decimal number), then its binary representation is ŝ =
10000000001. The length of ŝ is log2 s+ 1.

Recall that the input must be a string. This is why the number s is represented by a
string in binary. If we only included a single tile σ0 in position (s+ 1, 1), then the length of
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the input ((T , V,H), ŝ, σ0) would be log2 s + 1 + C + 1 = log2 s + C + 2 for some constant
C corresponding to the length of the string encoding (T , V,H).

However, the rectangular grid has size 2s2, which is exponential in the length log2 s+C+2
of the input ((T , V,H), ŝ, σ0). Thus, it is impossible to check in polynomial time that a
proposed solution is a tiling.

However, if we include in the input the bottom row σ0 of length 2s, then the length of
input is log2 s + 1 + C + 2s = log2 s + C + 2s + 1 and the size 2s2 or the grid is indeed
polynomial in the size of the input.

Theorem 11.7. The tiling problem defined earlier is NP-complete.

Proof. Let L ⊆ Σ∗ be any language in NP and let u be any string in Σ∗. Assume that L is
accepted in polynomial time bounded by p(|u|).

We show how to construct an instance of the tiling problem, ((T , V,H)L, ŝ, σ0), where
s = p(|u|) + 2, and where the bottom row encodes the starting ID, so that u ∈ L iff the tiling
problem ((T , V,H)L, ŝ, σ0) has a solution.

First, note that the problem is indeed in NP , since we have to guess a rectangle of size
2s2, and that checking that a tiling is legal can indeed be done in O(s2), where s is bounded
by the the size of the input ((T , V,H), ŝ, σ0), since the input contains the bottom row of 2s
symbols (this is the reason for including the bottom row of 2s tiles in the input!).

The idea behind the definition of the tiles is that, in a solution of the tiling problem, the
labels on the horizontal edges between two adjacent rows represent a legal ID, xpay. In a
given row, the labels on vertical edges of adjacent tiles keep track of the change of state and
direction.

Let Γ be the tape alphabet of the TM, M . As before, we assume that M signals that it
accepts u by halting with the output 1 (true).

From M , we create the following tiles:

(1) For every a ∈ Γ, tiles
a

a

(2) For every a ∈ Γ, the bottom row uses tiles

a
,

q0, a

where q0 is the start state.
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(3) For every instruction (p, a, b, R, q) ∈ δ, for every c ∈ Γ, tiles

b
q, R

p, a
,

q, c
q, R

c

(4) For every instruction (p, a, b, L, q) ∈ δ, for every c ∈ Γ, tiles

q, c
q, L

c
,

b
q, L

p, a

(5) For every halting state, p, tiles
p, 1

p, 1

The purpose of tiles of type (5) is to fill the 2s × s rectangle iff M accepts u. Since
s = p(|u|) + 2 and the machine runs for at most p(|u|) steps, the 2s × s rectangle can be
tiled iff u ∈ L.

The vertical and the horizontal constraints are that adjacent edges have the same label
(or no label).

If u = u1 · · ·uk, the initial bottom row σ0, of length 2s, is

B
· · ·

q0, u1

· · ·
uk

· · ·
B

where the tile labeled q0, u1 is in position s+ 1.

The example below illustrates the construction:

Example 11.10.

B

B
. . .

B
f,R

q, c

f, 1
f,R

1
. . .

B

B

B

B
. . .

q, c
q, L

c

1
q, L

p, a
. . .

B

B

B

B
. . .

c
p, R

r, b

p, a
p, R

a
. . .

B

B
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We claim that u = u1 · · ·uk is accepted by M iff the tiling problem just constructed has
a solution.

The upper horizontal edge of the first (bottom) row of tiles represents the starting con-
figuation Bsq0uB

s−|u|. By induction, we see that after i (i ≤ p(|u|) = s− 2) steps the upper
horizontal edge of the (i + 1)th row of tiles represents the current ID xpay reached by the
Turing machine; see Example 11.10. Since the machine runs for at most p(|u|) steps and
since s = p(|u|) + 2, when the computation stops, at most the lowest p(|u|) + 1 = s− 1 rows
of the the 2s × s rectangle have been tiled. Assume the machine M stops after r ≤ s − 2
steps. Then the lowest r + 1 rows have been tiled, and since no further instruction can be
executed (since the machine entered a halting state), the remaining s − r − 1 rows can be
filled iff tiles of type (5) can be used iff the machine stopped in an ID containing a pair p 1
where p is a halting state. Therefore, the machine M accepts u iff the 2s× s rectangle can
be tiled.

Remark:

(1) The problem becomes harder if we only specify a single tile σ0 as input, instead of
a row of length 2s. If s is specified in binary (or any other base, but not in tally
notation), then the 2s2 grid has size exponential in the length log2 s + C + 2 of the
input ((T , V,H), ŝ, σ0), and this tiling problem is actually NEXP-complete! The class
NEXP is the family of languages that can be accepted by a nondeterministic Turing
machine that runs in time bounded by 2p(|x|), for every x, where p is a polynomial;
see the remark after Definition 12.5. By the time hierarchy theorem (Cook, Seiferas,
Fischer, Meyer, Zak), it is known that NP is properly contained in NEXP ; see Pa-
padimitriou [47] (Chapters 7 and 20) and Arora and Barak [3] (Chapter 3, Section 3.2).
Then the tiling problem with a single tile as input is a computable NP-hard problem
not in NP .

(2) If we relax the finiteness condition and require that the entire upper half-plane be tiled,
i.e., for every s > 1, there is a solution to the 2s× s-tiling problem, then the problem
is undecidable.

In 1972, Richard Karp published a list of twenty one NP-complete problems.

11.8 The Cook–Levin Theorem: SAT is NP-Complete

We finally prove the Cook-Levin theorem.

Theorem 11.8. (Cook, 1971, Levin, 1973) The satisfiability problem SAT is NP-complete.

Proof. We reduce the tiling problem to SAT. Given a tiling problem, ((T , V,H), ŝ, σ0), we
introduce boolean variables

xmnt,
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for all m with 1 ≤ m ≤ 2s, all n with 1 ≤ n ≤ s, and all tiles t ∈ T .

The intuition is that xmnt = T iff tile t occurs in some tiling σ so that σ(m,n) = t.

We define the following clauses:

(1) For all m,n in the correct range, as above,

(xmnt1 ∨ xmnt2 ∨ · · · ∨ xmntp),

for all p tiles in T .

This clause states that every position in σ is tiled.

(2) For any two distinct tiles t 6= t′ ∈ T , for all m,n in the correct range, as above,

(xmnt ∨ xmnt′).

This clause states that a position may not be occupied by more than one tile.

(3) For every pair of tiles (t, t′) ∈ T × T −H, for all m with 1 ≤ m ≤ 2s − 1, and all n,
with 1 ≤ n ≤ s,

(xmnt ∨ xm+1nt′).

This clause enforces the horizontal adjacency constraints.

(4) For every pair of tiles (t, t′) ∈ T × T − V , for all m with 1 ≤ m ≤ 2s, and all n, with
1 ≤ n ≤ s− 1,

(xmnt ∨ xmn+1 t′).

This clause enforces the vertical adjacency constraints.

(5) For all m with 1 ≤ m ≤ 2s,

(xm1σ0(m)).

This clause states that the bottom row is correctly tiled with σ0.

It is easily checked that the tiling problem has a solution iff the conjunction of the clauses
just defined is satisfiable. Thus, SAT is NP-complete.

We sharpen Theorem 11.8 to prove that 3-SAT is also NP-complete. This is the satisfi-
ability problem for clauses containing at most three literals.

We know that we can’t go further and retain NP-completeteness, since 2-SAT is in P .

Theorem 11.9. (Cook, 1971) The satisfiability problem 3-SAT is NP-complete.
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Proof. We have to break “long clauses”

C = (L1 ∨ · · · ∨ Lk),

i.e., clauses containing k ≥ 4 literals, into clauses with at most three literals, in such a way
that satisfiability is preserved.

Example 11.11. For example, consider the following clause with k = 6 literals:

C = (L1 ∨ L2 ∨ L3 ∨ L4 ∨ L5 ∨ L6).

We create 3 new boolean variables y1, y2, y3, and the 4 clauses

(L1 ∨ L2 ∨ y1), (y1 ∨ L3 ∨ y2), (y2 ∨ L4 ∨ y3), (y3 ∨ L5 ∨ L6).

Let C ′ be the conjunction of these clauses. We claim that C is satisfiable iff C ′ is.

Assume that C ′ is satisfiable but C is not. If so, in any truth assigment v, v(Li) = F,
for i = 1, 2, . . . , 6. To satisfy the first clause, we must have v(y1) = T., Then to satisfy the
second clause, we must have v(y2) = T, and similarly satisfy the third clause, we must have
v(y3) = T. However, since v(L5) = F and v(L6) = F, the only way to satisfy the fourth
clause is to have v(y3) = F, contradicting that v(y3) = T. Thus, C is indeed satisfiable.

Let us now assume that C is satisfiable. This means that there is a smallest index i such
that Li is satisfied.

Say i = 1, so v(L1) = T. Then if we let v(y1) = v(y2) = v(y3) = F, we see that C ′ is
satisfied.

Say i = 2, so v(L1) = F and v(L2) = T. Again if we let v(y1) = v(y2) = v(y3) = F, we
see that C ′ is satisfied.

Say i = 3, so v(L1) = F, v(L2) = F, and v(L3) = T. If we let v(y1) = T and
v(y2) = v(y3) = F, we see that C ′ is satisfied.

Say i = 4, so v(L1) = F, v(L2) = F, v(L3) = F, and v(L4) = T. If we let v(y1) = T,
v(y2) = T and v(y3) = F, we see that C ′ is satisfied.

Say i = 5, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) = F, and v(L5) = T. If we let
v(y1) = T, v(y2) = T and v(y3) = T, we see that C ′ is satisfied.

Say i = 6, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) = F, v(L5) = F, and v(L6) = T.
Again, if we let v(y1) = T, v(y2) = T and v(y3) = T, we see that C ′ is satisfied.

Therefore if C is satisfied, then C ′ is satisfied in all cases.

In general, for every long clause, create k − 3 new boolean variables y1, . . . yk−3, and the
k − 2 clauses

(L1 ∨ L2 ∨ y1), (y1 ∨ L3 ∨ y2), (y2 ∨ L4 ∨ y3), · · · ,
(yk−4 ∨ Lk−2 ∨ yk−3), (yk−3 ∨ Lk−1 ∨ Lk).
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Let C ′ be the conjunction of these clauses. We claim that C is satisfiable iff C ′ is.

Assume that C ′ is satisfiable, but that C is not. Then for every truth assignment v, we
have v(Li) = F, for i = 1, . . . , k.

However, C ′ is satisfied by some v, and the only way this can happen is that v(y1) = T,
to satisfy the first clause. Then v(y1) = F, and we must have v(y2) = T, to satisfy the
second clause.

By induction, we must have v(yk−3) = T, to satisfy the next to the last clause. However,
the last clause is now false, a contradiction.

Thus, if C ′ is satisfiable, then so is C.

Conversely, assume that C is satisfiable. If so, there is some truth assignment, v, so that
v(C) = T, and thus, there is a smallest index i, with 1 ≤ i ≤ k, so that v(Li) = T (and so,
v(Lj) = F for all j < i).

Let v′ be the assignment extending v defined so that

v′(yj) = F if max{1, i− 1} ≤ j ≤ k − 3,

and v′(yj) = T, otherwise.

It is easily checked that v′(C ′) = T.

Another version of 3-SAT can be considered, in which every clause has exactly three
literals. We will call this the problem exact 3-SAT.

Theorem 11.10. (Cook, 1971) The satisfiability problem for exact 3-SAT is NP-complete.

Proof. A clause of the form (L) is satisfiable iff the following four clauses are satisfiable:

(L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v)

where u, v are new variables. A clause of the form (L1 ∨ L2) is satisfiable iff the following
two clauses are satisfiable:

(L1 ∨ L2 ∨ u), (L1 ∨ L2 ∨ u).

Thus, we have a reduction of 3-SAT to exact 3-SAT.

We now make some remarks about the conversion of propositions to CNF and about the
satisfiability and validity of arbitrary propositions.
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11.9 Satisfiability of Arbitrary Propositions and CNF

The satisfiability problem for arbitrary propositions belongs to NP because if we can guess
a truth assignment v satisfying a proposition A, then evaluating the truth value of A under
v can certainly be done in polynomial time. Since a proposition in CNF is a special kind
of proposition and since the satisfiability problem for propositions in CNF (SAT) is NP-
complete, the satisfiability problem for arbitrary propositions is also NP-complete.

Since the satisfiability problem for propositions in CNF is NP-complete, there is a
polynomial-time reduction that takes an arbitrary proposition A and produces a propo-
sition A′ in CNF such that A is satisfiable iff A′ is satisfiable. In general, given a proposition
A, a proposition A′ in CNF equivalent to A may have an exponential length in the size of A.
However, using new variables, there is an algorithm to convert a proposition A to another
proposition A′ (containing the new variables) whose length is polynomial in the length of A
and such that A is satisfiable iff A′ is satisfiable.

We will explain how to convert an arbitrary proposition A to an equivalent proposition in
CNF, and also how to construct in polynomial time a proposition A′ such that A is satisfiable
iff A′ is satisfiable. We also briefly discuss the issue of uniqueness of the CNF. In short, it is
not unique!

Recall the definition of arbitrary propositions.

Definition 11.10. The set of propositions (over the connectives ∨, ∧, and ¬) is defined
inductively as follows:

(1) Every propositional letter, x ∈ PV, is a proposition (an atomic proposition).

(2) If A is a proposition, then ¬A is a proposition.

(3) If A and B are propositions, then (A ∨B) is a proposition.

(4) If A and B are propositions, then (A ∧B) is a proposition.

Two propositions A and B are equivalent , denoted A ≡ B, if

v |= A iff v |= B

for all truth assignments, v. It is easy to show that A ≡ B iff the proposition

(¬A ∨B) ∧ (¬B ∨ A)

is valid.

Definition 11.11. A proposition P is in conjunctive normal form (CNF ) if it is a conjunc-
tion P = C1 ∧ · · · ∧Cn of propositions Cj which are disjunctions of literals (a literal is either
a variable x or the negation ¬x (also denoted x) of a variable x).

A proposition P is in disjunctive normal form (DNF ) if it is a disjunction P = D1∨· · ·∨
Dn of propositions Dj which are conjunctions of literals.
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There are propositions such that any equivalent proposition in CNF has size exponential
in terms of the original proposition.

Example 11.12. Here is such an example:

A = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ · · · ∨ (x2n−1 ∧ x2n).

Observe that it is in DNF. We will prove a little later that any CNF for A contains 2n

occurrences of variables.

Proposition 11.11. Every proposition A is equivalent to a proposition A′ in CNF.

There are several ways of proving Proposition 11.11. One method is algebraic, and
consists in using the algebraic laws of boolean algebra. First one may convert a proposition
to negation normal form, or nnf .

Definition 11.12. A proposition is in negation normal form or nnf if all occurrences of ¬
only appear in front of propositional variables, but not in front of compound propositions.

Any proposition can be converted to an equivalent one in nnf by using the de Morgan
laws:

¬(A ∨B) ≡ (¬A ∧ ¬B)

¬(A ∧B) ≡ (¬A ∨ ¬B)

¬¬A ≡ A.

Observe that if A has n connectives, then the equivalent formula A′ in nnf has at most 2n−1
connectives. Then a proposition in nnf can be converted to CNF,

A nice method to convert a proposition in nnf to CNF is to construct a tree whose nodes
are labeled with sets of propositions using the following (Gentzen-style) rules:

P,∆ Q,∆

(P ∧Q),∆

and
P,Q,∆

(P ∨Q),∆

where ∆ stands for any set of propositions (even empty), and the comma stands for union.
Thus, it is assumed that (P ∧Q) /∈ ∆ in the first case, and that (P ∨Q) /∈ ∆ in the second
case.

Since we interpret a set, Γ, of propositions as a disjunction, a valuation, v, satisfies Γ iff
it satisfies some proposition in Γ.

Observe that a valuation v satisfies the conclusion of a rule iff it satisfies both premises
in the first case, and the single premise in the second case. Using these rules, we can build
a finite tree whose leaves are labeled with sets of literals.
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By the above observation, a valuation v satisfies the proposition labeling the root of the
tree iff it satisfies all the propositions labeling the leaves of the tree.

But then, a CNF for the original proposition A (in nnf, at the root of the tree) is the
conjunction of the clauses appearing as the leaves of the tree. We may exclude the clauses
that are tautologies, and we may discover in the process that A is a tautology (when all
leaves are tautologies).

Example 11.13. An illustration of the above method to convert the proposition

A = (x1 ∧ y1) ∨ (x2 ∧ y2)

is shown below:

x1, x2 x1, y2

x1, x2 ∧ y2

y1, x2 y1, y2

y1, x2 ∧ y2

x1 ∧ y1, x2 ∧ y2

(x1 ∧ y1) ∨ (x2 ∧ y2)

We obtain the CNF

B = (x1 ∨ x2) ∧ (x1 ∨ y2) ∧ (y1 ∨ x2) ∧ (y1 ∨ y2).

Remark: Rules for dealing for ¬ can also be created. In this case, we work with pairs of
sets of propositions,

Γ→ ∆,

where, the propositions in Γ are interpreted conjunctively, and the propositions in ∆ are
interpreted disjunctively. We obtain a sound and complete proof system for propositional
logic (a “Gentzen-style” proof system, see Logic for Computer Science, Gallier [21]).

Going back to our “bad” proposition A from Example 11.12, by induction, we see that
any tree for A has 2n leaves.

However, the following result holds.

Proposition 11.12. For any proposition A, we can construct in polynomial time a formula
A′ in CNF, so that A is satisfiable iff A′ is satisfiable, by creating new variables.

Sketch of proof. First we convert A to nnf, which yields a proposition at most twice as long.
Then we proceed recursively. For a conjunction C∧D, we apply recursively the procedure to
C and D. The trick is that for a disjunction C ∨D, first we apply recursively the procedure
to C and D obtain

(C1 ∧ · · · ∧ Cm) ∨ (D1 ∧ · · · ∧Dn)

where the Ci’s and the Dj’s are clauses. Then we create

(C1 ∨ y) ∧ · · · ∧ (Cm ∨ y) ∧ (D1 ∨ y) ∧ · · · ∧ (Dn ∨ y),
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where y is a new variable.

It can be shown that the number of new variables required is at most quadratic in the
size of A. For details on this construction see Hopcroft, Motwani and Ullman [33] (Section
10.3.3), but beware that the proof on page 455 contains a mistake. Repair the mistake.

Example 11.14. Consider the proposition

A = (x1 ∧ ¬x2) ∨ ((¬x1 ∧ x2) ∨ (x2 ∨ x3)).

First, since x1 and ¬x2 are clauses, we get

A1 = x1 ∧ ¬x2.

Since ¬x1, x2 and x2 ∨ x3 are clauses, from (¬x1 ∧ x2) ∨ (x2 ∨ x3) we construct

A2 = (¬x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (x2 ∨ x3 ∨ ¬y1).

Next, since A1 and A2 are conjunctions of clauses, we construct

A′ = (x1 ∨ y2) ∧ (¬x2 ∨ y2) ∧ (¬x1 ∨ y1 ∨ ¬y2) ∧ (x2 ∨ y1 ∨ ¬y2) ∧ (x2 ∨ x3 ∨ ¬y1 ∨ ¬y2),

a conjunction of clauses which is satisfiable iff A is satisfiable.

Warning: In general, the proposition A′ is not equivalent to the proposition A.

Remark: Other authors, including Hoprcoft, Motwani, and Ullman, prove that the satisfia-
bility problem for arbitrary propositions is NP-complete, by showing how the computation
of a nondeterministic Turing machine (operating in polynomial time) can be simulated using
propositions. For this simulation to work, it appears that propositions that are not in CNF
are required. Then Proposition 11.12 is used to show that the satisfiability problem for
propositions in CNF (SAT) is also NP-complete.

In our approach, since we have already shown that the bounded tiling problem is NP-
complete, in the second step to reduce the tiling problem to SAT we only need clauses to
perform the reduction. Thus we don’t need Proposition 11.12 to prove that SAT is NP-
complete.

We just observed that the satisfiability problems for propositions in CNF is as hard as
the satisfiability problems for arbitrary propositions. However, the situation is completely
different for the validity problem. Indeed, a proposition P = C1 ∧ · · · ∧ Cm in CNF is valid
iff every conjunct Ci is valid. But each Ci is clause, namely a disjunction of literals

Ci = Li1 ∨ · · · ∨ Lini ,

where Li,j is either a variable x or the negation ¬x of a variable. But such a disjunction is
valid iff some variable and its negation both occur in Ci. This is because if all the Lij were
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variables, we could falsify Ci by assigning the truth value F to all of them, and if all the Lij
were negations of variables, we could falsify Ci by assigning the truth value T to all of them.
Therefore, the validity problem for proposition in CNF is in P .

This does not help to obtain a polynomial time algorithm to test the validity of arbitrary
propositions because converting a proposition to a CNF may yield a proposition whose size
is exponential in terms of the size of the original proposition. We can view the method using
the Gentzen rules described earlier for building a tree from a proposition P in nnf as an
attempt to demonstrate that the proposition P is valid. If this attempt fails, then we obtain
a CNF for P , so our efforts are not wasted.

The question of uniqueness of the CNF is a bit tricky. For example, the proposition

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

has

A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y)

A2 = (u ∨ ¬u) ∧ (x ∨ y)

A3 = x ∨ y,

as equivalent propositions in CNF!

We can get a unique CNF equivalent to a given proposition if we do the following:

(1) Let Var(A) = {x1, . . . , xm} be the set of variables occurring in A.

(2) Define a maxterm w.r.t. Var(A) as any disjunction of m pairwise distinct literals
formed from Var(A), and not containing both some variable xi and its negation ¬xi.

(3) Then it can be shown that for any proposition A that is not a tautology, there is a
unique proposition in CNF equivalent to A, whose clauses consist of maxterms formed
from Var(A).

The above definition can yield strange results. For instance, the CNF of any unsatisfiable
proposition with m distinct variables is the conjunction of all of its 2m maxterms! The above
notion does not cope well with minimality.

For example, according to the above, the CNF of

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

should be
A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y).
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Chapter 12

Some NP-Complete Problems

12.1 Statements of the Problems

In this chapter we will show that certain classical algorithmic problems are NP-complete.
This chapter is heavily inspired by Lewis and Papadimitriou’s excellent treatment [42]. In
order to study the complexity of these problems in terms of resource (time or space) bounded
Turing machines (or RAM programs), it is crucial to be able to encode instances of a prob-
lem P as strings in a language LP . Then an instance of a problem P is solvable iff the
corresponding string belongs to the language LP . This implies that our problems must have
a yes–no answer, which is not always the usual formulation of optimization problems where
what is required is to find some optimal solution, that is, a solution minimizing or maximiz-
ing so objective (cost) function F . For example the standard formulation of the traveling
salesman problem asks for a tour (of the cities) of minimal cost.

Fortunately, there is a trick to reformulate an optimization problem as a yes–no answer
problem, which is to explicitly incorporate a budget (or cost) term B into the problem, and
instead of asking whether some objective function F has a minimum or a maximum w, we
ask whether there is a solution w such that F (w) ≤ B in the case of a minimum solution,
or F (w) ≥ B in the case of a maximum solution.

If we are looking for a minimum of F , we try to guess the minimum value B of F and
then we solve the problem of finding w such that F (w) ≤ B. If our guess for B is too small,
then we fail. In this case, we try again with a larger value of B. Otherwise, if B was not too
small we find some w such that F (w) ≤ B, but w may not correspond to a minimum of F ,
so we try again with a smaller value of B, and so on. This yields an approximation method
to find a minimum of F .

Similarly, if we are looking for a maximum of F , we try to guess the maximum value B
of F and then we solve the problem of finding w such that F (w) ≥ B. If our guess for B
is too large, then we fail. In this case, we try again with a smaller value of B. Otherwise,
if B was not too large we find some w such that F (w) ≥ B, but w may not correspond
to a maximum of F , so we try again with a greater value of B, and so on. This yields an

457
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approximation method to find a maximum of F .

We will see several examples of this technique in Problems 5–8 listed below.

The problems that will consider are

(1) Exact Cover

(2) Hamiltonian Cycle for directed graphs

(3) Hamiltonian Cycle for undirected graphs

(4) The Traveling Salesman Problem

(5) Independent Set

(6) Clique

(7) Node Cover

(8) Knapsack, also called subset sum

(9) Inequivalence of ∗-free Regular Expressions

(10) The 0-1-integer programming problem

We begin by describing each of these problems.

(1) Exact Cover

We are given a finite nonempty set U = {u1, . . . , un} (the universe), and a family
F = {S1, . . . , Sm} of m ≥ 1 nonempty subsets of U . The question is whether there is
an exact cover , that is, a subfamily C ⊆ F of subsets in F such that the sets in C are
disjoint and their union is equal to U .

For example, let U = {u1, u2, u3, u4, u5, u6}, and let F be the family

F = {{u1, u3}, {u2, u3, u6}, {u1, u5}, {u2, u3, u4}, {u5, u6}, {u2, u4}}.

The subfamily
C = {{u1, u3}, {u5, u6}, {u2, u4}}

is an exact cover.

It is easy to see that Exact Cover is in NP . To prove that it is NP-complete,
we will reduce the Satisfiability Problem to it. This means that we provide a
method running in polynomial time that converts every instance of the Satisfiability
Problem to an instance of Exact Cover, such that the first problem has a solution
iff the converted problem has a solution.
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(2) Hamiltonian Cycle (for Directed Graphs)

Recall that a directed graph G is a pair G = (V,E), where E ⊆ V × V . Elements of
V are called nodes (or vertices). A pair (u, v) ∈ E is called an edge of G. We will
restrict ourselves to simple graphs , that is, graphs without edges of the form (u, u);
equivalently, G = (V,E) is a simple graph if whenever (u, v) ∈ E, then u 6= v.

Given any two nodes u, v ∈ V , a path from u to v is any sequence of n+1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge, (u, v).)

A directed graph G is strongly connected if for every pair (u, v) ∈ V × V , there is a
path from u to v. A closed path, or cycle, is a path from some node u to itself. We
will restrict out attention to finite graphs, i.e. graphs (V,E) where V is a finite set.

Definition 12.1. Given a directed graph G, a Hamiltonian cycle is a cycle that passes
through all the nodes exactly once (note, some edges may not be traversed at all).

Hamiltonian Cycle Problem (for Directed Graphs): Given a directed graph G,
is there an Hamiltonian cycle in G?

Is there is a Hamiltonian cycle in the directed graph D shown in Figure 12.1?

Finding a Hamiltonian cycle in this graph does not appear to be so easy! A solution
is shown in Figure 12.2 below.

It is easy to see that Hamiltonian Cycle (for Directed Graphs) is in NP . To
prove that it is NP-complete, we will reduce Exact Cover to it. This means that we
provide a method running in polynomial time that converts every instance of Exact
Cover to an instance of Hamiltonian Cycle (for Directed Graphs) such that the
first problem has a solution iff the converted problem has a solution. This is perphaps
the hardest reduction.
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Figure 12.1: A tour “around the world.”
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Figure 12.2: A Hamiltonian cycle in D.
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(3) Hamiltonian Cycle (for Undirected Graphs)

Recall that an undirected graph G is a pair G = (V,E), where E is a set of subsets
{u, v} of V consisting of exactly two distinct elements. Elements of V are called nodes
(or vertices). A pair {u, v} ∈ E is called an edge of G.

Given any two nodes u, v ∈ V , a path from u to v is any sequence of n nodes (n ≥ 2)

u = u1, u2, . . . , un = v

such that {ui, ui+1} ∈ E for i = 1, . . . , n− 1. (If n = 2, a path from u to v is simply a
single edge, {u, v}.)

An undirected graph G is connected if for every pair (u, v) ∈ V × V , there is a path
from u to v. A closed path, or cycle, is a path from some node u to itself.

Definition 12.2. Given an undirected graph G, a Hamiltonian cycle is a cycle that
passes through all the nodes exactly once (note, some edges may not be traversed at
all).

Hamiltonian Cycle Problem (for Undirected Graphs): Given an undirected
graph G, is there an Hamiltonian cycle in G?

An instance of this problem is obtained by changing every directed edge in the directed
graph of Figure 12.1 to an undirected edge. The directed Hamiltonian cycle given in
Figure 12.1 is also an undirected Hamiltonian cycle of the undirected graph of Figure
12.3.

We see immediately that Hamiltonian Cycle (for Undirected Graphs) is in NP .
To prove that it is NP-complete, we will reduce Hamiltonian Cycle (for Directed
Graphs) to it. This means that we provide a method running in polynomial time
that converts every instance of Hamiltonian Cycle (for Directed Graphs) to
an instance of Hamiltonian Cycle (for Undirected Graphs) such that the first
problem has a solution iff the converted problem has a solution. This is an easy
reduction.

(4) Traveling Salesman Problem

We are given a set {c1, c2, . . . , cn} of n ≥ 2 cities, and an n × n matrix D = (dij) of
nonnegative integers, where dij is the distance (or cost) of traveling from city ci to city
cj. We assume that dii = 0 and dij = dji for all i, j, so that the matrix D is symmetric
and has zero diagonal.

Traveling Salesman Problem: Given some n × n matrix D = (dij) as above and
some integer B ≥ 0 (the budget of the traveling salesman), find a permutation π of
{1, 2, . . . , n} such that

c(π) = dπ(1)π(2) + dπ(2)π(3) + · · ·+ dπ(n−1)π(n) + dπ(n)π(1) ≤ B.
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Figure 12.3: A tour “around the world,” undirected version.

The quantity c(π) is the cost of the trip specified by π. The Traveling Salesman
Problem has been stated in terms of a budget so that it has a yes or no answer, which
allows us to convert it into a language. A minimal solution corresponds to the smallest
feasible value of B.

Example 12.1. Consider the 4× 4 symmetric matrix given by

D =


0 2 1 1
2 0 1 1
1 1 0 3
1 1 3 0

 ,

and the budget B = 4. The tour specified by the permutation

π =

(
1 2 3 4
1 4 2 3

)
has cost 4, since

c(π) = dπ(1)π(2) + dπ(2)π(3) + dπ(3)π(4) + dπ(4)π(1)

= d14 + d42 + d23 + d31

= 1 + 1 + 1 + 1 = 4.
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The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).

It is clear that the Traveling Salesman Problem is in NP . To show that it is NP-
complete, we reduce the Hamiltonian Cycle Problem (Undirected Graphs) to it.
This means that we provide a method running in polynomial time that converts every
instance of Hamiltonian Cycle Problem (Undirected Graphs) to an instance of
the Traveling Salesman Problem such that the first problem has a solution iff the
converted problem has a solution.

(5) Independent Set

The problem is this: Given an undirected graph G = (V,E) and an integer K ≥ 2,
is there a set C of nodes with |C| ≥ K such that for all vi, vj ∈ C, there is no edge
{vi, vj} ∈ E?

A maximal independent set with 3 nodes is shown in Figure 12.4. A maximal solution

Figure 12.4: A maximal Independent Set in a graph.

corresponds to the largest feasible value of K. The problem Independent Set is
obviously in NP . To show that it is NP-complete, we reduce Exact 3-Satisfiability
to it. This means that we provide a method running in polynomial time that converts
every instance of Exact 3-Satisfiability to an instance of Independent Set such
that the first problem has a solution iff the converted problem has a solution.
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(6) Clique

The problem is this: Given an undirected graph G = (V,E) and an integer K ≥ 2,
is there a set C of nodes with |C| ≥ K such that for all vi, vj ∈ C, there is some
edge {vi, vj} ∈ E? Equivalently, does G contain a complete subgraph with at least K
nodes?

A maximal clique with 4 nodes is shown in Figure 12.5. A maximal solution corresponds

Figure 12.5: A maximal Clique in a graph.

to the largest feasible value of K. The problem Clique is obviously in NP . To show
that it isNP-complete, we reduce Independent Set to it. This means that we provide
a method running in polynomial time that converts every instance of Independent
Set to an instance of Clique such that the first problem has a solution iff the converted
problem has a solution.

(7) Node Cover

The problem is this: Given an undirected graph G = (V,E) and an integer B ≥ 2, is
there a set C of nodes with |C| ≤ B such that C covers all edges in G, which means
that for every edge {vi, vj} ∈ E, either vi ∈ C or vj ∈ C?

A minimal node cover with 6 nodes is shown in Figure 12.6. A minimal solution corre-
sponds to the smallest feasible value of B. The problem Node Cover is obviously in
NP . To show that it is NP-complete, we reduce Independent Set to it. This means
that we provide a method running in polynomial time that converts every instance of
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Figure 12.6: A minimal Node Cover in a graph.

Independent Set to an instance of Node Cover such that the first problem has a
solution iff the converted problem has a solution.

The Node Cover problem has the following interesting interpretation: think of the
nodes of the graph as rooms of a museum (or art gallery etc.), and each edge as a
straight corridor that joins two rooms. Then Node Cover may be useful in assigning
as few as possible guards to the rooms, so that all corridors can be seen by a guard.

(8) Knapsack (also called Subset sum)

The problem is this: Given a finite nonempty set S = {a1, a2, . . . , an} of nonnegative
integers, and some integer K ≥ 0, all represented in binary, is there a nonempty subset
I ⊆ {1, 2, . . . , n} such that ∑

i∈I

ai = K?

A “concrete” realization of this problem is that of a hiker who is trying to fill her/his
backpack to its maximum capacity with items of varying weights or values.

It is easy to see that the Knapsack Problem is in NP . To show that it is NP-
complete, we reduce Exact Cover to it. This means that we provide a method running
in polynomial time that converts every instance of Exact Cover to an instance of
Knapsack Problem such that the first problem has a solution iff the converted problem
has a solution.



466 CHAPTER 12. SOME NP-COMPLETE PROBLEMS

Remark: The 0 -1 Knapsack Problem is defined as the following problem. Given
a set of n items, numbered from 1 to n, each with a weight wi ∈ N and a value vi ∈ N,
given a maximum capacity W ∈ N and a budget B ∈ N, is there a set of n variables
x1, . . . , xn with xi ∈ {0, 1} such that

n∑
i=1

xivi ≥ B,

n∑
i=1

xiwi ≤ W.

Informally, the problem is to pick items to include in the knapsack so that the sum
of the values exceeds a given minimum B (the goal is to maximize this sum), and the
sum of the weights is less than or equal to the capacity W of the knapsack. A maximal
solution corresponds to the largest feasible value of B.

The Knapsack Problem as we defined it (which is how Lewis and Papadimitriou de-
fine it) is the special case where vi = wi for i = 1, . . . , n, the vi are pairwise distinct
(they form a set), and W = B. For this reason, it is also called the Subset Sum Prob-
lem. Clearly, the Knapsack (Subset Sum) Problem reduces to the 0 -1 Knapsack
Problem, and thus the 0 -1 Knapsack Problem is also NP-complete.

(9) Inequivalence of ∗-free Regular Expressions

Recall that the problem of deciding the equivalence R1
∼= R2 of two regular expressions

R1 and R2 is the problem of deciding whether R1 and R2 define the same language,
that is, L[R1] = L[R2]. Is this problem in NP?

In order to show that the equivalence problem for regular expressions is in NP we
would have to be able to somehow check in polynomial time that two expressions
define the same language, but this is still an open problem.

What might be easier is to decide whether two regular expressions R1 and R2 are
inequivalent . For this, we just have to find a string w such that either w ∈ L[R1]−L[R2]
or w ∈ L[R2] − L[R1]. The problem is that if we can guess such a string w, we still
have to check in polynomial time that w ∈ (L[R1]−L[R2])∪ (L[R2]−L[R1]), and this
implies that there is a bound on the length of w which is polynomial in the sizes of R1

and R2. Again, this is an open problem.

To obtain a problem in NP we have to consider a restricted type of regular expressions,
and it turns out that ∗-free regular expressions are the right candidate. A ∗-free regular
expression is a regular expression which is built up from the atomic expressions using
only + and ·, but not ∗. For example,

R = ((a+ b)aa(a+ b) + aba(a+ b)b)
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is such an expression.

It is easy to see that if R is a ∗-free regular expression, then for every string w ∈ L[R]
we have |w| ≤ |R|. In particular, L[R] is finite. The above observation shows that if
R1 and R2 are ∗-free and if there is a string w ∈ (L[R1]−L[R2])∪(L[R2]−L[R1]), then
|w| ≤ |R1| + |R2|, so we can indeed check this in polynomial time. It follows that the
inequivalence problem for ∗ -free regular expressions is in NP . To show that it is NP-
complete, we reduce the Satisfiability Problem to it. This means that we provide
a method running in polynomial time that converts every instance of Satisfiability
Problem to an instance of Inequivalence of Regular Expressions such that the
first problem has a solution iff the converted problem has a solution.

Observe that both problems of Inequivalence of Regular Expressions and Equiv-
alence of Regular Expressions are as hard as Inequivalence of ∗-free Regular
Expressions, since if we could solve the first two problems in polynomial time, then
we we could solve Inequivalence of ∗-free Regular Expressions in polynomial
time, but since this problem is NP-complete, we would have P = NP . This is very
unlikely, so the complexity of Equivalence of Regular Expressions remains open.

(10) 0-1 integer programming problem

Let A be any p× q matrix with integer coefficients and let b ∈ Zp be any vector with
integer coefficients. The 0-1 integer programming problem is to find whether a
system of p linear equations in q variables

a11x1 + · · ·+ a1qxq = b1

...
...

ai1x1 + · · ·+ aiqxq = bi
...

...

ap1x1 + · · ·+ apqxq = bp

with aij, bi ∈ Z has any solution x ∈ {0, 1}q, that is, with xi ∈ {0, 1}. In matrix form,
if we let

A =

a11 · · · a1q
...

. . .
...

ap1 · · · apq

 , b =

b1
...
bp

 , x =

x1
...
xq

 ,

then we write the above system as

Ax = b.
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Example 12.2. Is there a solution x = (x1, x2, x3, x4, x5, x6) of the linear system


1 −2 1 3 −1 4
2 2 −1 0 1 −1
−1 1 2 3 −2 3
3 1 −1 2 −1 4
0 1 −1 1 1 2




x1

x2

x3

x4

x5

x6

 =


9
0
7
8
2


with xi ∈ {0, 1}?

Indeed, x = (1, 0, 1, 1, 0, 1) is a solution.

It is immediate that 0-1 integer programming problem is in NP . To prove that
it is NP-complete we reduce the bounded tiling problem to it. This means that
we provide a method running in polynomial time that converts every instance of the
bounded tiling problem to an instance of the 0-1 integer programming problem
such that the first problem has a solution iff the converted problem has a solution.

12.2 Proofs of NP-Completeness

(1) Exact Cover

To prove that Exact Cover is NP-complete, we reduce the Satisfiability Problem
to it:

Satisfiability Problem ≤P Exact Cover

Given a set F = {C1, . . . , C`} of ` clauses constructed from n propositional variables
x1, . . . , xn, we must construct in polynomial time (in the sum of the lengths of the
clauses) an instance τ(F ) = (U,F) of Exact Cover such that F is satisfiable iff τ(F )
has a solution.

Example 12.3. If

F = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2), C4 = (x2 ∨ x3)},

then the universe U is given by

U = {x1, x2, x3, C1, C2, C3, C4, p11, p12, p21, p22, p23, p31, p41, p42},
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and the family F consists of the subsets

{p11}, {p12}, {p21}, {p22}, {p23}, {p31}, {p41}, {p42}
T1,F = {x1, p11}
T1,T = {x1, p21}
T2,F = {x2, p22, p31}
T2,T = {x2, p12, p41}
T3,F = {x3, p23}
T3,T = {x3, p42}
{C1, p11}, {C1, p12}, {C2, p21}, {C2, p22}, {C2, p23},
{C3, p31}, {C4, p41}, {C4, p42}.

The above construction is illustrated in Figure 12.7.

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

F = ( x   v  x  )     (x  v  x  v  x  )    (x  )    (x    v   x  )

Exact cover for F

1 12 2 2 23 3^ ^ ^

Figure 12.7: Construction of an exact cover from the set of clauses in Example 12.3.

It is easy to check that the set C consisting of the following subsets is an exact cover:

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}.
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The general method to construct (U,F) from F = {C1, . . . , C`} proceeds as follows.
The size n of the input is the sum of the lengths of the clauses Ci as strings, Say

Cj = (Lj1 ∨ · · · ∨ Ljmj)

is the jth clause in F , where Ljk denotes the kth literal in Cj and mj ≥ 1. The universe
of τ(F ) is the set

U = {xi | 1 ≤ i ≤ n} ∪ {Cj | 1 ≤ j ≤ `} ∪ {pjk | 1 ≤ j ≤ `, 1 ≤ k ≤ mj}

where in the third set pjk corresponds to the kth literal in Cj. The universe U can be
constructed in time O(n2).

The following subsets are included in F :

(a) There is a set {pjk} for every pjk.

(b) For every boolean variable xi, the following two sets are in F :

Ti,T = {xi} ∪ {pjk | Ljk = xi}

which contains xi and all negative occurrences of xi, and

Ti,F = {xi} ∪ {pjk | Ljk = xi}

which contains xi and all its positive occurrences. Note carefully that Ti,T involves
negative occurrences of xi whereas Ti,F involves positive occurrences of xi.

(c) For every clause Cj, the mj sets {Cj, pjk} are in F .

The subsets in (a), (b), (c) can be constructed in time O(n3). It remains to prove that
F is satisfiable iff τ(F ) has a solution. We claim that if v is a truth assignement that
satisfies F , then we can make an exact cover C as follows:

For each xi, we put the subset Ti,T in C iff v(xi) = T, else we we put the subset Ti,F
in C iff v(xi) = F. Also, for every clause Cj, we put some subset {Cj, pjk} in C for a
literal Ljk which is made true by v. By construction of Ti,T and Ti,F, this pjk is not in
any set in C selected so far. Since by hypothesis F is satisfiable, such a literal exists for
every clause. Having covered all xi and Cj, we put a set {pjk} in C for every remaining
pjk which has not yet been covered by the sets already in C.

Going back to Example 12.3, the truth assignment v(x1) = T, v(x2) = T, v(x3) = F
satisfies F , so we put

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}
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in C.

We leave as an exercise to check that the above procedure works.

Conversely, if C is an exact cover of τ(F ), we define a truth assigment as follows:

For every xi, if Ti,T is in C, then we set v(xi) = T, else if Ti,F is in C, then we set
v(xi) = F. We leave it as an exercise to check that this procedure works.

Example 12.4. Given the exact cover

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42},

we get the satisfying assigment v(x1) = T, v(x2) = T, v(x3) = F .

If we now consider the proposition is CNF given by

F2 = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2), C4 = (x2 ∨ x3 ∨ x4)}

where we have added the boolean variable x4 to clause C4, then U also contains x4 and
p43 so we need to add the following subsets to F :

T4,F = {x4, p43}, T4,T = {x4}, {C4, p43}, {p43}.

The truth assigment v(x1) = T, v(x2) = T, v(x3) = F, v(x4) = T satisfies F2, so an
exact cover C is

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23}, T4,T = {x4},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}, {p43}.

The above construction is illustrated in Figure 12.8.

Observe that this time, because the truth assignment v makes both literals correspond-
ing to p42 and p43 true and since we picked p42 to form the subset {C4, p42}, we need
to add the singleton {p43} to C to cover all elements of U .

(2) Hamiltonian Cycle (for Directed Graphs)

To prove that Hamiltonian Cycle (for Directed Graphs) is NP-complete, we will
reduce Exact Cover to it:

Exact Cover ≤P Hamiltonian Cycle (for Directed Graphs)

We need to find an algorithm working in polynomial time that converts an instance
(U,F) of Exact Cover to a directed graph G = τ(U,F) such that G has a Hamiltonian
cycle iff (U,F) has an exact cover. The size n of the input (U,F) is |U |+ |F|.
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Figure 12.8: Construction of an exact cover from the set of clauses in Example 12.4.

The construction of the graph G uses a trick involving a small subgraph Gad with 7
(distinct) nodes known as a gadget shown in Figure 12.9.

The crucial property of the graph Gad is that if Gad is a subgraph of a bigger graph
G in such a way that no edge of G is incident to any of the nodes u, v, w unless it
is one of the eight edges of Gad incident to the nodes u, v, w, then for any Hamil-
tonian cycle in G, either the path (a, u), (u, v), (v, w), (w, b) is traversed or the path
(c, w), (w, v), (v, u), (u, d) is traversed, but not both.

The reader should convince herself/himself that indeed, any Hamiltonian cycle that
does not traverse either the subpath (a, u), (u, v), (v, w), (w, b) from a to b or the sub-
path (c, w), (w, v), (v, u), (u, d) from c to d will not traverse one of the nodes u, v, w.
Also, the fact that node v is traversed exactly once forces only one of the two paths
to be traversed but not both. The reader should also convince herself/himself that a
smaller graph does not guarantee the desired property.

It is convenient to use the simplified notation with a special type of edge labeled with
the exclusive or sign ⊕ between the “edges” between a and b and between d and c, as
shown in Figure 12.10.
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a

d

u v w

b

c

Figure 12.9: A gadget Gad.

a

d

b

c

⊕

Figure 12.10: A shorthand notation for a gadget.

Whenever such a figure occurs, the actual graph is obtained by substituting a copy of
the graph Gad (the four nodes a, b, c, d must be distinct). This abbreviating device
can be extended to the situation where we build gadgets between a given pair (a, b)
and several other pairs (c1, d1), . . . , (cm, dm), all nodes being distinct, as illustrated in
Figure 12.11.

Either all three edges (c1, d1), (c2, d2), (c3, d3) are traversed or the edge (a, b) is tra-
versed, and these possibilities are mutually exclusive.

The graph G = τ(U,F) where U = {u1, . . . , un} (with n ≥ 1) and F = {S1, . . . , Sm}
(with m ≥ 1) is constructed as follows:

The graph G has m + n + 2 nodes {u0, u1, . . . , un, S0, S1, . . . , Sm}. Note that we have
added two extra nodes u0 and S0. For i = 1, . . . ,m, there are two edges (Si−1, Si)1

and (Si−1, Si)2 from Si−1 to Si. For j = 1, . . . , n, from uj−1 to uj, there are as many
edges as there are sets Si ∈ F containing the element uj. We can think of each edge
between uj−1 and uj as an occurrence of uj in a uniquely determined set Si ∈ F ; we
denote this edge by (uj−1, uj)i. We also have an edge from un to S0 and an edge from
Sm to u0, thus “closing the cycle.”

What we have constructed so far is not a legal graph since it may have many parallel



474 CHAPTER 12. SOME NP-COMPLETE PROBLEMS

a b

d2 c2

d1

c1 d3

c3

⊕

⊕

⊕

Figure 12.11: A shorthand notation for several gadgets.

edges, but are going to turn it into a legal graph by pairing edges between the uj’s
and edges between the Si’s. Indeed, since each edge (uj−1, uj)i between uj−1 and uj
corresponds to an occurrence of uj in some uniquely determined set Si ∈ F (that
is, uj ∈ Si), we put an exclusive-or edge between the edge (uj−1, uj)i and the edge
(Si−1, Si)2 between Si−1 and Si, which we call the long edge. The other edge (Si−1, Si)1

between Si−1 and Si (not paired with any other edge) is called the short edge. Effec-
tively, we put a copy of the gadget graph Gad with a = uj−1, b = uj, c = Si−1, d = Si
for any pair (uj, Si) such that uj ∈ Si. The resulting object is indeed a directed graph
with no parallel edges. The graph G can be constructed from (U,F) in time O(n2).

Example 12.5. The above construction is illustrated in Figure 12.12 for the instance
of the exact cover problem given by

U = {u1, u2, u3, u4}, F = {S1 = {u3, u4}, S2 = {u2, u3, u4}, S3 = {u1, u2}}.

It remains to prove that (U,F) has an exact cover iff the graph G = τ(U,F) has a
Hamiltonian cycle. First, assume that G has a Hamiltonian cycle. If so, for every
j some unique “edge” (uj−1, uj)i is traversed once (since every uj is traversed once),
and by the exclusive-or nature of the gadget graphs, the corresponding long edge
(Si−1, Si)2 can’t be traversed, which means that the short edge (Si−1, Si)1 is traversed.
Consequently, if C consists of those subsets Si such that the short edge (Si−1, Si)1 is
traversed, then C consists of pairwise disjoint subsets whose union is U , namely C is
an exact cover.

In our example, there is a Hamiltonian where the blue edges are traversed between the
Si nodes, and the red edges are traversed between the uj nodes, namely

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0).
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The subsets corresponding to the short (Si−1, Si) edges are S1 and S3, and indeed
C = {S1, S3} is an exact cover.

Note that the exclusive-or property of the gadgets implies the following: since the
edge (u0, u1)3 must be chosen to obtain a Hamiltonian, the long edge (S2, S3) can’t be
chosen, so the edge (u1, u2)3 must be chosen, but then the edge (u1, u2)2 is not chosen
so the long edge (S1, S2) must be chosen, so the edges (u2, u3)2 and (u3, u4)2 can’t be
chosen, and thus edges (u2, u3)1 and (u3, u4)1 must be chosen.

Conversely, if C is an exact cover for (U,F), then consider the path in G obtained by
traversing each short edge (Si−1, Si)1 for which Si ∈ C, each edge (uj−1, uj)i such that
uj ∈ Si, which means that this edge is connected by a ⊕-sign to the long edge (Si−1, Si)2

(by construction, for each uj there is a unique such Si), and the edges (un, S0) and
(Sm, u0), then we obtain a Hamiltonian cycle. Observe that the long edges are the
inside edges joining the Si.

u0

u1

u2

u3

u4 S0

S1

S2

S3

⊕

⊕ ⊕

⊕

⊕

⊕

⊕

Figure 12.12: The directed graph constructed from the data (U,F) of Example 12.5.
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In our example, the exact cover C = {S1, S3} yields the Hamiltonian

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0)

that we encountered earlier.

(3) Hamiltonian Cycle (for Undirected Graphs)

To show that Hamiltonian Cycle (for Undirected Graphs) is NP-complete we
reduce Hamiltonian Cycle (for Directed Graphs) to it:

Hamiltonian Cycle (for Directed Graphs) ≤P Hamiltonian Cycle (for Undi-
rected Graphs)

Given any directed graph G = (V,E) we need to construct in polynomial time an
undirected graph τ(G) = G′ = (V ′, E ′) such that G has a (directed) Hamiltonian cycle
iff G′ has a (undirected) Hamiltonian cycle. This is easy. We make three distinct
copies v0, v1, v2 of every node v ∈ V which we put in V ′, and for every edge (u, v) ∈ E
we create five edges {u0, u1}, {u1, u2}, {u2, v0}, {v0, v1}, {v1, v2} which we put in E ′, as
illustrated in the diagram shown in Figure 12.13.

u v u0 u1 u2 v0 v1 v2=⇒

Figure 12.13: Conversion of a directed graph into an undirected graph.

If the size n of the input is |V |+ |E|, then G′ is constructed in time O(n). The crucial
point about the graph G′ is that although there may be several edges adjacent to a
node u0 or a node u2, the only way to reach u1 from u0 is through the edge {u0, u1}
and the only way to reach u1 from u2 is through the edge {u1, u2}.

Suppose there is a Hamiltonian cycle in G′. If this cycle arrives at a node u0 from the
node u1, then by the above remark, the previous node in the cycle must be u2. Then
the predecessor of u2 in the cycle must be a node v0 such that there is an edge {u2, v0}
in G′ arising from an edge (u, v) in G. The nodes in the cycle in G′ are traversed in
the order (v0, u2, u1, u0) where v0 and u2 are traversed in the opposite order in which
they occur as the endpoints of the edge (u, v) in G. If so, consider the reverse of our
Hamiltonian cycle in G′, which is also a Hamiltonian cycle since G′ is unoriented. In
this cycle, we go from u0 to u1, then to u2, and finally to v0. In G, we traverse the
edge from u to v. In order for the cycle in G′ to be Hamiltonian, we must continue
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by visiting v1 and v2, since otherwise v1 is never traversed. Now the next node w0 in
the Hamiltonian cycle in G′ corresponds to an edge (v, w) in G, and by repeating our
reasoning we see that our Hamiltonian cycle in G′ determines a Hamiltonian cycle in
G. We leave it as an easy exercise to check that a Hamiltonian cycle in G yields a
Hamiltonian cycle in G′. The process of expanding a directed graph into an undirected
graph and the inverse process are illustrated in Figure 12.14 and Figure 12.15.
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w1
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w2

G’

Figure 12.14: Expanding the directed graph into an undirected graph.

(4) Traveling Salesman Problem

To show that the Traveling Salesman Problem is NP-complete, we reduce the
Hamiltonian Cycle Problem (Undirected Graphs) to it:

Hamiltonian Cycle Problem (Undirected Graphs) ≤P Traveling Salesman
Problem

This is a fairly easy reduction.

Given an undirected graph G = (V,E), we construct an instance τ(G) = (D,B) of
the Traveling Salesman Problem so that G has a Hamiltonian cycle iff the traveling
salesman problem has a solution. If we let n = |V |, we have n cities and the matrix
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Figure 12.15: Collapsing the undirected graph onto a directed graph.

D = (dij) is defined as follows:

dij =


0 if i = j

1 if {vi, vj} ∈ E
2 otherwise.

We also set the budget B as B = n. The construction of (D,B) from G can be done
in time O(n2).

Any tour of the cities has cost equal to n plus the number of pairs (vi, vj) such that
i 6= j and {vi, vj} is not an edge of G. It follows that a tour of cost n exists iff there
are no pairs (vi, vj) of the second kind iff the tour is a Hamiltonian cycle.

The reduction from Hamiltonian Cycle Problem (Undirected Graphs) to the
Traveling Salesman Problem is quite simple, but a direct reduction of say Satis-
fiability to the Traveling Salesman Problem is hard. By breaking this reduction
into several steps made it simpler to achieve.

(5) Independent Set
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To show that Independent Set is NP-complete, we reduce Exact 3-Satisfiability
to it:

Exact 3-Satisfiability ≤P Independent Set

Recall that in Exact 3-Satisfiability every clause Ci has exactly three literals Li1, Li2,
Li3.

Given a set F = {C1, . . . , Cm} of m ≥ 2 such clauses, we construct in polynomial time
an undirected graph G = (V,E) such that F is satisfiable iff G has an independent set
C with at least K = m nodes.

For every i (1 ≤ i ≤ m), we have three nodes ci1, ci2, ci3 corresponding to the three
literals Li1, Li2, Li3 in clause Ci, so there are 3m nodes in V . The “core” of G consists
of m triangles, one for each set {ci1, ci2, ci3}. We also have an edge {cik, cj`} iff Lik and
Lj` are complementary literals. If the size n of the input is the sum of the lengths of
the clauses, then the construction of G can be done in time O(n2).

Example 12.6. Let F be the set of clauses

F = {C1 = (x1∨x2∨x3), C2 = (x1∨x2∨x3), C3 = (x1∨x2∨x3), C4 = (x1∨x2∨x3)}.

The graph G associated with F is shown in Figure 12.16.

x2 x3

x1

x2 x3

x1

x2 x3

x1

x2 x3

x1

Figure 12.16: The graph constructed from the clauses of Example 12.6.

It remains to show that the construction works. Since any three nodes in a triangle
are connected, an independent set C can have at most one node per triangle and thus
has at most m nodes. Since the budget is K = m, we may assume that there is an
independent set with m nodes. Define a (partial) truth assignment by

v(xi) =

{
T if Ljk = xi and cjk ∈ C
F if Ljk = xi and cjk ∈ C.
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Since the non-triangle edges in G link nodes corresponding to complementary literals
and nodes in C are not connected, our truth assigment does not assign clashing truth
values to the variables xi. Not all variables may receive a truth value, in which case
we assign an arbitrary truth value to the unassigned variables. This yields a satisfying
assignment for F .

In Example 12.6, the set C = {c11, c22, c32, c41} corresponding to the nodes shown
in red in Figure 12.16 form an independent set, and they induce the partial truth
assignment v(x1) = T, v(x2) = F. The variable x3 can be assigned an arbitrary value,
say v(x3) = F, and v is indeed a satisfying truth assignment for F .

Conversely, if v is a truth assignment for F , then we obtain an independent set C of
size m by picking for each clause Ci a node cik corresponding to a literal Lik whose
value under v is T.

(6) Clique

To show that Clique is NP-complete, we reduce Independent Set to it:

Independent Set ≤P Clique

The key to the reduction is the notion of the complement of an undirected graph
G = (V,E). The complement Gc = (V,Ec) of the graph G = (V,E) is the graph
with the same set of nodes V as G but there is an edge {u, v} (with u 6= v) in
Ec iff {u, v} /∈ E. Then it is not hard to check that there is a bijection between
maximum independent sets in G and maximum cliques in Gc. The reduction consists
in constructing from a graph G its complement Gc, and then G has an independent
set iff Gc has a clique. Obviously, the reduction can be done in linear time.

This construction is illustrated in Figure 12.17, where a maximum independent set in
the graph G is shown in blue and a maximum clique in the graph Gc is shown in red.

Figure 12.17: A graph (left) and its complement (right).
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(7) Node Cover

To show that Node Cover is NP-complete, we reduce Independent Set to it:

Independent Set ≤P Node Cover

This time the crucial observation is that if N is an independent set in G, then the
complement C = V −N of N in V is a node cover in G. Thus there is an independent
set of size at least K iff there is a node cover of size at most n −K where n = |V | is
the number of nodes in V . The reduction leaves the graph unchanged and replaces K
by n−K. Obviously, the reduction can be done in linear time. An example is shown
in Figure 12.18 where an independent set is shown in blue and a node cover is shown
in red.

Figure 12.18: An inpendent set (left) and a node cover (right).

(8) Knapsack (also called Subset sum)

To show that Knapsack is NP-complete, we reduce Exact Cover to it:

Exact Cover ≤P Knapsack

Given an instance (U,F) of set cover with U = {u1, . . . , un} and F = {S1, . . . , Sm},
a family of subsets of U , we need to produce in polynomial time an instance τ(U,F)
of the Knapsack Problem consisting of k nonnegative integers a1, . . . , ak and another
integer K > 0 such that there is a subset I ⊆ {1, . . . , k} such that

∑
i∈I ai = K iff

there is an exact cover of U using subsets in F .

The trick here is the relationship between set union and integer addition.

Example 12.7. Consider the exact cover problem given by U = {u1, u2, u3, u4} and

F = {S1 = {u3, u4}, S2 = {u2, u3, u4}, S3 = {u1, u2}}.
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We can represent each subset Sj by a binary string aj of length 4, where the ith bit
from the left is 1 iff ui ∈ Sj, and 0 otherwise. In our example

a1 = 0011

a2 = 0111

a3 = 1100.

Then the trick is that some family C of subsets Sj is an exact cover if the sum of the
corresponding numbers aj adds up to 1111 = 24 − 1 = K. For example,

C = {S1 = {u3, u4}, S3 = {u1, u2}}

is an exact cover and
a1 + a3 = 0011 + 1100 = 1111.

Unfortunately, there is a problem with this encoding which has to do with the fact
that addition may involve carry. For example, assuming four subsets and the universe
U = {u1, . . . , u6},

11 + 13 + 15 + 24 = 63,

in binary
001011 + 001101 + 001111 + 011000 = 111111,

but if we convert these binary strings to the corresponding subsets we get the subsets

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},

which are not disjoint and do not cover U .

The fix is surprisingly simple: use base m (where m is the number of subsets in F)
instead of base 2.

Example 12.8. Consider the exact cover problem given by U = {u1, u2, u3, u4, u5, u6}
and F given by

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},
S5 = {u1, u2, u4}.
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In base m = 5, the numbers corresponding to S1, . . . , S5 are

a1 = 001011

a2 = 001101

a3 = 001111

a4 = 011000

a5 = 110100.

This time,

a1 + a2 + a3 + a4 = 001011 + 001101 + 001111 + 011000 = 014223 6= 111111,

so {S1, S2, S3, S4} is not a solution. However

a1 + a5 = 001011 + 110100 = 111111,

and C = {S1, S5} is an exact cover.

Thus, given an instance (U,F) of Exact Cover where U = {u1, . . . , un} and F =
{S1, . . . , Sm} the reduction to Knapsack consists in forming the m numbers a1, . . . , am
(each of n bits) encoding the subsets Sj, namely aji = 1 iff ui ∈ Sj, else 0, and to let
K = 1 + m2 + · · · + mn−1, which is represented in base m by the string 11 · · · 11︸ ︷︷ ︸

n

. In

testing whether
∑

i∈I ai = K for some subset I ⊆ {1, . . . ,m}, we use arithmetic in
base m.

If a candidate solution C involves at most m− 1 subsets, then since the corresponding
numbers are added in base m, a carry can never happen. If the candidate solution
involves all m subsets, then a1 + · · ·+am = K iff F is a partition of U , since otherwise
some bit in the result of adding up these m numbers in base m is not equal to 1, even
if a carry occurs. Since the number K is written in binary, it takes time O(mn) to
produce ((a1, . . . , am), K) from (U,F).

(9) Inequivalence of ∗-free Regular Expressions

To show that Inequivalence of ∗-free Regular Expressions is NP-complete, we
reduce the Satisfiability Problem to it:

Satisfiability Problem ≤P Inequivalence of ∗-free Regular Expressions

We already argued that Inequivalence of ∗-free Regular Expressions is in NP
because if R is a ∗-free regular expression, then for every string w ∈ L[R] we have
|w| ≤ |R|. The above observation shows that if R1 and R2 are ∗-free and if there is a
string w ∈ (L[R1]−L[R2])∪ (L[R2]−L[R1]), then |w| ≤ |R1|+ |R2|, so we can indeed
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check this in polynomial time. It follows that the inequivalence problem for ∗ -free
regular expressions is in NP .

We reduce the Satisfiability Problem to the Inequivalence of ∗-free Regular
Expressions as follows. For any set of clauses P = C1 ∧ · · · ∧Cp, if the propositional
variables occurring in P are x1, . . . , xn, we produce two ∗-free regular expressions R,
S over Σ = {0, 1}, such that P is satisfiable iff LR 6= LS. The expression S is actually

S = (0 + 1)(0 + 1) · · · (0 + 1)︸ ︷︷ ︸
n

.

The expression R is of the form

R = R1 + · · ·+Rp,

where Ri is constructed from the clause Ci in such a way that LRi corresponds precisely
to the set of truth assignments that falsify Ci; see below.

Given any clause Ci, let Ri be the ∗-free regular expression defined such that, if xj and
xj both belong to Ci (for some j), then Ri = ∅, else

Ri = R1
i ·R2

i · · ·Rn
i ,

where Rj
i is defined by

Rj
i =


0 if xj is a literal of Ci
1 if xj is a literal of Ci
(0 + 1) if xj does not occur in Ci.

The construction of R from P takes linear time.

Example 12.9. If we apply the above conversion to the clauses of Example 12.3,
namely

F = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2), C4 = (x2 ∨ x3)},

we get

R1 = 0 · 1 · (0 + 1), R2 = 1 · 0 · 0, R3 = (0 + 1) · 0 · (0 + 1), R4 = (0 + 1) · 1 · 1.

Clearly, all truth assignments that falsify Ci must assign F to xj if xj ∈ Ci or assign
T to xj if xj ∈ Ci. Therefore, LRi corresponds to the set of truth assignments that
falsify Ci (where 1 stands for T and 0 stands for F) and thus, if we let

R = R1 + · · ·+Rp,
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then LR corresponds to the set of truth assignments that falsify P = C1 ∧ · · · ∧ Cp.
Since LS = {0, 1}n (all binary strings of length n), we conclude that LR 6= LS iff P is
satisfiable. Therefore, we have reduced the Satisfiability Problem to our problem
and the reduction clearly runs in polynomial time. This proves that the problem of
deciding whether LR 6= LS, for any two ∗-free regular expressions R and S is NP-
complete.

(10) 0-1 integer programming problem

It is easy to check that the problem is in NP .

To prove that the is NP-complete we reduce the bounded-tiling problem to it:

bounded-tiling problem ≤P 0-1 integer programming problem

Given a tiling problem, ((T , V,H), ŝ, σ0), we create a 0-1-valued variable xmnt, such
that xmnt = 1 iff tile t occurs in position (m,n) in some tiling. Write equations or
inequalities expressing that a tiling exists and then use “slack variables” to convert
inequalities to equations. For example, to express the fact that every position is tiled
by a single tile, use the equation ∑

t∈T

xmnt = 1,

for all m,n with 1 ≤ m ≤ 2s and 1 ≤ n ≤ s. We leave the rest as as exercise.

12.3 Succinct Certificates, coNP, and EXP
All the problems considered in Section 12.1 share a common feature, which is that for each
problem, a solution is produced nondeterministically (an exact cover, a directed Hamiltonian
cycle, a tour of cities, an independent set, a node cover, a clique etc.), and then this candidate
solution is checked deterministically and in polynomial time. The candidate solution is a
string called a certificate (or witness).

It turns out that membership on NP can be defined in terms of certificates. To be a
certificate, a string must satisfy two conditions:

1. It must be polynomially succinct , which means that its length is at most a polynomial
in the length of the input.

2. It must be checkable in polynomial time.

All “yes” inputs to a problem in NP must have at least one certificate, while all “no”
inputs must have none.

The notion of certificate can be formalized using the notion of a polynomially balanced
language.
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Definition 12.3. Let Σ be an alphabet, and let “;” be a symbol not in Σ. A language
L′ ⊆ Σ∗; Σ∗ is said to be polynomially balanced if there exists a polynomial p(X) such that
for all x, y ∈ Σ∗, if x; y ∈ L′ then |y| ≤ p(|x|).

Suppose L′ is a polynomially balanced language and that L′ ∈ P . Then we can consider
the language

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.
The intuition is that for each x ∈ L, the set

{y ∈ Σ∗ | x; y ∈ L′}

is the set of certificates of x. For every x ∈ L, a Turing machine can nondeterministically
guess one of its certificates y, and then use the deterministic Turing machine for L′ to check in
polynomial time that x; y ∈ L′. Note that, by definition, strings not in L have no certificate.
It follows that L ∈ NP .

Conversely, if L ∈ NP and the alphabet Σ has at least two symbols, we can encode the
paths in the computation tree for every input x ∈ L, and we obtain a polynomially balanced
language L′ ⊆ Σ∗; Σ∗ with L′ in P such that

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.

The details of this construction are left as an exercise. In summary, we obtain the following
theorem.

Theorem 12.1. Let L ⊆ Σ∗ be a language over an alphabet Σ with at least two symbols, and
let “;” be a symbol not in Σ. Then L ∈ NP iff there is a polynomially balanced language
L′ ⊆ Σ∗; Σ∗ such that L′ ∈ P and

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.

Theorem 12.1 shows that the introduction of non-determinstic Turing machines is not
really needed to define the class NP , but this extreme point of view is not fruitful.

A striking illustration of the notion of succint certificate is illustrated by the set of
composite integers, namely those natural numbers n ∈ N that can be written as the product
pq of two numbers p, q ≥ 2 with p, q ∈ N. For example, the number

4, 294, 967, 297

is a composite!

This is far from obvious, but if an oracle gives us the certificate {6, 700, 417, 641}, it is
easy to carry out in polynomial time the multiplication of these two numbers and check that
it is equal to 4, 294, 967, 297. Finding a certificate is usually (very) hard, but checking that
it works is easy. This is the point of certificates.
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We conclude this section with a brief discussion of the complexity classes coNP and
EXP .

By definition,

coNP = {L | L ∈ NP},
that is, coNP consists of all complements of languages in NP . Since P ⊆ NP and P is
closed under complementation,

P ⊆ coNP ,
so P ⊆ NP ∩ coNP , but nobody knows whether this inclusion is proper or whether NP is
closed under complementation, that is, nobody knows whether NP = coNP .

A language L is coNP-hard if every language in coNP is polynomial-time reducible to
L, and coNP-complete if L ∈ coNP and L is coNP-hard.

What can be shown is that if NP 6= coNP , then P 6= NP . However it is possible that
P 6= NP and yet NP = coNP , although this is considered unlikely.

We have P ⊆ NP ∩ coNP , but there are problems in NP ∩ coNP not known to be in
P . One of the most famous in the following problem:

Integer factorization problem:

Given an integer N ≥ 3, and another integer M (a budget) such that 1 < M < N , does
N have a factor d with 1 < d ≤M?

Proposition 12.2. The problem Integer factorization is in NP ∩ coNP.

Proof. That Integer factorization is in NP is clear. To show that Integer factorization
is in coNP , we can guess a factorization of N into distinct factors all greater than M , check
that they are prime using the results of Chapter 13 showing that testing primality is in NP
(even in P , but that’s much harder to prove), and then check that the product of these
factors is N .

It is widely believed that Integer factorization does not belong to P , which is the
technical justification for saying that this problem is hard. Most cryptographic algorithms
rely on this unproven fact. If Integer factorization was either NP-complete or coNP-
complete, then we would have NP = coNP , which is considered very unlikely.

Remark: If
√
N ≤M < N , the above problem is equivalent to asking whether N is prime.

A natural instance of a problem in coNP is the unsatisfiability problem for propositions
UNSAT = ¬SAT, namely deciding that a proposition P has no satisfying assignment.

Definition 12.4. A proposition P (in CNF) is falsifiable if there is some truth assigment v
such that v̂(P ) = F.
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It is obvious that the set of falsifiable propositions is in NP . Since a proposition P is
valid iff P is not falsifiable, the validity (or tautology) problem TAUT for propositions is in
coNP . In fact, the follolwing result holds.

Proposition 12.3. The problem TAUT is coNP-complete.

Proof. See Papadimitriou [47]. Since SAT is NP-complete, for every language L ∈ NP ,
there is a polynomial-time computable function f : Σ∗ → Σ∗ such that x ∈ L iff f(x) ∈ SAT.
Then x /∈ L iff f(x) /∈ SAT, that is, x ∈ L iff f(x) ∈ ¬SAT, which means that every
language L ∈ coNP is polynomial-time reducible to ¬SAT = UNSAT. But TAUT = {¬P |
P ∈ UNSAT}, so we have the polynomial-time computable function g given by g(x) = ¬f(x)
which gives us the reduction x ∈ L iff g(x) ∈ TAUT, which shows that TAUT is coNP-
complete.

Despite the fact that this problem has been extensively studied, not much is known about
its exact complexity.

The reasoning used to show that TAUT is coNP-complete can also be used to show the
following interesting result.

Proposition 12.4. If a language L is NP-complete, then its complement L is coNP-
complete.

Proof. By definition, since L ∈ NP , we have L ∈ coNP . Since L is NP-complete, for every
language L2 ∈ NP , there is a polynomial-time computable function f : Σ∗ → Σ∗ such that
x ∈ L2 iff f(x) ∈ L. Then x /∈ L2 iff f(x) /∈ L, that is, x ∈ L2 iff f(x) ∈ L, which means
that L is coNP-hard as well, thus coNP-complete.

The class EXP is defined as follows.

Definition 12.5. A deterministic Turing machine M is said to be exponentially bounded if
there is a polynomial p(X) such that for every input x ∈ Σ∗, there is no ID IDn such that

ID0 ` ID1 `∗ IDn−1 ` IDn, with n > 2p(|x|).

The class EXP is the class of all languages that are accepted by some exponentially bounded
deterministic Turing machine.

Remark: We can also define the class NEXP as in Definition 12.5, except that we allow
nondeterministic Turing machines.

One of the interesting features of EXP is that it contains NP .

Theorem 12.5. We have the inclusion NP ⊆ EXP.
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Sketch of proof. Let M be some nondeterministic Turing machine accepting L in polynomial
time bounded by p(X). We can construct a deterministic Turing machine M ′ that operates
as follows: for every input x, M ′ simulates M on all computations of length 1, then on
all possible computations of length 2, and so on, up to all possible computations of length
p(|x|) + 1. At this point, either an accepting computation has been discovered or all compu-
tations have halted rejecting. We claim that M ′ operates in time bounded by 2q(|x|) for some
polynomial q(X). First, let r be the degree of nondeterminism of M , that is, the maximum
number of triples (b,m, q) such that a quintuple (p, q, b,m, q) is an instructions of M . Then
to simulate a computation of M of length `, M ′ needs O(`) steps—to copy the input, to
produce a string c in {1, . . . , r}`, and so simulate M according to the choices specified by c.
It follows that M ′ can carry out the simulation of M on an input x in

p(|x|)+1∑
`=1

r` ≤ (r + 1)p(|x|)+1

steps. Including the O(`) extra steps for each `, we obtain the bound (r + 2)p(|x|)+1. Then
we can pick a constant k such that 2k > r + 2, and with q(X) = k(p(X) + 1), we see that
M ′ operates in time bounded by 2q(|x|).

It is also immediate to see that EXP is closed under complementation. Furthermore the
strict inclusion P ⊂ EXP holds.

Theorem 12.6. We have the strict inclusion P ⊂ EXP.

Sketch of proof. We use a diagonalization argument to produce a language E such that
E /∈ P , yet E ∈ EXP . We need to code a Turing machine as a string, but this can certainly
be done using the techniques of Chapter 6. Let #(M) be the code of Turing machine M
and let #(x) be the code of x. Define E as

E = {#(M)#(x) |M accepts input x after at most 2|x| steps}.

We claim that E /∈ P . We proceed by contradiction. If E ∈ P , then so is the language
E1 given by

E1 = {#(M) |M accepts #(M) after at most 2|#(M)| steps}.

Since P is closed under complementation, we also have E1 ∈ P . Let M∗ be a deterministic
Turing machine accepting E1 in time p(X), for some polynomial p(X). Since p(X) is a
polynomial, there is some n0 such that p(n) ≤ 2n for all all n ≥ n0. We may also assume
that |#(M∗)| ≥ n0, since if not we can add n0 “dead states” to M∗.

Now what happens if we run M∗ on its own code #(M∗)?

It is easy to see that we get a contradiction, namely M∗ accepts #(M∗) iff M∗ rejects
#(M∗). We leave this verification as an exercise.
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In conclusion, E1 /∈ P , which in turn implies that E /∈ P .

It remains to prove that E ∈ EXP . This is because we can construct a Turing machine
that can in exponential time simulate any Turing machine M on input x for 2|x| steps.

In summary, we have the chain of inclusions

P ⊆ NP ⊆ EXP ,

where the inclusions P ⊂ EXP is strict (by Theorem 12.6), but the left inclusion and the
right inclusion are both open problems, and we know that at least one of these two inclusions
is strict.

We also have the inclusions

P ⊆ NP ⊆ EXP ⊆ NEXP ,

where the inclusions P ⊂ EXP and NP ⊂ NEXP are strict. The strict inclusion NP ⊂
NEXP is a consequence of the time hierarchy theorem (Cook, Seiferas, Fischer, Meyer, Zak);
see Papadimitriou [47] (Chapters 7 and 20) and Arora and Barak [3] (Chapter 3, Section
3.2). The left inclusion and the right inclusion in NP ⊆ EXP ⊆ NEXP are both open
problems, but we know that at least one of these two inclusions is strict. It can be shown
that if EXP 6= NEXP , then P 6= NP ; see Papadimitriou [47].



Chapter 13

Primality Testing is in NP

13.1 Prime Numbers and Composite Numbers

Prime numbers have fascinated mathematicians and more generally curious minds for thou-
sands of years. What is a prime number? Well, 2, 3, 5, 7, 11, 13, . . . , 9973 are prime numbers.

Definition 13.1. A positive integer p is prime if p ≥ 2 and if p is only divisible by 1 and
p. Equivalently, p is prime if and only if p is a positive integer p ≥ 2 that is not divisible by
any integer m such that 2 ≤ m < p. A positive integer n ≥ 2 which is not prime is called
composite.

Observe that the number 1 is considered neither a prime nor a composite. For example,
6 = 2 · 3 is composite. Is 3 215 031 751 composite? Yes, because

3 215 031 751 = 151 · 751 · 28351.

Even though the definition of primality is very simple, the structure of the set of prime
numbers is highly nontrivial. The prime numbers are the basic building blocks of the natu-
ral numbers because of the following theorem bearing the impressive name of fundamental
theorem of arithmetic.

Theorem 13.1. Every natural number n ≥ 2 has a unique factorization

n = pi11 p
i2
2 · · · pikk ,

where the exponents i1, . . . , ik are positive integers and p1 < p2 < · · · < pk are primes.

Every book on number theory has a proof of Theorem 13.1. The proof is not difficult
and uses induction. It has two parts. The first part shows the existence of a factorization.
The second part shows its uniqueness. For example, see Apostol [2] (Chapter 1, Theorem
1.10).

How many prime numbers are there? Many! In fact, infinitely many.

491
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Theorem 13.2. The set of prime numbers is infinite.

Proof. The following proof attributed to Hermite only use the fact that every integer greater
than 1 has some prime divisor. We prove that for every natural number n ≥ 2, there is
some prime p > n. Consider N = n! + 1. The number N must be divisible by some prime
p (p = N is possible). Any prime p dividing N is distinct from 2, 3, . . . , n, since otherwise p
would divide N − n! = 1, a contradiction.

The problem of determining whether a given integer is prime is one of the better known
and most easily understood problems of pure mathematics. This problem has caught the
interest of mathematicians again and again for centuries. However, it was not until the 20th
century that questions about primality testing and factoring were recognized as problems of
practical importance and a central part of applied mathematics. The advent of cryptographic
systems that use large primes, such as RSA, was the main driving force for the development
of fast and reliable methods for primality testing. Indeed, in order to create RSA keys, one
needs to produce large prime numbers.

13.2 Methods for Primality Testing

The general strategy to test whether an integer n > 2 is prime or composite is to choose
some property, say A, implied by primality, and to search for a counterexample a to this
property for the number n, namely some a for which property A fails. We look for properties
for which checking that a candidate a is indeed a countexample can be done quickly.

A simple property that is the basis of several primality testing algorithms is the Fermat
test , namely

an−1 ≡ 1 (mod n),

which means that an−1 − 1 is divisible by n (see Definition 13.2 for the meaning of the
notation a ≡ b (mod n)). If n is prime, and if gcd(a, n) = 1, then the above test is indeed
satisfied; this is Fermat’s little theorem, Theorem 13.7.

Typically, together with the number n being tested for primality, some candidate coun-
terexample a is supplied to an algorithm which runs a test to determine whether a is really a
counterexample to property A for n. If the test says that a is a counterexample, also called
a witness , then we know for sure that n is composite.

For example, using the Fermat test, if n = 10 and a = 3, we check that

39 = 19683 = 10 · 1968 + 3,

so 39 − 1 is not divisible by 10, which means that

an−1 = 39 6≡ 1 (mod 10),
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and the Fermat test fails. This shows that 10 is not prime and that a = 3 is a witness of
this fact.

If the algorithm reports that a is not a witness to the fact that n is composite, does this
imply that n is prime? Unfortunately, no. This is because, there may be some composite
number n and some candidate counterexample a for which the test says that a is not a
countexample. Such a number a is called a liar .

For example, using the Fermat test for n = 91 = 7 · 13 and a = 3, we can check that

an−1 = 390 ≡ 1 (mod 91),

so the Fermat test succeeds even though 91 is not prime. The number a = 3 is a liar.

The other reason is that we haven’t tested all the candidate counterexamples a for n. In
the case where n = 91, it is shown in Section 13.6 that 290 − 64 is divisible by 91, so the
Fermat test fails for a = 2, which confirms that 91 is not prime, and a = 2 is a witness of
this fact.

Unfortunately, the Fermat test has the property that it may succeed for all candidate
counterexamples, even though n is composite. The number n = 561 = 3 · 11 · 17 is such a
devious number. It can be shown that for all a ∈ {2, . . . , 560} such that gcd(a, 561) = 1, we
have

a560 ≡ 1 (mod 561),

so all these a are liars.

Such composite numbers for which the Fermat test succeeds for all candidate counterex-
amples are called Carmichael numbers , and unfortunately there are infinitely many of them.
Thus the Fermat test is doomed. There are various ways of strengthening the Fermat test,
but we will not discuss this here. We refer the interested reader to Crandall and Pomerance
[6] and Gallier and Quaintance [18].

The remedy is to make sure that we pick a property A such that if n is composite, then at
least some candidate a is not a liar, and to test all potential countexamples a. The difficulty
is that trying all candidate countexamples can be too expensive to be practical.

There are two classes of primality testing algorithms:

(1) Algorithms that try all possible countexamples and for which the test does not lie.
These algorithms give a definite answer: n is prime or n is composite. Until 2002,
no algorithms running in polynomial time were known. The situation changed in
2002 when a paper with the title “PRIMES is in P,” by Agrawal, Kayal and Saxena,
appeared on the website of the Indian Institute of Technology at Kanpur, India. In
this paper, it was shown that testing for primality has a deterministic (nonrandomized)
algorithm that runs in polynomial time.

We will not discuss algorithms of this type here, and instead refer the reader to Crandall
and Pomerance [6] and Ribenboim [52].
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(2) Randomized algorithms. To avoid having problems with infinite events, we assume
that we are testing numbers in some large finite interval I. Given any positive integer
m ∈ I, some candidate witness a is chosen at random. We have a test which, given m
and a potential witness a, determines whether or not a is indeed a witness to the fact
that m is composite. Such an algorithm is a Monte Carlo algorithm, which means the
following:

(1) If the test is positive, then m ∈ I is composite. In terms of probabilities, this
is expressed by saying that the conditional probability that m ∈ I is composite
given that the test is positive is equal to 1. If we denote the event that some
positive integer m ∈ I is composite by C, then we can express the above as

Pr(C | test is positive) = 1.

(2) If m ∈ I is composite, then the test is positive for at least 50% of the choices for
a. We can express the above as

Pr(test is positive | C) ≥ 1

2
.

This gives us a degree of confidence in the test .

The contrapositive of (1) says that if m ∈ I is prime, then the test is negative. If we
denote by P the event that some positive integer m ∈ I is prime, then this is expressed
as

Pr(test is negative | P ) = 1.

If we repeat the test ` times by picking independent potential witnesses, then the con-
ditional probability that the test is negative ` times given that n is composite, written
Pr(test is negative ` times | C), is given by

Pr(test is negative ` times | C) = Pr(test is negative | C)`

= (1− Pr(test is positive | C))`

≤
(

1− 1

2

)`
=

(
1

2

)`
,

where we used Property (2) of a Monte Carlo algorithm that

Pr(test is positive | C) ≥ 1

2

and the independence of the trials. This confirms that if we run the algorithm ` times, then
Pr(test is negative ` times | C) is very small . In other words, it is very unlikely that the test
will lie ` times (is negative) given that the number m ∈ I is composite.
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If the probabilty Pr(P ) of the event P is known, which requires knowledge of the distri-
bution of the primes in the interval I, then the conditional probability

Pr(P | test is negative ` times)

can be determined using Bayes’s rule.

A Monte Carlo algorithm does not give a definite answer. However, if ` is large enough
(say ` = 100), then the conditional probability that the number n being tested is prime given
that the test is negative ` times, is very close to 1.

Two of the best known randomized algorithms for primality testing are the Miller–Rabin
test and the Solovay–Strassen test . We will not discuss these methods here, and we refer
the reader to Gallier and Quaintance [18].

However, what we will discuss is a nondeterministic algorithm that checks that a number
n is prime by guessing a certain kind of tree that we call a Lucas tree (because this algorithm
is based on a method due to E. Lucas), and then verifies in polynomial time (in the length
log2 n of the input given in binary) that this tree constitutes a “proof” that n is indeed
prime. This shows that primality testing is in NP , a fact that is not obvious at all. Of
course, this is a much weaker result than the AKS algorithm, but the proof that the AKS
works in polynomial time (in log2 n) is much harder.

The Lucas test, and basically all of the primality-testing algorithms, use modular arith-
metic and some elementary facts of number theory such as the Euler-Fermat theorem, so we
proceed with a review of these concepts.

13.3 Modular Arithmetic, the Groups Z/nZ, (Z/nZ)∗

Recall the fundamental notion of congruence modulo n and its notation due to Gauss (circa
1802).

Definition 13.2. For any a, b ∈ Z, we write a ≡ b (mod m) iff a− b = km, for some k ∈ Z
(in other words, a− b is divisible by m), and we say that a and b are congruent modulo m.

For example, 37 ≡ 1 (mod 9), since 37 − 1 = 36 = 4 · 9. It can also be shown that
200250 ≡ 1 (mod 251), but this is impossible to do by brute force, so we will develop some
tools to either avoid such computations, or to make them tractable.

It is easy to check that congruence is an equivalence relation but it also satisfies the
following properties.

Proposition 13.3. For any positive integer m, for all a1, a2, b1, b2 ∈ Z, the following prop-
erties hold. If a1 ≡ b1 (modm) and a2 ≡ b2 (modm), then

(1) a1 + a2 ≡ b1 + b2 (modm).
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(2) a1 − a2 ≡ b1 − b2 (modm).

(3) a1a2 ≡ b1b2 (modm).

Proof. We only check (3), leaving (1) and (2) as easy exercises. Because a1 ≡ b1 (mod m)
and a2 ≡ b2 (modm), we have a1 = b1 + k1m and a2 = b2 + k2m, for some k1, k2 ∈ Z, so we
obtain

a1a2 − b1b2 = a1(a2 − b2) + (a1 − b1)b2

= (a1k2 + k1b2)m.

Proposition 13.3 allows us to define addition, subtraction, and multiplication on equiva-
lence classes modulo m.

Definition 13.3. Given any positive integer m, we denote by Z/mZ the set of equivalence
classes modulo m. If we write a for the equivalence class of a ∈ Z, then we define addition,
subtraction, and multiplication on residue classes as follows:

a+ b = a+ b

a− b = a− b
a · b = ab.

The above operations make sense because a+ b does not depend on the representatives
chosen in the equivalence classes a and b, and similarly for a− b and ab. Each equivalence
class a contains a unique representative from the set of remainders {0, 1, . . . ,m−1}, modulo
m, so the above operations are completely determined by m×m tables. Using the arithmetic
operations of Z/mZ is called modular arithmetic.

The addition tables of Z/nZ for n = 2, 3, 4, 5, 6, 7 are shown below.

n = 2
+ 0 1

0 0 1
1 1 0

n = 3
+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

n = 4
+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

n = 5
+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

n = 6
+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

n = 7
+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5
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It is easy to check that the addition operation + is commutative (abelian), associative,
that 0 is an identity element for +, and that every element a has −a as additive inverse,
which means that

a+ (−a) = (−a) + a = 0.

The set Z/nZ of residue classes modulo n is a group under addition, a notion defined formally
in Definition 13.4

It is easy to check that the multiplication operation · is commutative (abelian), associa-
tive, that 1 is an identity element for ·, and that · is distributive on the left and on the right
with respect to addition. We usually suppress the dot and write a b instead of a · b. The
multiplication tables of Z/nZ for n = 2, 3, . . . , 9 are shown below. Since 0 ·m = m · 0 = 0
for all m, these tables are only given for nonzero arguments.

n = 2
· 1

1 1

n = 3
· 1 2

1 1 2
2 2 1

n = 4
· 1 2 3

1 1 2 3
2 2 0 2
3 3 2 1

n = 5
· 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

n = 6
· 1 2 3 4 5

1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

n = 7
· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

n = 8
· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 4 6 0 2 4 6
3 3 6 1 4 7 2 5
4 4 0 4 0 4 0 4
5 5 2 7 4 1 6 3
6 6 4 2 0 6 4 2
7 7 6 5 4 3 2 1

n = 9
· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 4 6 8 1 3 5 7
3 3 6 0 3 6 0 3 6
4 4 8 3 7 2 6 1 5
5 5 1 6 2 7 3 8 4
6 6 3 0 6 3 0 6 3
7 7 5 3 1 8 6 4 2
8 8 7 6 5 4 3 2 1
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Examining the above tables, we observe that for n = 2, 3, 5, 7, which are primes, every
element has an inverse, which means that for every nonzero element a, there is some (actually,
unique) element b such that

a · b = b · a = 1.

For n = 2, 3, 5, 7, the set Z/nZ−{0} is an abelian group under multiplication (see Definition
13.4). When n is composite, there exist nonzero elements whose product is zero. For example,
when n = 6, we have 3 · 2 = 0, when n = 8, we have 4 · 4 = 0, when n = 9, we have 6 · 6 = 0.

For n = 4, 6, 8, 9, the elements a that have an inverse are precisely those that are relatively
prime to the modulus n (that is, gcd(a, n) = 1).

These observations hold in general. Recall the Bezout criterion (Proposition 9.3): two
nonzero integers m,n ∈ Z are relatively prime (gcd(m,n) = 1) iff there are integers a, b ∈ Z
such that

am+ bn = 1.

Proposition 13.4. Given any integer n ≥ 1, for any a ∈ Z, the residue class a ∈ Z/nZ is
invertible with respect to multiplication iff gcd(a, n) = 1.

Proof. If a has inverse b in Z/nZ, then a b = 1, which means that

ab ≡ 1 (mod n),

that is ab = 1 + nk for some k ∈ Z, which is the Bezout identity

ab− nk = 1

and implies that gcd(a, n) = 1. Conversely, if gcd(a, n) = 1, then by Bezout’s identity there
exist u, v ∈ Z such that

au+ nv = 1,

so au = 1− nv, that is,
au ≡ 1 (mod n),

which means that a u = 1, so a is invertible in Z/nZ.

We have alluded to the notion of a group. Here is the formal definition.

Definition 13.4. A group is a set G equipped with a binary operation · : G × G → G
that associates an element a · b ∈ G to every pair of elements a, b ∈ G, and having the
following properties: · is associative, has an identity element e ∈ G, and every element in G
is invertible (w.r.t. ·). More explicitly, this means that the following equations hold for all
a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);



13.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 499

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e. (inverse).

A group G is abelian (or commutative) if

a · b = b · a for all a, b ∈ G.

It is easy to show that the element e satisfying property (G2) is unique, and for any
a ∈ G, the element a−1 ∈ G satisfying a · a−1 = a−1 · a = e required to exist by (G3) is
actually unique. This element is called the inverse of a.

The set of integers Z with the addition operation is an abelian group with identity
element 0. The set Z/nZ of residues modulo m is an abelian group under addition with
identity element 0. In general, Z/nZ − {0} is not a group under multiplication, because
some nonzero elements may not have an inverse. However, by Proposition 13.4, if p is prime,
then Z/nZ− {0} is an abelian group under multiplication.

When p is not prime, the subset of elements, shown in boldface in the multiplication
tables, forms an abelian group under multiplication.

Definition 13.5. The group (under multiplication) of invertible elements of the ring Z/nZ
is denoted by (Z/nZ)∗. Note that this group is abelian and only defined if n ≥ 2.

Definition 13.6. If G is a finite group, the number of elements in G is called the the order
of G.

Given a group G with identity element e, and any element g ∈ G, we often need to
consider the powers of g defined as follows.

Definition 13.7. Given a group G with identity element e, for any nonnegative integer n,
it is natural to define the power gn of g as follows:

g0 = e

gn+1 = g · gn.

Using induction, it is easy to show that

gmgn = gn+m

for all m,n ∈ N.

Since g has an inverse g−1, we can extend the definition of gn to negative powers. For
n ∈ Z, with n < 0, let

gn = (g−1)−n.
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Then it is easy to prove that

gi · gj = gi+j

(gi)−1 = g−i

gi · gj = gj · gi

for all i, j ∈ Z.

Given a finite group G of order n, for any element a ∈ G, it is natural to consider the
set of powers {e, a1, a2, . . . , ak, . . .}. A crucial fact is that there is a smallest positive s ∈ N
such that as = e, and that s divides n.

Proposition 13.5. Let G be a finite group of order n. For every element a ∈ G, the
following facts hold:

(1) There is a smallest positive integer s ≤ n such that as = e.

(2) The set {e, a, . . . , as−1} is an abelian group denoted 〈a〉.

(3) We have an = e, and the positive integer s divides n, More generally, for any positive
integer m, if am = e, then s divides m.

Proof. (1) Consider the sequence of n+ 1 elements

(e, a1, a2, . . . , an).

Since G only has n distinct elements, by the pigeonhole principle, there exist i, j such that
0 ≤ i < j ≤ n such that

ai = aj.

By multiplying both sides by (ai)−1 = a−i, we get

e = ai(ai)−1 = aj(ai)−1 = aja−i = aj−i.

Since 0 ≤ i < j ≤ n, we have 0 ≤ j − i ≤ n with aj−i = e. Thus there is some s with
0 < s ≤ n such that as = e, and thus a smallest such s.

(2) Since as = e, for any i, j ∈ {0, . . . , s−1} if we write i+ j = sq+ r with 0 ≤ r ≤ s−1,
we have

aiaj = ai+j = asq+r = asqar = (as)qar = eqar = ar,

so 〈a〉 is closed under multiplication. We have e ∈ 〈a〉 and the inverse of ai is as−i, so 〈a〉 is
a group. This group is obviously abelian.

(3) For any element g ∈ G, let g〈a〉 = {gak | 0 ≤ k ≤ s− 1}. Observe that for any i ∈ N,
we have

ai〈a〉 = 〈a〉.

We claim that for any two elements g1, g2 ∈ G, if g1〈a〉 ∩ g2〈a〉 6= ∅, then g1〈a〉 = g2〈a〉.
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Proof of the claim. If g ∈ g1〈a〉 ∩ g2〈a〉, then there exist i, j ∈ {0, . . . , s− 1} such that

g1a
i = g2a

j.

Without loss of generality, we may assume that i ≥ j. By multipliying both sides by (aj)−1,
we get

g2 = g1a
i−j.

Consequently
g2〈a〉 = g1a

i−j〈a〉 = g1〈a〉,
as claimed.

It follows that the pairwise disjoint nonempty subsets of the form g〈a〉, for g ∈ G, form a
partition of G. However, the map ϕg from 〈a〉 to g〈a〉 given by ϕg(a

i) = gai has for inverse
the map ϕg−1 , so ϕg is a bijection, and thus the subsets g〈a〉 all have the same number of
elements s. Since these subsets form a partition of G, we must have n = sq for some q ∈ N,
which implies that an = e.

If gm = 1, then writing m = sq + r, with 0 ≤ r < s, we get

1 = gm = gsq+r = (gs)q · gr = gr,

so gr = 1 with 0 ≤ r < s, contradicting the minimality of s, so r = 0 and s divides m.

Definition 13.8. Given a finite group G of order n, for any a ∈ G, the smallest positive
integer s ≤ n such that as = e in (1) of Proposition 13.5 is called the order of a.

The Euler ϕ-function plays an important role in the theory of the groups (Z/nZ)∗.

Definition 13.9. Given any positive integer n ≥ 1, the Euler ϕ-function (or Euler totient
function) is defined such that ϕ(n) is the number of integers a, with 1 ≤ a ≤ n, which are
relatively prime to n; that is, with gcd(a, n) = 1.1

If p is prime, then by definition

ϕ(p) = p− 1.

We leave it as an exercise to show that if p is prime and if k ≥ 1, then

ϕ(pk) = pk−1(p− 1).

It can also be shown that if gcd(m,n) = 1, then

ϕ(mn) = ϕ(m)ϕ(n).

1We allow a = n to accomodate the special case n = 1.
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The above properties yield a method for computing ϕ(n), based on its prime factorization.
If n = pi11 · · · pikk , then

ϕ(n) = pi1−1
1 · · · pik−1

k (p1 − 1) · · · (pk − 1).

For example, ϕ(17) = 16, ϕ(49) = 7 · 6 = 42,

ϕ(900) = ϕ(22 · 32 · 52) = 2 · 3 · 5 · 1 · 2 · 4 = 240.

Proposition 13.4 shows that (Z/nZ)∗ has ϕ(n) elements. It also shows that Z/nZ− {0}
is a group (under multiplication) iff n is prime.

For any integer n ≥ 2, let (Z/nZ)∗ be the group of invertible elements of the ring Z/nZ.
This is a group of order ϕ(n). Then Proposition 13.5 yields the following result.

Theorem 13.6. (Euler) For any integer n ≥ 2 and any a ∈ {1, . . . , n − 1} such that
gcd(a, n) = 1, we have

aϕ(n) ≡ 1 (mod n).

In particular, if n is a prime, then ϕ(n) = n− 1, and we get Fermat’s little theorem.

Theorem 13.7. (Fermat’s little theorem) For any prime p and any a ∈ {1, . . . , p− 1}, we
have

ap−1 ≡ 1 (mod p).

Since 251 is prime, and since gcd(200, 252) = 1, Fermat’s little theorem implies our earlier
claim that 200250 ≡ 1 (mod 251), without making any computations.

Proposition 13.5 suggests considering groups of the form 〈g〉.

Definition 13.10. A finite group G is cyclic iff there is some element g ∈ G such that
G = 〈g〉. An element g ∈ G with this property is called a generator of G.

Even though, in principle, a finite cyclic group has a very simple structure, finding a
generator for a finite cyclic group is generally hard. For example, it turns out that the
multiplicative group (Z/pZ)∗ is a cyclic group when p is prime, but no efficient method for
finding a generator for (Z/pZ)∗ is known (besides a brute-force search).

Examining the multiplication tables for (Z/nZ)∗ for n = 3, 4, . . . , 9, we can check the
following facts:

1. 2 is a generator for (Z/3Z)∗.

2. 3 is a generator for (Z/4Z)∗.

3. 2 is a generator for (Z/5Z)∗.
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4. 5 is a generator for (Z/6Z)∗.

5. 3 is a generator for (Z/7Z)∗.

6. Every element of (Z/8Z)∗ satisfies the equation a2 = 1 (mod 8), thus (Z/8Z)∗ has no
generators.

7. 2 is a generator for (Z/9Z)∗.

More generally, it can be shown that the multiplicative groups (Z/pkZ)∗ and (Z/2pkZ)∗

are cyclic groups when p is an odd prime and k ≥ 1.

Definition 13.11. A generator of the group (Z/nZ)∗ (when there is one), is called a primitive
root modulo n.

As an exercise, the reader should check that the next value of n for which (Z/nZ)∗ has
no generator is n = 12.

The following theorem due to Gauss can be shown. For a proof, see Apostol [2] or Gallier
and Quaintance [18].

Theorem 13.8. (Gauss) For every odd prime p, the group (Z/pZ)∗ is cyclic of order p− 1.
It has ϕ(p− 1) generators.

According to Definition 13.11, the generators of (Z/pZ)∗ are the primitive roots modulo
p.

13.4 The Lucas Theorem

In this section we discuss an application of the existence of primitive roots in (Z/pZ)∗ where
p is an odd prime, known an the n− 1 test . This test due to E. Lucas determines whether a
positive odd integer n is prime or not by examining the prime factors of n− 1 and checking
some congruences.

The n− 1 test can be described as the construction of a certain kind of tree rooted with
n, and it turns out that the number of nodes in this tree is bounded by 2 log2 n, and that
the number of modular multiplications involved in checking the congruences is bounded by
2 log2

2 n.

When we talk about the complexity of algorithms dealing with numbers, we assume that
all inputs (to a Turing machine) are strings representing these numbers, typically in base
2. Since the length of the binary representation of a natural number n ≥ 1 is blog2 nc + 1
(or dlog2(n+ 1)e, which allows n = 0), the complexity of algorithms dealing with (nonzero)
numbers m,n, etc. is expressed in terms of log2m, log2 n, etc. Recall that for any real
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number x ∈ R, the floor of x is the greatest integer bxc that is less that or equal to x, and
the ceiling of x is the least integer dxe that is greater that or equal to x.

If we choose to represent numbers in base 10, since for any base b we have logb x =
lnx/ ln b, we have

log2 x =
ln 10

ln 2
log10 x.

Since (ln 10)/(ln 2) ≈ 3.322 ≈ 10/3, we see that the number of decimal digits needed to
represent the integer n in base 10 is approximately 30% of the number of bits needed to
represent n in base 2.

Since the Lucas test yields a tree such that the number of modular multiplications in-
volved in checking the congruences is bounded by 2 log2

2 n, it is not hard to show that testing
whether or not a positive integer n is prime, a problem denoted PRIMES, belongs to the
complexity class NP . This result was shown by V. Pratt [49] (1975), but Peter Freyd told
me that it was “folklore.” Since 2002, thanks to the AKS algorithm, we know that PRIMES
actually belongs to the class P , but this is a much harder result.

Here is Lehmer’s version of the Lucas result, from 1876.

Theorem 13.9. (Lucas theorem) Let n be a positive integer with n ≥ 2. Then n is prime
iff there is some integer a ∈ {1, 2, . . . , n− 1} such that the following two conditions hold:

(1) an−1 ≡ 1 (mod n).

(2) If n > 2, then a(n−1)/q 6≡ 1 (mod n) for all prime divisors q of n− 1.

Proof. First assume that Conditions (1) and (2) hold. If n = 2, since 2 is prime, we are
done. Thus assume that n ≥ 3, and let r be the order of a (we are working in the abelian
group (Z/nZ)∗). We claim that r = n− 1. The condition an−1 ≡ 1 (mod n) implies that r
divides n− 1. Suppose that r < n− 1, and let q be a prime divisor of (n− 1)/r (so q divides
n− 1). Since r is the order of a we have ar ≡ 1 (mod n), so we get

a(n−1)/q ≡ ar(n−1)/(rq) ≡ (ar)(n−1)/(rq) ≡ 1(n−1)/(rq) ≡ 1 (mod n),

contradicting Condition (2). Therefore, r = n− 1, as claimed.

We now show that n must be prime. Now an−1 ≡ 1 (mod n) implies that a and n are
relatively prime so by Euler’s theorem (Theorem 13.6),

aϕ(n) ≡ 1 (mod n).

Since the order of a is n− 1, we have n− 1 ≤ ϕ(n). If n ≥ 3 is not prime, then n has some
prime divisor p, but n and p are integers in {1, 2, . . . , n} that are not relatively prime to n,
so by definition of ϕ(n), we have ϕ(n) ≤ n − 2, contradicting the fact that n − 1 ≤ ϕ(n).
Therefore, n must be prime.

Conversely, assume that n is prime. If n = 2, then we set a = 1. Otherwise, pick a to be
any primitive root modulo p.
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Clearly, if n > 2 then we may assume that a ≥ 2. The main difficulty with the n − 1
test is not so much guessing the primitive root a, but finding a complete prime factorization
of n − 1. However, as a nondeterministic algorithm, the n − 1 test yields a “proof” that a
number n is indeed prime which can be represented as a tree, and the number of operations
needed to check the required conditions (the congruences) is bounded by c log2

2 n for some
positive constant c, and this implies that testing primality is in NP .

Before explaining the details of this method, we sharpen slightly Lucas theorem to deal
only with odd prime divisors.

Theorem 13.10. Let n be a positive odd integer with n ≥ 3. Then n is prime iff there
is some integer a ∈ {2, . . . , n − 1} (a guess for a primitive root modulo n) such that the
following two conditions hold:

(1b) a(n−1)/2 ≡ −1 (mod n).

(2b) If n− 1 is not a power of 2, then a(n−1)/2q 6≡ −1 (mod n) for all odd prime divisors q
of n− 1.

Proof. Assume that Conditions (1b) and (2b) of Theorem 13.10 hold. Then we claim that
Conditions (1) and (2) of Theorem 13.9 hold. By squaring the congruence a(n−1)/2 ≡ −1
(mod n), we get an−1 ≡ 1 (mod n), which is Condition (1) of Theorem 13.9. Since a(n−1)/2 ≡
−1 (mod n), Condition (2) of Theorem 13.9 holds for q = 2. Next, if q is an odd prime
divisor of n− 1, let m = a(n−1)/2q. Condition (1b) means that

mq ≡ a(n−1)/2 ≡ −1 (mod n).

Now if m2 ≡ a(n−1)/q ≡ 1 (mod n), since q is an odd prime, we can write q = 2k + 1 for
some k ≥ 1, and then

mq ≡ m2k+1 ≡ (m2)km ≡ 1km ≡ m (mod n),

and since mq ≡ −1 (mod n), we get

m ≡ −1 (mod n)

(regardless of whether n is prime or not). Thus we proved that if mq ≡ −1 (mod n) and
m2 ≡ 1 (mod n), thenm ≡ −1 (mod n). By contrapositive, we see that ifm 6≡ −1 (mod n),
then m2 6≡ 1 (mod n) or mq 6≡ −1 (mod n), but since mq ≡ a(n−1)/2 ≡ −1 (mod n) by
Condition (1a), we conclude that m2 ≡ a(n−1)/q 6≡ 1 (mod n), which is Condition (2) of
Theorem 13.9. But then Theorem 13.9 implies that n is prime.

Conversely, assume that n is an odd prime, and let a be any primitive root modulo n.
Then by little Fermat we know that

an−1 ≡ 1 (mod n),
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so

(a(n−1)/2 − 1)(a(n−1)/2 + 1) ≡ 0 (mod n).

Since n is prime, either a(n−1)/2 ≡ 1 (mod n) or a(n−1)/2 ≡ −1 (mod n), but since a generates
(Z/nZ)∗, it has order n − 1, so the congruence a(n−1)/2 ≡ 1 (mod n) is impossible, and
Condition (1b) must hold. Similarly, if we had a(n−1)/2q ≡ −1 (mod n) for some odd prime
divisor q of n− 1, then by squaring we would have

a(n−1)/q ≡ 1 (mod n),

and a would have order at most (n− 1)/q < n− 1, which is absurd.

13.5 Lucas Trees

If n is an odd prime, we can use Theorem 13.10 to build recursively a tree which is a proof,
or certificate, of the fact that n is indeed prime. We first illustrate this process with the
prime n = 1279.

Example 13.1. If n = 1279, then we easily check that n− 1 = 1278 = 2 · 32 · 71. We build
a tree whose root node contains the triple (1279, ((2, 1), (3, 2), (71, 1)), 3), where a = 3 is the
guess for a primitive root modulo 1279. In this simple example, it is clear that 3 and 71 are
prime, but we must supply proofs that these number are prime, so we recursively apply the
process to the odd divisors 3 and 71.

Since 3− 1 = 21 is a power of 2, we create a one-node tree (3, ((2, 1)), 2), where a = 2 is
a guess for a primitive root modulo 3. This is a leaf node.

Since 71−1 = 70 = 2·5·7, we create a tree whose root node is (71, ((2, 1), (5, 1), (7, 1)), 7),
where a = 7 is the guess for a primitive root modulo 71. Since 5 − 1 = 4 = 22, and
7− 1 = 6 = 2 · 3, this node has two successors (5, ((2, 2)), 2) and (7, ((2, 1), (3, 1)), 3), where
2 is the guess for a primitive root modulo 5, and 3 is the guess for a primitive root modulo
7.

Since 4 = 22 is a power of 2, the node (5, ((2, 2)), 2) is a leaf node.

Since 3 − 1 = 21, the node (7, ((2, 1), (3, 1)), 3) has a single successor, (3, ((2, 1)), 2),
where a = 2 is a guess for a primitive root modulo 3. Since 2 = 21 is a power of 2, the node
(3, ((2, 1)), 2) is a leaf node.
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To recap, we obtain the following tree:

(1279,
((2, 1), (3, 2), (71, 1)), 3)
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(5,
((2, 2)), 2)

(7,
((2, 1), (3, 1)), 3)

��
(3,

((2, 1)), 2)

We still have to check that the relevant congruences hold at every node. For the root
node (1279, ((2, 1), (3, 2), (71, 1)), 3), we check that

31278/2 ≡ 3864 ≡ −1 (mod 1279) (1b)

31278/(2·3) ≡ 3213 ≡ 775 (mod 1279) (2b)

31278/(2·71) ≡ 39 ≡ 498 (mod 1279). (2b)

Assuming that 3 and 71 are prime, the above congruences check that Conditions (1a) and
(2b) are satisfied, and by Theorem 13.10 this proves that 1279 is prime. We still have to
certify that 3 and 71 are prime, and we do this recursively.

For the leaf node (3, ((2, 1)), 2), we check that

22/2 ≡ −1 (mod 3). (1b)

For the node (71, ((2, 1), (5, 1), (7, 1)), 7), we check that

770/2 ≡ 735 ≡ −1 (mod 71) (1b)

770/(2·5) ≡ 77 ≡ 14 (mod 71) (2b)

770/(2·7) ≡ 75 ≡ 51 (mod 71). (2b)

Now we certified that 3 and 71 are prime, assuming that 5 and 7 are prime, which we now
establish.

For the leaf node (5, ((2, 2)), 2), we check that

24/2 ≡ 22 ≡ −1 (mod 5). (1b)
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For the node (7, ((2, 1), (3, 1)), 3), we check that

36/2 ≡ 33 ≡ −1 (mod 7) (1b)

36/(2·3) ≡ 31 ≡ 3 (mod 7). (2b)

We have certified that 5 and 7 are prime, given that 3 is prime, which we finally verify.

At last, for the leaf node (3, ((2, 1)), 2), we check that

22/2 ≡ −1 (mod 3). (1b)

The above example suggests the following definition.

Definition 13.12. Given any odd integer n ≥ 3, a pre-Lucas tree for n is defined inductively
as follows:

(1) It is a one-node tree labeled with (n, ((2, i0)), a), such that n− 1 = 2i0 , for some i0 ≥ 1
and some a ∈ {2, . . . , n− 1}.

(2) If L1, . . . , Lk are k pre-Lucas (with k ≥ 1), where the tree Lj is a pre-Lucas tree for some
odd integer qj ≥ 3, then the tree L whose root is labeled with (n, ((2, i0), ((q1, i1), . . .,
(qk, ik)), a) and whose jth subtree is Lj is a pre-Lucas tree for n if

n− 1 = 2i0qi11 · · · qikk ,
for some i0, i1, . . . , ik ≥ 1, and some a ∈ {2, . . . , n− 1}.

Both in (1) and (2), the number a is a guess for a primitive root modulo n.

A pre-Lucas tree for n is a Lucas tree for n if the following conditions are satisfied:

(3) If L is a one-node tree labeled with (n, ((2, i0)), a), then

a(n−1)/2 ≡ −1 (mod n).

(4) If L is a pre-Lucas tree whose root is labeled with (n, ((2, i0), ((q1, i1), . . . , (qk, ik)), a),
and whose jth subtree Lj is a pre-Lucas tree for qj, then Lj is a Lucas tree for qj for
j = 1, . . . , k, and

(a) a(n−1)/2 ≡ −1 (mod n).

(b) a(n−1)/2qj 6≡ −1 (mod n) for j = 1, . . . , k.

Since Conditions (3) and (4) of Definition 13.12 are Conditions (1b) and (2b) of Theorem,
13.10, we see that Definition 13.12 has been designed in such a way that Theorem 13.10 yields
the following result.

Theorem 13.11. An odd integer n ≥ 3 is prime iff it has some Lucas tree.

The issue is now to see how long it takes to check that a pre-Lucas tree is a Lucas tree.
For this, we need a method for computing xn mod n in polynomial time in log2 n. This is
the object of the next section.
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13.6 Algorithms for Computing Powers Modulo m

Let us first consider computing the nth power xn of some positive integer. The idea is to
look at the parity of n and to proceed recursively. If n is even, say n = 2k, then

xn = x2k = (xk)2,

so, compute xk recursively and then square the result. If n is odd, say n = 2k + 1, then

xn = x2k+1 = (xk)2 · x,

so, compute xk recursively, square it, and multiply the result by x.

What this suggests is to write n ≥ 1 in binary, say

n = b` · 2` + b`−1 · 2`−1 + · · ·+ b1 · 21 + b0,

where bi ∈ {0, 1} with b` = 1 or, if we let J = {j | bj = 1}, as

n =
∑
j∈J

2j.

Then we have
xn ≡ x

∑
j∈J 2j =

∏
j∈J

x2j modm.

This suggests computing the residues rj such that

x2j ≡ rj (modm),

because then,

xn ≡
∏
j∈J

rj (modm),

where we can compute this latter product modulo m two terms at a time.

For example, let us compute 290 mod 91 (recall that 91 = 7 · 13). We have

91 = 26 + 24 + 23 + 21,

and we compute the following powers modulo 91:

221 ≡ 4 (mod 91)

222 ≡ 16 (mod 91)

223 ≡ 162 ≡ 74 (mod 91)

224 ≡ 742 ≡ 16 (mod 91)

225 ≡ 162 ≡ 74 (mod 91)

226 ≡ 742 ≡ 16 (mod 91).



510 CHAPTER 13. PRIMALITY TESTING IS IN NP

Consequently,

290 ≡ 4 · 74 · 16 · 16 (mod 91)

≡ 23 · 16 · 16 (mod 91)

≡ 4 · 16 = 64 (mod 91),

so

290 ≡ 64 (mod 91),

confirming what we claimed in Section 13.2.

As a second example, let us compute 390 mod 91. We have

91 = 26 + 24 + 23 + 21,

and we compute the following powers modulo 91:

321 ≡ 9 (mod 91)

322 ≡ 81 (mod 91)

323 ≡ 812 ≡ 9 (mod 91)

324 ≡ 81 (mod 91)

325 ≡ 9 (mod 91)

326 ≡ 81 (mod 91).

Consequently,

390 ≡ 9 · 9 · 81 · 81 (mod 91)

≡ 81 · 81 · 81 (mod 91)

≡ 9 · 81 (mod 91)

≡ 1 (mod 91),

so

390 ≡ 1 (mod 91),

confirming what we claimed in Section 13.2.

As a third example, say we want to compute 999179 mod 1763. First, we observe that

179 = 27 + 25 + 24 + 21 + 1,
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and we compute the following powers modulo 1763:

99921 ≡ 143 (mod 1763)

99922 ≡ 1432 ≡ 1056 (mod 1763)

99923 ≡ 10562 ≡ 920 (mod 1763)

99924 ≡ 9202 ≡ 160 (mod 1763)

99925 ≡ 1602 ≡ 918 (mod 1763)

99926 ≡ 9182 ≡ 10 (mod 1763)

99927 ≡ 102 ≡ 100 (mod 1763).

Consequently,

999179 ≡ 999 · 143 · 160 · 918 · 100 (mod 1763)

≡ 54 · 160 · 918 · 100 (mod 1763)

≡ 1588 · 918 · 100 (mod 1763)

≡ 1546 · 100 (mod 1763)

≡ 1219 (mod 1763),

and we find that
999179 ≡ 1219 (mod 1763).

Of course, it would be impossible to exponentiate 999179 first and then reduce modulo 1763.
As we can see, the number of multiplications needed is bounded by 2 log2 n, which is quite
good.

The above method can be implemented without actually converting n to base 2. If n is
even, say n = 2k, then n/2 = k, and if n is odd, say n = 2k + 1, then (n− 1)/2 = k, so we
have a way of dropping the unit digit in the binary expansion of n and shifting the remaining
digits one place to the right without explicitly computing this binary expansion. Here is an
algorithm for computing xn modm, with n ≥ 1, using the repeated squaring method.

An Algorithm to Compute xn modm Using Repeated Squaring

begin
u := 1; a := x;
while n > 1 do

if even(n) then e := 0 else e := 1;
if e = 1 then u := a · u mod m;
a := a2 mod m; n := (n− e)/2

endwhile;
u := a · u mod m

end
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The final value of u is the result. The reason why the algorithm is correct is that after j
rounds through the while loop, a = x2j modm and

u =
∏

i∈J | i<j

x2i modm,

with this product interpreted as 1 when j = 0.

Observe that the while loop is only executed n − 1 times to avoid squaring once more
unnecessarily and the last multiplication a ·u is performed outside of the while loop. Also, if
we delete the reductions modulo m, the above algorithm is a fast method for computing the
nth power of an integer x and the time speed-up of not performing the last squaring step is
more significant. We leave the details of the proof that the above algorithm is correct as an
exercise.

13.7 PRIMES is in NP
Exponentiation modulo n can performed by repeated squaring, as explained in Section 13.6.
In that section, we observed that computing xm mod n requires at most 2 log2m modular
multiplications. Using this fact, we obtain the following result adapted from Crandall and
Pomerance [6].

Proposition 13.12. If p is any odd prime, then any pre-Lucas tree L for p has at most log2 p
nodes, and the number M(p) of modular multiplications required to check that the pre-Lucas
tree L is a Lucas tree is less than 2 log2

2 p.

Proof. Let N(p) be the number of nodes in a pre-Lucas tree for p. We proceed by complete
induction. If p = 3, then p− 1 = 21, any pre-Lucas tree has a single node, and 1 < log2 3.

Suppose the results holds for any odd prime less than p. If p − 1 = 2i0 , then any Lucas
tree has a single node, and 1 < log2 3 < log2 p. If p− 1 has the prime factorization

p− 1 = 2i0qi11 · · · qikk ,

then by the induction hypothesis, each pre-Lucas tree Lj for qj has less than log2 qj nodes,
so

N(p) = 1 +
k∑
j=1

N(qj) < 1 +
k∑
j=1

log2 qj = 1 + log2(q1 · · · qk) ≤ 1 + log2

(
p− 1

2

)
< log2 p,

establishing the induction hypothesis.

If r is one of the odd primes in the pre-Lucas tree for p, and r < p, then there is
some other odd prime q in this pre-Lucas tree such that r divides q − 1 and q ≤ p. We
also have to show that at some point, a(q−1)/2r 6≡ −1 (mod q) for some a, and at another
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point, that b(r−1)/2 ≡ −1 (mod r) for some b. Using the fact that the number of modular
multiplications required to exponentiate to the power m is at most 2 log2m, we see that the
number of multiplications required by the above two exponentiations does not exceed

2 log2

(
q − 1

2r

)
+ 2 log2

(
r − 1

2

)
= 2 log2

(
(q − 1)(r − 1)

4r

)
< 2 log2 q − 4 < 2 log2 p.

As a consequence, we have

M(p) < 2 log2

(
p− 1

2

)
+ (N(p)− 1)2 log2 p < 2 log2 p+ (log2 p− 1)2 log2 p = 2 log2

2 p,

as claimed.

The following impressive example is from Pratt [49].

Example 13.2. Let n = 474 397 531. It is easy to check that n − 1 = 474 397 531 − 1 =
474 397 530 = 2 · 3 · 5 · 2513. We claim that the following is a Lucas tree for n = 474 397 531:

(474 397 531, ((2, 1), (3, 1), (5, 1), (251, 3)), 2)

ssggggg
ggggg

ggggg
ggggg

g

�� ,,XXXXX
XXXXXX

XXXXXX
XXXXXX

X

(3, ((2, 1)), 2) (5, ((2, 2)), 2) (251, ((2, 1), (5, 3)), 6)

��
(5, ((2, 2)), 2)

To verify that the above pre-Lucas tree is a Lucas tree, we check that 2 is indeed a
primitive root modulo 474 397 531 by computing (using Mathematica) that

2474 397 530/2 ≡ 2237 198 765 ≡ −1 (mod 474 397 531) (1)

2474 397 530/(2·3) ≡ 279 066 255 ≡ 9 583 569 (mod 474 397 531) (2)

2474 397 530/(2·5) ≡ 247 439 753 ≡ 91 151 207 (mod 474 397 531) (3)

2474 397 530/(2·251) ≡ 2945 015 ≡ 282 211 150 (mod 474 397 531). (4)

The number of modular multiplications is: 27 in (1), 26 in (2), 25 in (3) and 19 in (4).

We have 251− 1 = 250 = 2 · 53, and we verify that 6 is a primitive root modulo 251 by
computing:

6250/2 ≡ 6125 ≡ −1 (mod 251) (5)

6250/(2·5) ≡ 610 ≡ 175 (mod 251). (6)

The number of modular multiplications is: 6 in (5), and 3 in (6).
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We have 5− 1 = 4 = 22, and 2 is a primitive root modulo 5, since

24/2 ≡ 22 ≡ −1 (mod 5). (7)

This takes one multiplication.
We have 3− 1 = 2 = 21, and 2 is a primitive root modulo 3, since

22/2 ≡ 21 ≡ −1 (mod 3). (8)

This takes 0 multiplications.

Therefore, 474 397 531 is prime.

As nice as it is, Proposition 13.12 is deceiving, because finding a Lucas tree is hard.

Remark: Pratt [49] presents his method for finding a certificate of primality in terms of
a proof system. Although quite elegant, we feel that this method is not as transparent as
the method using Lucas trees, which we adapted from Crandall and Pomerance [6]. Pratt’s
proofs can be represented as trees, as Pratt sketches in Section 3 of his paper. However,
Pratt uses the basic version of Lucas’ theorem, Theorem 13.9, instead of the improved
version, Theorem 13.10, so his proof trees have at least twice as many nodes as ours.

As nice as it is, Proposition 13.12 is deceiving, because finding a Lucas tree is hard.

The following nice result was first shown by V. Pratt in 1975 [49].

Theorem 13.13. The problem PRIMES (testing whether an integer is prime) is in NP.

Proof. Since all even integers besides 2 are composite, we can restrict out attention to odd
integers n ≥ 3. By Theorem 13.11, an odd integer n ≥ 3 is prime iff it has a Lucas tree.
Given any odd integer n ≥ 3, since all the numbers involved in the definition of a pre-Lucas
tree are less than n, there is a finite (very large) number of pre-Lucas trees for n. Given a
guess of a Lucas tree for n, checking that this tree is a pre-Lucas tree can be performed in
O(log2 n), and by Proposition 13.12, checking that it is a Lucas tree can be done in O(log2

2 n).
Therefore PRIMES is in NP .

Of course, checking whether a number n is composite is in NP , since it suffices to guess
to factors n1, n2 and to check that n = n1n2, which can be done in polynomial time in log2 n.
Therefore, PRIMES ∈ NP ∩ coNP . As we said earlier, this was the situation until the
discovery of the AKS algorithm, which places PRIMES in P .

Remark: Altough finding a primitive root modulo p is hard, we know that the number of
primitive roots modulo p is ϕ(ϕ(p)). If p is large enough, this number is actually quite large.
According to Crandal and Pomerance [6] (Chapter 4, Section 4.1.1), if p is a prime and if
p > 200560490131, then p has more than p/(2 ln ln p) primitive roots.



Chapter 14

Polynomial- Space Complexity; PS
and NPS

14.1 The Classes PS (or PSPACE) and

NPS (NPSPACE)

In this chapter we consider complexity classes based on restricting the amount of space used
by the Turing machine rather than the amount of time.

Definition 14.1. A deterministic or nondeterminitic Turing machine M is polynomial-space
bounded if there is a polynomial p(X) such that for every input x ∈ Σ∗, no matter how much
time it uses, the machine M never visits more than p(|x|) tape cells (symbols). Equivalently,
for every ID upav arising during the computation, we have |uav| ≤ p(|x|).

The class of languages L ⊆ Σ∗ accepted by some deterministic polynomial-space bounded
Turing machine is denoted by PS or PSPACE. Similarly, the class of languages L ⊆ Σ∗

accepted by some nondeterministic polynomial-space bounded Turing machine is denoted
by NPS or NPSPACE.

Obviously PS ⊆ NPS. Since a (time) polynomially bounded Turing machine can’t visit
more tape cells (symbols) than one plus the number of moves it makes, we have

P ⊆ PS and NP ⊆ NPS.

Nobody knows whether these inclusions are strict, but these are the most likely assump-
tions. Unlike the situation for time-bounded Turing machines where the big open problem
is whether P 6= NP , for time-bounded Turing machines, we have

PS = NPS.

Walter Savitch proved this result in 1970 (and it is known as Savitch’s theorem).

515
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Now Definition 14.1 does not say anything about the time-complexity of the Turing
machine, so such a machine could even run forever. However, the number of ID’s that a
polynomial-space bounded Turing machine can visit started on input x is a function of |x| of
the form sp(|x|)tp(|x|) for some constants s > 0 and t > 0, so by the pigeonhole principle, it
the number of moves is larger than a certain constant (c1+p(|x|) with c = s+ t), then some ID
must repeat. This fact can be used to show that there is a shorter computation accepting x
of length at most c1+p(|x|).

Proposition 14.1. For any deterministic or nondeterministic polynomial-space bouned Tur-
ing machine M with polynomal space bound p(X), there is a constant c > 1 such that for
every input x ∈ Σ∗, if M accepts x, then M accepts x in at most c1+p(|x|) steps.

Proof. Suppose there are t symbols in the tape alphabet and s states. Then the number
of distinct ID’s when only p(|x|) tape cells are used is at most sp(|x|)tp(|x|), because we can
choose one of s states, place the reading head in any of p(|x|) distinct positions, and there
are tp(|x|) strings of tape symbols of length p(|x|). If we let c = s+ t, by the binomial formula
we have

c1+p(|x|) = (s+ t)1+p(|x|) =

1+p(|x|)∑
k=0

(
1 + p(|x|)

k

)
skt1+p(|x|)−k)

= t1+p(|x|) + (1 + p(|x|))stp(|x|) + · · ·
Obviously (1 + p(|x|))stp(|x|) > sp(|x|)tp(|x|), so if the number of ID’s in the computation is
greater than c1+p(|x|), by the pigeonhole principle, two ID’s must be identical. By considering
a shortest accepting sequence of ID’s with n steps, we deduce that n ≤ c1+p(|x|), since
otherwise the preceding argument shows that the computation would be of the form

ID0 `∗ · · · `∗ IDh `+ IDk `∗ IDn

with IDh = IDk, so we would have an even shorter computation

ID0 `∗ · · · `∗ IDh `∗ IDn,

contradicting the minimality of the original computation.

Proposition 14.1 implies that languages in NPS are computable (in fact, primitive re-
cursive, and even in EXP). This still does not show that languages in NPS are accepted by
polynomial-space Turing machines that always halt within some time cq(|x|) for some polyno-
mial q(X). Such a result can be shown using a simulation involving a Turing machine with
two tapes.

Proposition 14.2. For any language L ∈ PS (resp. L ∈ NPS), there is deterministic
(resp. nondeterministic) polynomial-space bounded Turing machine M , a polynomal q(X)
and a constant c > 1, such that for every input x ∈ Σ∗, M accepts x in at most cq(|x|) steps.

A proof of Proposition 14.2 can be found in Hopcroft, Motwani and Ullman [33] (Section
11.2.2, Theorem 11.4).

We now turn to Savitch’s theorem.
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14.2 Savitch’s Theorem: PS = NPS
The key to the fact that PS = NPS is that given a polynomial-space bounded nonde-
terministic Turing machine M , there is a recursive method to check whether I `k J with
0 ≤ k ≤ m using at most log2m recursive calls, for any two ID’s I and J and any natural
number m ≥ 1, (that is, whether there is some computation of k ≤ m steps from I to J).

The idea is reminiscent of binary search, namely, to recursively find some intermediate
ID K such that I `m1 K and K `m2 J with m1 ≤ m/2 and m2 ≤ m/2 (here m/2 is the
integer quotient obtained by dividing m by 2). Because the Turing machine M is polynomial-
space bounded, for a given input x, we know from Proposition 14.1 that there are at most
c1+p(|x|) distinct ID’s, so the search is finite. We will intitially set m = c1+p(|x|), so at most
log2 c

1+p(|x|) = O(p(|x|) recursive calls will be made. We will show that each stack frame
takes O(p(|x|) space, so altogether the search uses O(p(|x|)2) amount of space. This is the
crux of Savitch’s argument.

The recursive procedure that deals with stack frames of the form [I, J,m] is shown below.

function reach(I, J,m) : boolean

begin

if m = 1 then

if I = J = K or I `1 J then
reach = true

else
reach = false

endif

else

for each possible ID K do

if reach(I,K,m/2) and reach(K, J,m/2) then

reach = true

else

reach = false

endif

endfor

endif

end

Even though the above procedure makes two recursive calls, they are performed sequen-
tially, so the maximum number of stack frames that may arise corresponds to the sequence

[I1, J1,m], [I2, J2,m/2], [I3, J3,m/4], [I4, J4,m/8], · · · , [Ik, Jk,m/2k−1], · · ·

which has length at most log2m. Using the procedure search, we obtain Savitch’s theorem.
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Theorem 14.3. (Savitch, 1970) The complexity classes PS and NPS are identical. In fact,
if L is accepted by the polynomial-space bounded nondeterministic Turing machine M with
space bound p(X), then there is a polynomial-space bounded deterministic Turing machine
D accepting L with space bound O(p(X)2).

Sketch of proof. Assume that L is accepted by the polynomial-space bounded nondetermin-
istic Turing machine M with space bound p(X). By Proposition 14.1 we may assume that
M accepts any input x ∈ L in at most c1+p(|x|) steps (for some c > 1). Set m = c1+p(|x|).

We can design a deterministic Turing machine D which determines (using the function
search) whether I0 `k J with k ≤ m where I0 = q0x is the starting ID, for all accepting ID’s
J , by enumerate all accepting ID’s J using at most p(|x|) tape cells, using a scratch tape.

As we explained above, the function search makes no more than log2 c
1+p(|x|) = O(p(|x|)

recursive calls, Each stack frame takesO(p(|x|) space. The reason is that every ID has at most
1 + p(|x|) tape cells and that if we write m = c1+p(|x|) in binary, this takes log2m = O(p(|x|)
tape cells. Since at most O(p(|x|) stack frames may arise and since each stack frame has size
at most O(p(|x|), the deterministic TM D uses at most O(p(|x|)2 space. For more details,
see Hopcroft, Motwani and Ullman [33] (Section 11.2.3, Theorem 11.5).

Savitch’s theorem and Proposition 14.1 show that PS = NPS ⊆ EXP . Whether this
inclusion is strict is an open problem. The present status of the relative containments of the
complexity classes that we have discussed so far is illustrated in Figure 14.1

Savitch’s theorem shows that nondeterminism does not help as far as polynomial space
is concerned, but we still don’t have a good example of a language in PS = NPS which is
not known to be in NP . The next section is devoted to such a problem. This problem also
turns out to be PS-complete, so we discuss this notion as well.

14.3 A Complete Problem for PS: QBF

Logic is a natural source of problems complete with respect to a number of complexity classes:
SAT is NP-complete (see Theorem 11.8), TAUT is coNP-complete (see Proposition 12.3).
It turns out that the validity problem for quantified boolean formulae is PS-complete. We
will describe this problem shortly, but first we define PS-completeness.

Definition 14.2. A language L ⊆ Σ∗ is PS-complete if:

(1) L ∈ PS.

(2) For every language L2 ∈ PS, there is a polynomial-time computable function f : Σ∗ →
Σ∗ such that x ∈ L2 iff f(x) ∈ L, for all x ∈ Σ∗.

Observe that we require the reduction function f to be polynomial-time computable rather
than polynomial-space computable. The reason for this is that with this stronger form of
reduction we can prove the following proposition whose simple proof is left as an exercise.
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P NPP

NPco

Universe of computable (decidable) problems

Euler cycle
SAT

Exact Cover
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Bounded Tiling
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Knapsack

0-1 Integer Programming

PS = NPS

QBF

Exp

NExp

TAUT

Integer Factorization

coNExp

intuitionistic provability 

Figure 14.1: Relative containments of the complexity classes.

Proposition 14.4. Suppose L is a PS-complete language. Then the following facts hold:

(1) If L ∈ P, then P = PS.

(2) If L ∈ NP, then NP = PS.

The premises in Proposition 14.4 are very unlikely, but we never know!

We now define the class of quantified boolean formulae. These are actually second-order
formulae because we are allowed to quantify over propositional variables, which are 0-ary
(constant) predicate symbols. As we will see, validity is still decidable, but the fact that
we allow alternation of the quantifiers ∀ and ∃ makes the problem harder, in the sense that
testing validity or nonvalidity no longer appears to be doable in NP (so far, nobody knows
how to do this!).

Recall from Section 11.5 that we have a countable set PV of propositional (or boolean)



520 CHAPTER 14. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

variables ,
PV = {x1, x2, . . . , }.

Definition 14.3. A quantified boolean formula (for short QBF ) is an expression A defined
inductively as follows:

(1) The constants > and ⊥ and every propositional variable xi are QBF’s called atomic
QBF’s.

(2) If B is a QBF, then ¬B is a QBF.

(3) If B and C are QBF’s, then (B ∨ C) is a QBF.

(4) If B and C are QBF’s, then (B ∧ C) is a QBF.

(5) If B is a QBF and if x is a propositional variable, then ∀xB is a QBF. The variable x
is said to be universally bound by ∀.

(6) If B is a QBF and if x is a propositional variable, then ∃xB is a QBF. The variable x
is said to be existentially bound by ∃.

(7) If allow the connective ⇒, and if B and C are QBF’s, then (B ⇒ C) is a QBF.

Example 14.1. The following formula is a QBF:

A = ∀x
(
∃y(x ∧ y) ∨ ∀z(¬x ∨ z)

)
.

As usual, we can define inductively the notion of free and bound variable as follows.

Definition 14.4. Given any QBF A, we define the set FV (A) of variables free in A and the
set BV (A) of variables bound in A as follows:

FV (⊥) = FV (>) = ∅
FV (xi) = {xi}
FV (¬B) = FV (B)

FV ((B ∗ C)) = FV (B) ∪ FV (C), ∗ ∈ {∨,∧,⇒}
FV (∀xB) = FV (B)− {x}
FV (∃xB) = FV (B)− {x},

and

BV (⊥) = BV (>) = ∅
BV (xi) = ∅
BV (¬B) = BV (B)

BV ((B ∗ C)) = BV (B) ∪BV (C), ∗ ∈ {∨,∧,⇒}
BV (∀xB) = BV (B) ∪ {x}
BV (∃xB) = BV (B) ∪ {x}.

A QBF A such that FV (A) = ∅ (A has no free variables) is said to be closed or a sentence.
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It should be noted that FV (A) and BV (A) may not be disjoint! For example, if

A = x1 ∨ ∀x1(¬x1 ∨ x2),

then FV (A) = {x1, x2} and BV (A) = {x1}. This situation is somewhat undesirable. Intu-
itively, A is “equivalent” to the QBF

A′ = x1 ∨ ∀x3(¬x3 ∨ x2),

with FV (A′) = {x1, x2} and BV (A′) = {x3}. Here equivalent means that A and A′ have the
same truth value for all truth assignments. To make all this precise we proceed as follows.

Definition 14.5. A substitution is a set of pairs ϕ = {(y1, A1), . . . , (ym, Am)} where the
variables y1, . . . , ym are distinct and A1, . . . , Am are arbitrary QBF’s. We write ϕ = [y1 :=
A1, . . . , ym := Am]. For any QBF B, we also denote by ϕ[yi := B] the substitution such that
yi := Ai is replaced by yi := B. In particular, ϕ[yi := yi] leaves yi unchanged.

Given a QBF A, the result of applying the substitution ϕ = [y1 := A1, . . . , ym := Am] to
A, denoted A[ϕ], is defined inductively as follows:

⊥ [ϕ] =⊥
>[ϕ] = >
x[ϕ] = Ai if x = yi, 1 ≤ i ≤ m

x[ϕ] = x if x /∈ {y1, . . . , ym}
(¬B)[ϕ] = (¬B)[ϕ]

(B ∗ C)[ϕ] = (B[ϕ] ∗ C[ϕ]), ∗ ∈ {∨,∧,⇒}
(∀xB)[ϕ] = ∀xB[ϕ[yi := yi]] if x = yi, 1 ≤ i ≤ m

(∀xB)[ϕ] = ∀xB[ϕ] if x /∈ {y1, . . . , ym}
(∃xB)[ϕ] = ∃xB[ϕ[yi := yi]] if x = yi, 1 ≤ i ≤ m

(∃xB)[ϕ] = ∃xB[ϕ] if x /∈ {y1, . . . , ym}.

Definition 14.6. A QBF A is rectified if distinct quantifiers bind distinct variables and if
BV (A) ∩ FV (A) = ∅.

Given a QBF A and any finite set V of variables, we can define recursively a new rectified
QBF A′ such that BV (A′) ∩ V = ∅.

(1) If A = >, or A =⊥, or A = xi, then A′ = A.

(2) If A = ¬B, then A′ = A.

(3) If A = (B∨C), then first we find recursively some rectified QBF B1 such that BV (B1)∩
V = ∅, then we find recursively some rectified QBF C1 such that BV (C1)∩ (FV (B1)∪
BV (B1)∪ V ) = ∅, and we set A′ = (B1 ∨C1). We proceed similarly if A = (B ∧C) or
A = (B ⇒ C), with ∨ replaced by ∧ or ⇒.
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(4) If A = ∀xB, first we find recursively some rectified QBF B1 such that BV (B1)∩V = ∅,
and then we let A′ = ∀zB1[x := z] for some new variable z such that z /∈ FV (B1) ∪
BV (B1) ∪ V . Note that in this step it is possible that x /∈ FV (B).

(5) If A = ∃xB, first we find recursively some rectified QBF B1 such that BV (B1)∩V = ∅,
and then we let A′ = ∃zB1[x := z] for some new variable z such that z /∈ FV (B1) ∪
BV (B1) ∪ V . Note that in this step it is possible that x /∈ FV (B).

Given any QBF A, we find a rectified QBF A′ by applying the above procedure recursively
starting with A and V = ∅.

Recall that a truth assignment or valuation is a function v : PV → {T,F}. We also let
T = F and T = T.

Definition 14.7. Given a valuation v : PV→ {T,F}, we define truth value A[v] of a QBF
A inductively as follows.

⊥ [v] = F (1)

>[v] = T (2)

x[v] = v(x) (3)

(¬B)[v] = B[v] = F if B[v] = T else T if B[v] = F (4)

(B ∨ C)[v] = B[v] or C[v] (5)

(B ∧ C)[v] = B[v] and C[v] (6)

(B ⇒ C)[v] = B[v] or C[v] (7)

(∀xB)[v] = B[v[x := T]] andB[v[x := F]] (8)

(∃xB)[v] = B[v[x := T]] orB[v[x := F]]. (9)

If A[v] = T, we write say that v satisfies A and we write v |= A. If A[v] = T for all
valuations v , we say that A is valid and we write |= A.

As usual, we write A ≡ B iff (A⇒ B) ∧ (B ⇒ A) is valid.

In Clause (5) when evaluating (B ∨ C)[v], if B[v] = T, then we don’t need to evaluate
C[v], since Torb = T independently of b ∈ {T,F}, and so (B∨C)[v] = T. If B[v] = F, then
we need to evaluate C[v], and (B ∨C)[v] = T iff C[v] = T. Even though the above method
is more economical, we usually evaluate both B[v] and C[v] and then compute B[v] orC[v].

A similar discussion applies to evaluating (∃xB)[v] in Clause (9). If B[v[x := T]] = T,
then we don’t need to evaluate B[v[x := F]] and (∃xB)[v] = T. If B[v[x := T]] = F, then
we need to evaluate B[v[x := F]], and (∃xB)[v] = T iff B[v[x := F]] = T. Even though the
above method is more economical, we usually evaluate both B[v[x := T]] and B[v[x := F]]
and then compute B[v[x := T]] orB[v[x := F]].
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Example 14.2. Let us show that the QBF

A = ∀x
(
∃y(x ∧ y) ∨ ∀z(¬x ∨ z)

)
from Example 14.1 is valid. This is a closed formula so v is irrelevant. By Clause (8) of
Definition 14.7, we need to evaluate A[x := T] and A[x := F].

To evaluate A[x := T], by Clause (5) of Definition 14.7, we need to evaluate
(∃y(x ∧ y))[x := T] and (∀z(¬x ∨ z))[x := T].

To evaluate (∃y(x ∧ y))[x := T], by Clause (9) of Definition 14.7, we need to evaluate
(x ∧ y)[x := T, y := T] and (x ∧ y)[x := T, y := F].

We have (by Clause (6)) (x∧ y)[x := T, y := T] = TandT = T and (x∧ y)[x := T, y :=
F] = T and F = F, so

(∃y(x ∧ y))[x := T] = (x ∧ y)[x := T, y := T] or (x ∧ y)[x := T, y := F] = T or F = T. (1)

To evaluate (∀z(¬x ∨ z))[x := T], by Clause (8) of Definition 14.7, we need to evaluate
(¬x ∨ z)[x := T, z := T] and (¬x ∨ z)[x := T, z := F].

Using Clauses (4) and (5) of Definition 14.7, we have (¬x ∨ z)[x := T, z := T] =
T land T = T and (¬x ∨ z)[x := T, z := F] = T land F = F, so

(∀z(¬x ∨ z))[x := T] = (¬x ∨ z)[x := T, z := T] and (¬x ∨ z)[x := T, z := F] = F. (2)

By (1) and (2) we have

A[x := T] = (∃y(x ∧ y))[x := T] or (∀z(¬x ∨ z))[x := T] = T or F = T. (3)

Now we need to evaluate A[x := F]. By Clause (5) of Definition 14.7, we need to evaluate
(∃y(x ∧ y))[x := F] and (∀z(¬x ∨ z))[x := F].

To evaluate (∃y(x ∧ y))[x := F], by Clause (9) of Definition 14.7, we need to evaluate
(x ∧ y)[x := F, y := T] and (x ∧ y)[x := F, y := F].

We have (by Clause (6)) (x∧ y)[x := F, y := T] = F and T = F and (x∧ y)[x := F, y :=
F] = F and F = F, so

(∃y(x ∧ y))[x := F] = (x ∧ y)[x := F, y := T] or (x ∧ y)[x := F, y := F] = F or F = F. (4)

To evaluate (∀z(¬x ∨ z))[x := F], by Clause (8) of Definition 14.7, we need to evaluate
(¬x ∨ z)[x := F, z := T] and (¬x ∨ z)[x := F, z := F].

Using Clauses (4) and (5) of Definition 14.7, we have (¬x∨z)[x := F, z := T] = ForT =
T and (¬x ∨ z)[x := F, z := F] = F or F = T, so

(∀z(¬x ∨ z))[x := F] = (¬x ∨ z)[x := F, z := T] and (¬x ∨ z)[x := F, z := F] = T (5)
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By (4) and (5) we have

A[x := F] = (∃y(x ∧ y))[x := F] or (∀z(¬x ∨ z))[x := F] = F or T = T. (6)

Finally, by (3) and (6) we get

A[x := T] and A[x := F] = T and T = T, (7)

so A is valid.

The reader should observe that in evaluating

(∃xB)[v] = B[v[x := T]] orB[v[x := F]],

if (∃xB)[v] = T, it is only necessary to guess which of B[v[x := T]] or B[v[x := F]] evaluates
to T, so we can view the computation of A[v] as an AND/OR tree, where an AND node
corresponds to the evaluation of a formula (∀xB)[v], and an OR node corresponds to the
evaluation of a formula (∃xB)[v].

Evaluating the truth value A[v] of a QBF A can take exponential time in the size n of
A, but we will see that it only requires O(n2) space. Also, the validity of QBF’s of the form

∃x1∃x2 · · · ∃xmB

where B is quantifier-free and FV (B) = {x1, . . . , xm} is equivalent to SAT (the satisfiability
problem), and the validity of QBF’s of the form

∀x1∀x2 · · · ∀xmB

where B is quantifier-free and FV (B) = {x1, . . . , xm} is equivalent to TAUT (the validity
problem). This is why the validity problem for QBF’s is as hard as both SAT and TAUT.

We mention the following technical results. Part (1) and Part (2) are used all the time.

Proposition 14.5. Let A be any QBF.

(1) For any two valuations v1 and v2, if v1(x) = v2(x) for all x ∈ FV (A), then A[v1] =
A[v2]. In particular, if A is a sentence, then A[v] is independent of v.

(2) If A′ is any rectified QBF obtained from A, then A[v] = A′[v] for all valuations v; that
is, A ≡ A′.

(3) For any QBF A of the form A = ∀xB and any QBF C such that BV (B)∩FV (C) = ∅,
if A is valid, then B[x := C] is also valid.

(4) For any QBF B and any QBF C such that BV (B)∩FV (C) = ∅, if B[x := C] is valid,
then ∃xB is also valid.
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We also repeat Proposition 5.20 which states that the connectives ∧,∨,¬ and ∃ are
definable in terms of ⇒ and ∀. This shows the power of the second-order quantifier ∀.
Proposition 14.6. The connectives ∧,∨,¬,⊥ and ∃ are definable in terms of ⇒ and ∀,
which means that the following equivalences are valid, where x is not free in B or C:

B ∧ C ≡ ∀x
(
(B ⇒ (C ⇒ x))⇒ x

)
B ∨ C ≡ ∀x

(
(B ⇒ x)⇒ ((C ⇒ x)⇒ x)

)
⊥ ≡ ∀xx
¬B ≡ B ⇒ ∀xx
∃yB ≡ ∀x

(
(∀y(B ⇒ x))⇒ x

)
.

We now prove the first step in establishing that the validity problem for QBF’s is PS-
complete.

Proposition 14.7. Let A be any QBF of length n. Then for any valuation v, the truth value
A[v] can be evaluated in O(n2) space. Thus the validity problem for closed QBF’s is in PS.

Proof. The clauses of Definition 14.7 show that A[v] is evaluated recursively. In clauses
(5)-(9), even though two recursive calls are performed, it is only necessary to save one of the
two stack frames at a time. It follows that the stack will never contain more than n stack
frames, and each stack frame has size at most n. Thus only O(n2) space is needed. For more
details, see Hopcroft, Motwani and Ullman [33] (Section 11.3.4, Theorem 11.10).

Finally we state the main theorem proven by Meyer and Stockmeyer (1973).

Theorem 14.8. The validity problem for closed QBF’s is PS-complete.

We will not prove Theorem 14.8, mostly because it requires simulating the computation
of a polynomial-space bounded deterministic Turing machine, and this is very technical and
tedious. Most details of such a proof can be found in Hopcroft, Motwani and Ullman [33]
(Section 11.3.4, Theorem 11.11).

Let us simply make the following comment which gives a clue as to why QBF’s are helpful
in describing the simulation (for details, see Hopcroft, Motwani and Ullman [33] (Theorem
11.11)). It turns out that the idea behind the function reach presented in Section 14.2 plays
a key role. It is necessary to express for any two ID’s I and J and any i ≥ 1, that I `k J
with k ≤ i. This is achieved by defining N2i(I, J) as the following QBF:

N2i(I, J) = ∃K∀R∀S
((

(R = I ∧ S = K) ∨ (R = K ∧ S = J)
)
⇒ Ni(R, S)

)
.

Another interesting PS-complete problem due to Karp (1972) is the following. Given
any alphabet Σ, decide whether a regular expression R denotes Σ∗; that is, L[R] = Σ∗.

We conclude with some comments regarding some remarkable results of Statman re-
garding the connection between validity of closed QBF’s and provability in intuitionistic
propositional logic.



526 CHAPTER 14. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

14.4 Complexity of Provability in Intuitionistic

Propositional Logic

Recall that intuitionistic logic is obtained from classical logic by taking away the proof-by-
contradiction rule. The reader is strongly advised to review Chapter 2, especially Sections
2.2, 2.3, 2.4, 2.6 and 2.8, before proceeding.

Statman [57] shows how to reduce the validity problem for QBFs to provability in intu-
itionistic propositional logic. To simplify the construction we may assume that we consider
QBF’s in prenex form, which means that they are of the form

A = QnxnQn−1xn−1 · · ·Q1x1B0

where B0 is quantifier-free and Qi ∈ {∀,∃} for i = 1, . . . , n. We also assume that A is
rectified. It is easy to show that any QBF A is equivalent to some QBF A′ in prenex form
by adapting the method for converting a first-order formula to prenex form; see Gallier [21]
or Shoenfield [56].

Statman’s clever trick is to exploit some properties of intuitionistic provability that do
not hold for classical logic. One of these properties is that if a proposition B ∨C is provable
intuitionistically, we write `I B ∨ C, then either `I B or `I C, that is, either B is provable
or C is provable (of course, intuitionistically). This fact is used in the “easy direction” of
the proof of Theorem 14.9.

To illustrate the power of the above fact, in his construction, Statman associates the
proposition

(x⇒ B) ∨ (¬x⇒ B) (∗)
to the QBF ∃xB. Classically this is useless, because (∗) is classically valid, but if (∗) is
intuitionistically provable, then either x ⇒ B is provable or ¬x ⇒ B is intuitionistically
provable, but this implies that either x⇒ B is classically provable or ¬x⇒ B is classically
provable, and so either B[x := T] is valid or B[x := F] is valid, which means that ∃xB is
valid.

As a first step, Statman defines the proposition B+
k inductively as follows: for all k such

that 0 ≤ k ≤ n− 1,

B+
0 = ¬¬B0

B+
k+1 = (xk+1 ∨ ¬xk+1)⇒ B+

k if Qk+1 = ∀
B+
k+1 = (xk+1 ⇒ B+

k ) ∨ (¬xk+1 ⇒ B+
k ), if Qk+1 = ∃

and set A+ = B+
n . Obviously A+ is quantifier-free. We also let Bk+1 = Qk+1xk+1Bk for

k = 0, . . . n− 1, so that A = Bn.

The following example illustrates the above definition.



14.4. PROVABILITY IN INTUITIONISTIC PROPOSITIONAL LOGIC 527

Example 14.3. Consider the QBF is prenex form

A = ∃x3∀x2∃x1((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ x1)).

It is indeed valid, as we see by setting x3 = F, and if x2 = T then x1 = F, else if x2 = F
then x1 = T. We have

B+
0 = ¬¬((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ x1))

B+
1 = (x1 ⇒ B+

0 ) ∨ (¬x1 ⇒ B+
0 )

B+
2 = (x2 ∨ ¬x2)⇒ B+

1

B+
3 = (x3 ⇒ B+

2 ) ∨ (¬x3 ⇒ B+
2 ),

and A+ = B+
3 .

Statman proves the following remarkable result (Statman [57], Proposition 1).

Theorem 14.9. For any closed QBF A in prenex form, A is valid iff `I A+; that is, A+ is
intuitionistically provable.

Proof sketch. Here is a sketch of Statman’s proof using the QBF of Example 14.3. First
assume the QBF A is valid. The first step is to eliminate existential quantifiers using a
variant of what is known as Skolem functions; see Gallier [21] or Shoenfield [56].

The process is to assign to the jth existential quantifier ∃xk from the left in the formula
Qnxn · · ·Q1x1B0 a boolean function Cj depending on the universal quantifiers ∀xi1 , . . . ,∀xip
to the left of ∃xk and defined such thatQnxn · · ·Qk+1xk+1∃xkBk−1 is valid iff ∀xi1 · · · ∀xiqBs

k−1

is valid, where Bs
k−1 is the result of substituting the functions C1, . . . , Cj associated with the

j existential quantifiers from the left for these existentially quantified variables.

We associate with ∃x3 the constant C1 such that C1 = F, and with ∃x1 the boolean
function C2(x2) given by

C2(T) = F, C2(F) = T.

The constant C1 and the function C2 are chosen so that

A = ∃x3∀x2∃x1((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ x1))

is valid iff
As = ∀x2((C2(x2) ∨ x2) ∧ (¬C2(x2) ∨ ¬x2) ∧ (¬C1 ∨ C2(x2))) (S)

is valid. Indeed, since C1 = F, the clause (¬C1 ∨ C2(x2)) evaluates to T regardless of the
value of x2, and by definition of C2, the expression

∀x2(C2(x2) ∨ x2) ∧ (¬C2(x2) ∨ ¬x2))

also evaluates to T. We now build a tree of Gentzen sequents (from the root up) from the
expression in (S) which guides us in deciding which disjunct to pick when dealing with a
proposition B+

k associated with an existential quantifier. Here is the tree.
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¬x3, x2,¬x1 → B+
0

¬x3, x2 → ¬x1 ⇒ B+
0

¬x3, x2 → (x1 ⇒ B+
0 ) ∨ (¬x1 ⇒ B+

0 )

¬x3,¬x2, x1 → B+
0

¬x3,¬x2 → x1 ⇒ B+
0

¬x3,¬x2 → (x1 ⇒ B+
0 ) ∨ (¬x1 ⇒ B+

0 )

¬x3, x2 ∨ ¬x2 → B+
1

¬x3 → (x2 ∨ ¬x2)⇒ B+
1

→ ¬x3 ⇒ B+
2

→ (x3 ⇒ B+
2 ) ∨ (¬x3 ⇒ B+

2 )

We will see that by adding subtrees proving the sequents in the leaf nodes, this tree
becomes an intuitionistic proof of A+. Note that this a proof in a Gentzen sequent style
formulation of intuitionistic logic (see Kleene [36], Gallier [16], Takeuti [60]), not a proof in
a natural deduction style proof system as in Section 2.6.

The tree is constructed from the bottom-up starting with → A+. For every leaf node in
the tree where a sequent is of the form

`n, . . . , `k+1 → (xk ⇒ B+
k−1) ∨ (¬xk ⇒ B+

k−1)

where `n, . . . , `k+1 are literals, we know that Qk = ∃ is the jth existential quantifier from the
left, so we use the boolean function Cj to determine which of the two disjuncts xk ⇒ B+

k−1

or ¬xk ⇒ B+
k−1 to keep. The function Cj depends on the value of the literals `n, . . . , `k+1

associated with universal quantifiers (where `i has the value T if `i = xi and `i has the
value F if `i = ¬xi). Even though Cj is independent of the value of the literals `i associ-
ated with existential quantifiers, to simplify notation we write Cj(`n, . . . , `k+1) for the value
of the function Cj. If Cj(`n, . . . , `k+1) = T, then we pick the disjunct xk ⇒ B+

k−1, else if
Cj(`n, . . . , `k+1) = F, then we pick the disjunct ¬xk ⇒ B+

k−1. Denote the literal correspond-
ing to the chosen disjunct by `k (`k = xk in the first case, `k = ¬xk in the second case).
Then we grow two new nodes

`n, . . . , `k+1 → `k ⇒ B+
k−1

and
`n, . . . , `k+1, `k → B+

k−1

above the (leaf) node

`n, . . . , `k+1 → (xk ⇒ B+
k−1) ∨ (¬xk ⇒ B+

k−1).

For every leaf node of the form

`n, . . . , `k+1 → (xk ∨ ¬xk)⇒ B+
k−1,

we grow the new node
`n, . . . , `k+1, xk ∨ ¬xk → B+

k−1,
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and then the two new nodes (both descendants of the above node, so there is branching in
the tree),

`n, . . . , `k+1, xk → B+
k−1 and `n, . . . , `k+1,¬xk → B+

k−1.

By induction from the bottom-up, since A is valid and since the tree was constructed in
terms of the constant C1 and the function C2 which ensure the validity of A, it is easy to see
that for every node `n, . . . , `k+1 → B+

k , the sequent `n, . . . , `k+1 → Bk (note, the right-hand
side is the original formula Bk) is classically valid, and thus classically provable (by the
completeness theorem for propositional logic). Consequently every leaf `n, . . . , `1 → B0 is
classically provable, so by Glivenko’s theorem (see Kleene [36] (Theorem 59), or Gallier [16]
(Section 13)), the sequent `n, . . . , `1 → ¬¬B0 is intuitionistically provable. But this is the
sequent `n, . . . , `1 → B+

0 so all the leaves of the tree are intuitionistically provable, and since
the tree is a deduction tree in a Gentzen sequent style formulation of intuitionistic logic (see
Kleene [36], Gallier [16], Takeuti [60]), the root A+ = B+

n is intuitionistically provable.

In the other direction, assume that A+ is intuitionistically provable. We use the fact that
if

`n, . . . , `k → A ∨B

is intuitionistically provable and the `i are literals, then either `n, . . . , `k → A is intuition-
istically provable or `n, . . . , `k → B is intuitionistically provable, and other proof rules of
intuitionistic logic (see Kleene [36], Gallier [16], Takeuti [60]), to build a proof tree just
as we did before. Then every sequent `n, . . . , `k+1 → B+

k is intuitionistically provable, thus
classically provable, and consequently classically valid. But this immediately implies (by
induction starting from the leaves) that `n, . . . , `k+1 → Bk is also classically valid for all k,
and thus A = Bn is valid.

Statman does not specifically state which proof system of intuitionistic logic is used in
Theorem 14.9. Careful inspection of the proof shows that we can construct proof trees in a
Gentzen sequent calculus as described in Gallier [16] (system Gi, Section 4) or Kleene [36]
(system G3a, Section 80, pages 481-482). This brings up the following issue: could we use
instead proofs in natural deduction style, as in Prawitz [50] or Gallier [16]? The answer is
yes, because there is a polynomial-time translation of intuitionistic proofs in Gentzen sequent
style to intuitionistic proofs in natural deduction style, as shown in Gallier [16], Section 5.
So Theorem 14.9 applies to a Gentzen sequent style proof system or to a natural deduction
style proof system.

The problem with the translation A 7→ A+ is that A+ may not have size polynomial in
the size (the length of A as a string) of A because in the case of an existential quantifier
the length of the formula B+

k+1 is more than twice the length of the formula B+
k , so Statman

introduces a second translation.

The proposition B†k is defined inductively as follows. Let y0, y1, . . . , yn be n + 1 new
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propositional variables. For all k such that 0 ≤ k ≤ n− 1,

B†0 = ¬¬B0 ≡ y0

B†k+1 = ((xk+1 ∨ ¬xk+1)⇒ yk) ≡ yk+1 if Qk+1 = ∀
B†k+1 = ((xk+1 ⇒ yk) ∨ (¬xk+1 ⇒ yk)) ≡ yk+1, if Qk+1 = ∃

and set
A∗ = B†0 ⇒ (B†1 ⇒ (· · · (B†n ⇒ yn) · · · )).

It is easy to see that the translation A 7→ A∗ can be done in polynomial space. Statman
proves the following result (Statman [57], Proposition 2).

Theorem 14.10. For any closed QBF A in prenex form, `I A+ iff `I A∗; that is, A+ is
intuitionistically provable iff A∗ is intuitionistically provable.

Proof. First suppose the sequent → A+ is provable (in Kleene G3a). We claim that the
sequent

B†0, . . . , B
†
k → B+

k ≡ yk

is provable for k = 0, . . . , n. We proceed by induction on k. For the base case k = 0, we
have B†0 = (¬¬B0 ≡ y0) and B+

0 = ¬¬B0, so B†0 → (B+
0 ≡ y0) = (B+

0 ≡ y0)→ (B+
0 ≡ y0),

which is an axiom.

For the induction step, if Qk+1 = ∀, then

B+
k+1 = (xk+1 ∨ ¬xk+1)⇒ B+

k , B†k+1 = ((xk+1 ∨ ¬xk+1)⇒ yk) ≡ yk+1,

by the induction hypothesis
B†0, . . . , B

†
k → B+

k ≡ yk

is provable, and since the sequent

B†0, . . . , B
†
k, B

†
k+1 → B†k+1

is an axiom, by substituting B+
k for yk in B†k+1 = ((xk+1 ∨ ¬xk+1) ⇒ yk) ≡ yk+1 in the

conclusion of the above sequent, we deduce that

B†0, . . . , B
†
k, B

†
k+1 → ((xk+1 ∨ ¬xk+1)⇒ B+

k ) ≡ yk+1

is provable. Since B+
k+1 = (xk+1 ∨ ¬xk+1)⇒ B+

k , we conclude that

B†0, . . . , B
†
k, B

†
k+1 → B+

k+1 ≡ yk+1

is provable.

If Qk+1 = ∃, then

B+
k+1 = (xk+1 ⇒ B+

k ) ∨ (¬xk+1 ⇒ B+
k ), B†k+1 = ((xk+1 ⇒ yk) ∨ (xk+1 ⇒ yk)) ≡ yk+1,
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by the induction hypothesis
B†0, . . . , B

†
k → B+

k ≡ yk

is provable, and since the sequent

B†0, . . . , B
†
k, B

†
k+1 → B†k+1

is an axiom, by substituting B+
k for yk in B†k+1 = ((xk+1 ⇒ yk)∨ (xk+1 ⇒ yk)) ≡ yk+1 in the

conclusion of the above sequent, we deduce that

B†0, . . . , B
†
k, B

†
k+1 → ((xk+1 ⇒ B+

k ) ∨ (¬xk+1 ⇒ B+
k )) ≡ yk+1

is provable. Since B+
k+1 = (xk+1 ⇒ B+

k ) ∨ (¬xk+1 ⇒ B+
k ), we conclude that

B†0, . . . , B
†
k, B

†
k+1 → B+

k+1 ≡ yk+1

is provable. Therefore the induction step holds. For k = n, we see that the sequent

B†0, . . . , B
†
n → (B+

n ≡ yn) = B†0, . . . , B
†
n → (A+ ≡ yn)

is provable, and since by hypothesis → A+ is provable, we deduce that

B†0, . . . , B
†
n → yn

is provable. Finally we deduce that

A∗ = B†0 ⇒ (B†1 ⇒ (· · · (B†n ⇒ yn) · · · ))

is provable intuitionistically.

Conversely assume that A∗ = B†0 ⇒ (B†1 ⇒ (· · · (B†n ⇒ yn) · · · )) is provable intuitionisti-
cally. Then using basic properties of intuitionistic provability, the sequent

B†0, . . . , B
†
n → yn

is provable intuitionistically. Now if we substitute B+
k+1 for yk+1 in B†k+1 for k = 0, . . . , n−1,

we see immediately that

B†k+1[yk+1 := B+
k+1] = B+

k+1 ≡ B+
k+1,

so the proof of
B†0, . . . , B

†
n → yn

yields a proof of
B+

0 ≡ B+
0 , . . . , B

+
n ≡ B+

n → B+
n ,

that is, a proof (intuitionistic) of B+
n = A+.

Remark: Note that we made implicit use of the cut rule several times, but by Gentzen’s
cut-elimination theorem this does not matter (see Gallier [16]).
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Using Theorems 14.9 and 14.10 we deduce from the fact that validity of QBF’s is PS-
complete that provability in propositional intuitionistic logic is PS-hard (every problem in
PS reduces in polynomial time to provability in propositional intuitionistic logic). Using
results of Tarski and Ladner, it is can be shown that validity in Kripke models for propo-
sitional intuitionistic logic belongs to PS, so Statman proves the following result (Statman
[57], Section 2, Theorem).

Theorem 14.11. The problem of deciding whether a proposition is valid in all Kripke models
is PS-complete.

Theorem 14.11 also applies to any proof system for intuitionisic logic which is sound and
complete for Kripke semantics.

Theorem 14.12. The problem of deciding whether a proposition is intuitionistically provable
in any sound and complete proof system (for Kripke semantics) is PS-complete.

Theorem 14.12 applies to Gallier’s system Gi, to Kleene’s system G3a, and to natural
deduction systems. To prove that Gi is complete for Kripke semantics it is better to convert
proofs in Gi to proofs in a system due to Takeuti, the system denoted GKT i in Gallier [16];
see Section 9, Definition 9.3. Since there is a polynomial-time translation of proofs in Gi to
proofs in natural deduction, the latter system is also complete. This is also proven in van
Dalen [62].

Statman proves an even stronger remarkable result, namely that PS-completeness holds
even for propositions using only the connective ⇒ (Statman [57], Section 2, Proposition 3).

Theorem 14.13. There is an algorithm which given any proposition A constructs another
proposition A] only involving ⊥,⇒, such that that `I A iff `I A].

Theorem 14.13 is somewhat surprising in view of the fact that ∨,∧,⇒ are indepen-
dent connectives in propositional intuitionistic logic. Finally Statman obtains the following
beautiful result (Statman [57], Section 2, Theorem).

Theorem 14.14. The problem of deciding whether a proposition only involving ⊥,⇒ is valid
in all Kripke models, and intuitionistically provable in any sound and complete proof system,
is PS-complete.

We highly recommend reading Statman [57], but we warn the reader that this requires
perseverance.



Appendix A

Well-Ordered Sets, Ordinals,
Cardinals, Alephs

The purpose of this chapter is to define the notions of ordinal, cardinal and alephs, and to
review some of their main properties. Intuitively the ordinals are the equivalence classes
of well-ordered sets under the equivalence relation of order-isomorphism (the order-types).
This idea goes back to Cantor; see Levy [40] for a thorough discussion of this approach.
However, such a definition does not make sense because the collection of well-ordered sets is
not a set. To circumvent this difficulty, following Von Neumann, we can define an ordinal as
a certain special type of set.

We also define the operations of addition, multiplication, and exponentiation on infinite
ordinals. Multisets, nested multisets and certain orderings on them turn out to be convenient
tools to understand the orderings on ordinals which are powers of ω. We also introduce the
Cantor normal form.

A.1 Well-Ordered Sets

We begin by reviewing the notions of partial orders, total orders, strict partial orders, and
strict total orders. Given a set X and a binary relation � ⊆ X ×X on X, we write x � y
for (x, y) ∈ � and x 6� y for ¬(x � y).

Definition A.1. Given a set X, a binary relation ≤ on X is a partial order if it satisfies
the following properties:

(1) The relation ≤ is reflexive, which means that for all x, if x ∈ X, then x ≤ x.

(2) The relation ≤ is transitive, which means that for all x, y, z, if x, y, z ∈ X, x ≤ y and
y ≤ z, then x ≤ z.

(3) The relation ≤ is antisymmetric, which means that for all x, y, if x, y ∈ X, x ≤ y and
y ≤ x, then x = y. The pair (X,≤) is called a partially ordered set .

533
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A binary relation ≤ on X is a total order (or simple order) if it is a partial order and
if it is strongly connected , which means that for all x, y, if x, y ∈ X, then either x ≤ y or
y ≤ x. The pair (X,≤) is called a totally ordered set .

The empty set (with the empty relation) is trivially a partially and a totally ordered set.

Example A.1.

(1) Given any nonempty set X, the inclusion relation Y ⊆ Z on subsets Y and Z of X is
a partial order which is not a total order if X has at least two elements.

(2) The set N of natural numbers with its usual ordering is a totally ordered set.

(3) The set Z of integers with its usual ordering is a totally ordered set.

(4) The relation � on N× N defined such that for all (m1, n1), (m2, n2) ∈ N× N,

(m1, n1)� (m2, n2) iff


m1 = m2 and n1 = n2, or
m1 < m2, or
m1 = m2 and n1 < n2

is a total order.

Definition A.2. Given a set X, a binary relation ≤ on X is a strict partial order if it
satisfies the following properties:

(1) The relation ≤ is asymmetric, which means that for all x, y, if x, y ∈ X, then either
x 6≤ y or y 6≤ x, equivalently ¬((x ≤ y) ∧ (y ≤ x)).

(2) The relation ≤ is transitive, which means that for all x, y, z, if x, y, z ∈ X, x ≤ y and
y ≤ z, then x ≤ z. The pair (X,≤) is called a strictly partially ordered set .

A binary relation ≤ on X is a strict total order (or strict simple order) if it is a strict
partial order and if it is connected , which means that for all x, y, if x, y ∈ X and x 6= y, then
x ≤ y or y ≤ x. The pair (X,≤) is called a strictly totally ordered set .

The empty set (with the empty relation) is trivially a strictly partially and a strictly
totally ordered set.

Example A.2.

(1) Given any nonempty set X, the strict inclusion relation Y ⊆ Z and Y 6= Z on subsets
Y and Z of X is a strict partial order which is not a strict total order if X has at least
two elements.

(2) The set N of natural numbers with the strict ordering m < n (namely m ≤ n and
m 6= n) is a strictly totally ordered set.
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(3) The set Z of integers with its strict ordering m < n (namely m ≤ n and m 6= n) is a
strictly totally ordered set.

(4) The relation � on N× N defined such that for all (m1, n1), (m2, n2) ∈ N× N,

(m1, n1)� (m2, n2) iff

{
m1 < n1, or
m1 = n1 andm2 < n2

is a strict total order.

Definition A.3. Given a set X, a partial order ≤ on X is a well-order if every nonempty
subset Y of X has a smallest element, which can be expressed as follows: for all Y , if Y 6= ∅
and Y ⊆ X, then there is some x ∈ Y such that for y, if y ∈ Y , then x ≤ y. The pair (X,≤)
is called a well-ordered set .

A strict partial order ≤ on X is a strictly well-order if every nonempty subset Y of X
has a smallest element. The pair (X,≤) is called a strictly well-ordered set .

The empty set (with the empty relation) is trivially a well-ordered set and strictly well-
ordered set. If a well-ordered set is nonempty, then by picking Y = {x, y} for any x, y ∈ X,
since Y must have a smallest element, we see that either x ≤ y or y ≤ x, that is, a well-
ordered set is totally ordered. The same reasoning shows that a strictly well-ordered set is
strictly totally ordered.

Example A.3.

(1) The partial order of Example A.1 is not a well-order (in fact, it is not a total order).

(2) The set N is well-ordered under its natural ordering.

(3) The set Z is not well-ordered under its natural ordering. For example, the subset
{n ∈ Z | n ≤ 0} does not have a smallest element.

(4) The set N× N under the total order of Example A.1 is well-ordered.

Proposition A.1. Let (X,≤) be a partially ordered set. The relation < on X given by

x < y iff x ≤ y and x 6= y

is a strict partial order on X. If (X,≤) is a totally ordered set, then the relation < on X
defined above is a strict total order. If (X,≤) is a well-ordered set, then the relation < on
X defined above is a strict well-order.

Proof. Assume that (X,≤) is a partially ordered set. The relation < is transitive because if
x < y and y < z, then x ≤ y, y ≤ z, x 6= y and y 6= z, so by transitivity of ≤ we have x ≤ z.
If x = z, then y ≤ z is equivalent to y ≤ x, and since x ≤ y, and ≤ is antisymmetric, we
get x = y, a contradiction. The relation < is asymmetric, because if x < y and y < x, then
x ≤ y, y ≤ x and x 6= y, but since ≤ is antisymmetric, x = y, a contradiction.

The other statements are left as exercises to the reader.



536 APPENDIX A. WELL-ORDERED SETS, ORDINALS, CARDINALS, ALEPHS

We say that (X,<) is the strictly partially ordered set associated with the partially
ordered set (X,≤), etc.

A detailed exposition of the above results and much more can be found in Suppes [59].

The importance of well-orders has to do with the fact that they support a powerful
induction principle.

Definition A.4. For any partially ordered set (E,≤), for any x ∈ E, the subset s(x) =
{y ∈ E | y < x} = {y ∈ E | y ≤ x, y 6= x} is called an initial segment of E.

Theorem A.2. Let (E,≤) be a well-ordered set. For any subset A of E, if for every a ∈ E,

if a ∈ A whenever b ∈ A for all b ∈ E such that b < a,

then A = E. Equivalently, for all a ∈ E, if s(a) ⊆ A implies that a ∈ A, then A = E.

Proof. Suppose by contradiction that A 6= E. Then the subset E − A is nonempty, and
since E is well-ordered, it has a least element b /∈ A. We claim that s(b) ⊆ A. Indeed,
y ∈ s(b) iff y < b, but then we can’t have y ∈ E −A, because this would contradict the fact
that b is the smallest element of E − A, so y ∈ A. Since s(b) ⊆ A, by hypothesis b ∈ A, a
contradiction.

Theorem A.2 immediately implies the following induction principle.

Theorem A.3. Let (E,≤) be a well-ordered set and let P (x) be a first-order formula with
free variable x. For every a ∈ E, if P (a) holds whenever P (b) holds for all b ∈ E such that
b < a, then P (x) holds for all x ∈ E.

Theorem A.3 follows immediately from Theorem A.2 by setting A = {a ∈ E | P (a) =
true}. The induction principle in Theorem A.3 is sometimes called transfinite induction on
a well-ordered set . It is a generalization of complete induction on N.

Definition A.5. Let (X1,≤1) and (X2,≤2) be two partially ordered sets. A function
f : X1 → X2 is an (order) isomorphism if it is a bijection and if

x ≤1 y iff f(x) ≤2 f(y), for all x, y ∈ X1.

The same definition applies if (X1,≤1) and (X2,≤2) are two strictly partially ordered sets,
and if the orderings are total or well-orders.

Note that a well-ordered set may be isomorphic to a proper subset of itself. For example,
(N,≤) is isomorphic to (2N,≤) (where 2N = {2n | n ∈ N}). However, we have the following
important results.

Proposition A.4. Let (E,≤) be a well-ordered set. If f : E → E is a function such that
for all x, y ∈ E, if x 6= y and x ≤ y implies that f(x) 6= f(y) and f(x) ≤ f(y), then

x ≤ f(x) for all x ∈ E.
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Using Proposition A.4 we can prove the following result.

Proposition A.5. Let (E1,≤1) and (E2,≤2) be two well-ordered sets. If f : E1 → E2 and
g : E1 → E2 are isomorphisms, then f = g.

As a corollary of Proposition A.5 it can be shown that if (E,≤) is a well-ordered set,
then there is no isomorphism between E and any initial segment s(x) = {y ∈ E | y < x},
for any x ∈ E.

A.2 Ordinals

Technically, the definition of an ordinal depends on the precise axiomatic definition chosen
for set theory (in first-order logic), specifically whether individual constants other than the
symbol ∅ (the empty set) are allowed. Suppes [59] allows such individual symbols. For
simplicity we follow Krivine [38] who does not allow such symbols. What this means is that
the sets under consideration only have other sets as members, building up from the empty
set.

Definition A.6. An ordinal is a set α such that

(1) The membership relation x ∈ y on α (with x, y ∈ α) is a strict well-order.

(2) For every x, if x ∈ α, then x ⊆ α. By definition of the inclusion relation, this means
that for all x, y, if y ∈ x and x ∈ α, then y ∈ α. Sometimes it is said that α is a
transitive set .1

Remark: One of the axioms of set theory, the sum axiom, also called the union axiom,
states that for every set X, the collection of all y such that y ∈ x for some x ∈ X is a set,
denoted

⋃
X or

⋃
x∈X x. Then Condition (2) of Definition A.6 is equivalent to the condition⋃

α ⊆ α.

This condition is used in Suppes [59] and Levy [40].

We see that Definition A.6 implies that an ordinal is a set of sets of sets, etc.

For example, ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} are ordinals, and more generally, if α is
an ordinal, then α ∪ {α} is also an ordinal denoted α+. The ordinal ∅ is also denoted by 0.

This is the method used by Von Neumann to define the natural numbers. The number
0 is represented by the empty set, 1 is represented by {∅} = {0}, 2 is represented by
{∅, {∅}} = {0, 1}, 3 is represented by {∅, {∅}, {∅, {∅}}} = {0, 1, 2}, and if α represents a
natural number, then α+ = α ∪ {α} represents the natural number α + 1. For this reason,
we also denote α+ as α + 1.

1This use of the word transitive is unfortunate since it differs from its meaning in Definition A.1(2).
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We now list (mostly) without proof the most important properties of ordinals. Proofs
can be found in Suppes [59] and Krivine [38]. A more advanced, rigorous and very thorough
presentation can be found in Levy [40].

Proposition A.6. Let α be an ordinal.

(1) For any ξ ∈ α, we have s(ξ) = {η ∈ α | η ∈ ξ} = ξ.

(2) If ξ ∈ α, then ξ is an ordinal.

Proposition A.7. For every ordinal α, we have α /∈ α.

Proof. For any ξ ∈ α, since the membership relation ∈ on α is a strict order, we have ξ 6∈ ξ.
Then if α ∈ α, we also have α /∈ α, a contradiction.

Using Theorem A.3 the following result can be shown.

Proposition A.8. For any two ordinals α, β, if there is an isomorphism between α and β
(each equipped with the strict order of membership), then α = β.

Proposition A.9. For any two ordinals α, β, either α = β, α ∈ β, or β ∈ α, and these
three cases are mutually exclusive.

Proposition A.9 implies that for any two ordinals α, β, we have α ⊆ β iff α = β or α ∈ β.
It follows that the relation α ⊆ β is a total order on the ordinals, and we also write α ≤ β
instead of α ⊆ β and α < β for α ∈ β. Observe that the relation α ∈ β is the strict total
order associated with the total order ⊆.

Proposition A.10. For any ordinal α, the ordinal α+ = α ∪ {α} is the smallest ordinal
strictly greater than α.

Proposition A.11. For any set S of ordinals, the set β =
⋃
α∈S α =

⋃
S is an ordinal

which is the least upper bound of the set S.

Proposition A.12. For any set S of ordinals, the membership relation on S is a strict well-
order. As a consequence, for any ordinal α, the ordinals β < α form a strictly well-ordered
set (under inclusion).

Proposition A.13. (Burali–Forti paradox) The collection of all ordinals is not a set.

Proof. Assume that the collection of all ordinals is a set α. Then by Proposition A.12, the
set α is strictly well-ordered. Also, by definition of the set α, if β ∈ α, then β is an ordinal,
and since by Proposition A.6(2), every ξ ∈ β is an ordinal, we have ξ ∈ α (since α is the set
of all ordinals), so β ⊆ α. Then by definition of an ordinal, α is an ordinal, and since α is
the set of all ordinals, α ∈ α, contradicting Proposition A.7.

Proposition A.14 confirms that the concept of ordinal captures the idea that the ordinals
are the “order-types” of well-ordered sets.
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Proposition A.14. For every well-ordered set (S,≤), there is a unique ordinal α and a
unique isomorphism between (S,<) and α (where (S,<) is the strictly well-ordered set as-
sociated with the well-ordered set (S,≤) and α is strictly well-ordered by the membership
relation).

Proposition A.14 is proven using Theorem A.3.

Finite and infinite ordinals are defined as follows.

Definition A.7. An ordinal α is finite if either α = ∅ or for every β ⊆ α with β 6= ∅, there
is some ordinal ξ such that β = ξ + 1. An infinite ordinal is an ordinal that is not finite.

Remark: Definition A.7 is the definition found in Levy [40] and Krivine [38]. A different
definition is used in Suppes [59].

So far we don’t know if infinite ordinals exist! The axiom of infinity asserts that infinite
ordinals exist.

Axiom of Infinity. There exists an infinite ordinal.

It can be shown that the axiom of infinity is equivalent to the fact that the collection of
finite ordinals is a set (which is an ordinal), denoted ω; see Krivine [38].

Remark: In an axiomatic presentation of the axioms of Zermelo–Frankel set theory it is
customary to state a version of the axiom of infinity which does not involve the notion of
ordinal. It can be shown that this version of the axiom of infinity is equivalent to the above
version about ordinals. For this classical approach, see Suppes [59] and Levy [40]. Since it is
not our intention to give an axiomatic presentation of Zermelo–Frankel set theory, the above
version of the axiom of infinity is preferable.

Definition A.8. Under the axiom of infinity, the set of all finite ordinals is an ordinal
denoted ω.

In the Von Neumann approach, the natural numbers are identified with the finite ordinals.
Thus ω is the set of natural numbers and it is also denoted N by most mathematicians. The
ordinal ω is not a finite ordinal. It is the smallest infinite ordinal because if ξ is an infinite
ordinal such that ξ ∈ ω, then ξ is a finite ordinal (ω is the set of all finite ordinals), a
contradiction.

Definition A.9. An ordinal α 6= ∅ is a limit ordinal if for all β ∈ α, we also have β+ 1 ∈ α.

It is easy to see that an ordinal α 6= ∅ is a limit ordinal iff there is no ordinal β such that
α = β + 1 iff

α =
⋃

α =
⋃
β∈α

β

Furthermore, it can be shown that every limit ordinal is infinite and that the axiom of infinity
is equivalent to the existence of a limit ordinal; see Krivine [38].



540 APPENDIX A. WELL-ORDERED SETS, ORDINALS, CARDINALS, ALEPHS

A.3 Cardinals, Alephs (ℵα) and Beths (iα)
Having defined the ordinals, we can define cardinals and the cardinality of a set. This is
where the axiom of choice shows its nose.

Definition A.10. A cardinal is an ordinal a such that if β is any ordinal in bijection with
a, then a ⊆ β.

A cardinal is often referred to as an initial ordinal . It appears that the universal notation
adopted to denote cardinals is to use lower case German letters (“Fraktur” font), a, b, etc.
This convention is convenient since if we denote ordinals by lower case Greek letters (as it is
customary), then we have a visual mechanism to distinguish between ordinals and cardinals.
As we will see shortly, cardinals are also denoted using the Hebrew letter aleph with an
ordinal subscript (ℵα).

Proposition A.15. Every finite ordinal is a cardinal.

Definition A.11. The smallest infinite ordinal ω is a cardinal, which is also denoted ℵ0.

As we will see later, there is no largest cardinal, but this is not easy to prove; see Suppes
[59] (Section 7.3, Theorem 60).

Assume that the axiom of choice holds. An easy-going version of the axiom of choice
is that for any two nonempty sets X and Y , for any surjection f : X → Y , there is some
injection g : Y → X such that f ◦ g = idY .

Theorem A.16. (Zermelo) Every set has some well-ordering.

A proof of Theorem A.16 can be found in all set theory texts, in particular Suppes [59]
Krivine [38]. Theorem A.16 is one of many results equivalent to the famous axiom of choice.
If you think Theorem A.16 is obvious, try finding a well-ordering on the power set P(N) of
the set N of natural numbers.

Now, if we accept the axiom of choice, since by Theorem A.16 every set X has some well-
order (not unique if X has at least two elements), by Proposition A.14, there is a bijection
between X and some ordinal α. Then it is not hard to show that the ordinals β that are in
bijection with X form a set (because if γ is an ordinal in bijection with the power set P(X),
then β ∈ γ), so by Proposition A.12, there is a smallest ordinal, denoted |X|, among the
ordinals in bijection with X.

Definition A.12. Given any set X, the smallest ordinal |X| (also denoted card(X)) in
bijection with X is a cardinal called the cardinal number (or cardinality) of X.

It can be shown that the collection of cardinals numbers is not a set.

Remark: It is possible to define the notion of cardinality of a set even if we do not assume
the axiom of choice. But then the cardinal |X| of set X is a certain kind of set that may
not be an ordinal. In fact, the cardinal |X| is an ordinal iff the set |X| is well-orderable. See
Levy [40] (Chapter III, Section 2).
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Definition A.13. The cardinality of the set R of real numbers is denoted by c and is called
the cardinality of the continuum (or power of the continuum).

It is a standard theorem of set theory that there is a bijection between P(N), the power
set of the set N of natural numbers, and the set R of real numbers; see Section 6.7 of Suppes
[59].

Definition A.14. For any cardinal a, the cardinality of the power set P(a) of a is denoted
2a.

Using the above definition, the fact that there is a bijection between P(N) and R is
restated as c = 2ℵ0 . Cantor’s theorem (which says that there is no surjection of a set X onto
its power set P(X)) stated in terms of cardinals says that for any cardinal a, we have

a < 2a.

Our next goal is to show that it is possible to provide an enumeration of the infinite
cardinals indexed by the ordinals. We first proceed informally. The idea is to define the
infinite cardinal ℵα for every ordinal α as follows: the cardinal ℵα is the infinite cardinal
β such that the set {ξ | ξ ∈ β, ξ is an infinite cardinal} is isomorphic (as a strictly well-
ordered set under the membership relation) to α (also with the strict order of membership).
Intuitively, ℵα is the α’s infinite cardinal. So ℵ1 is the smallest cardinal of cardinality strictly
greater than ℵ0, then ℵ2 is the smallest cardinal of cardinality strictly greater than ℵ1, and
more generally ℵα+1 is the smallest cardinal of cardinality strictly greater than ℵα. See
Definition A.17 for a rigorous approach (which needs to deal with the case where α is a limit
ordinal).

Then Cantor’s theorem implies that

ℵα+1 ⊆ 2ℵα .

Whether or not the above inequality is actually an equality is a famous problem called the
generalized continuum hypothesis . For α = 0, famous results of Gödel and Cohen show that
the statement ℵ1 = c = 2ℵ0 is independent of Zermelo–Frankel set theory (with the axiom
of choice).

Our definition of the alephs (denoted ℵα) is not rigorous. It is actually possible to define
rigorously the alephs without assuming the axiom of choice, as explained in Suppes [59].

We need to recall the following notation.

Definition A.15. Let A and B be any two sets.

(1) We write A ≈ B if there is a bijection from A to B. In this case we say that A and B
are equipollent .

(2) We write A � B if there is a subset C of B such that A ≈ C.
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(3) We write A ≺ B if A � B and ¬(B � A), and we write A � B if B � A and
¬(A � B).

Two ordinals may be equipollent and yet be very different in terms of they order structure.
A simple example consists of the two ordinals ω and ω + 1 = ω ∪ {ω}. We can define the
bijection f from ω + 1 to ω given by f({ω}) = 0 and f(n) = n+ 1, for any n ∈ ω.

If ϕ(α) is a first-order formula in which α ranges over the ordinals, it can be shown that
if there is some ordinal α such that ϕ(α) holds, then there is a smallest ordinal β such that
ϕ(β) holds; see Suppes [59] (Section 7.1, Theorem 5). The above fact suggests the definition
of the smallest ordinal µα(ϕ(α)) satisfying a first-order formula ϕ(α) (where α denotes an
ordinal). If ∀α¬ϕ(α), that is, ϕ(α) is not satisfied by any ordinal, then we set µα(ϕ(α)) = 0.

Definition A.16. Given a first-order formula ϕ(α) where α denotes an ordinal, the ordinal
µα(ϕ(α)) is defined such that for every ordinal β, we have the equivalence

µα(ϕ(α)) = β iff [ϕ(β) ∧ ∀γ(ϕ(γ) =⇒ (β ⊆ γ))] ∨ [∀α¬ϕ(α) ∧ (β = 0)].

Then it can be shown that

(1) If ϕ(β) holds for some ordinal β, then µα(ϕ(α)) ⊆ β.

(2) If ∃αϕ(α) holds, then ϕ(µα(ϕ(α))) holds.

The alephs are then defined by transfinite recursion as follows.

Definition A.17. The ordinals ℵα (the alephs) are defined as follows:

(1) ℵ0 = ω.

(2) For any successor ordinal α + 1,

ℵα+1 = µβ(β � ℵα).

(3) For any limit ordinal α,

ℵα =
⋃
β∈α

ℵβ.

Actually, we really have to justify why a recursive definition as in Definition A.17 is
legitimate. To do so requires delving into axiomatic set theory more than we want to for
the purpose of this appendix. Let us just say that the axiom schema of replacement (due
to Zermelo) is required. Intuitively, this axiom says that if ϕ(x, y) is a functional relation,
which means that for all x, y1, y2, ϕ(x, y1) and ϕ(x, y2) implies that y1 = y2, then for any set
A, the image of A by ϕ, that is, the collection of y such that ϕ(x, y) for some x ∈ A, is also
a set. Then a powerful version of definition by transfinite recursion can be established. For
details, see Suppes [59] (Chapter 7). Incidentally, this version of transfinite recursion is also
used to define addition, multiplication, and exponentiation of ordinals.
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Returning to the alephs, the following properties can be shown; see Suppes [59] (Chapter
7).

Actually, it is not obvious at all that for every ℵα, there is some ordinal β such that
β � ℵα, so that in Clause (2) of Definition A.17, some nonzero ordinal is returned. The next
proposition shows that this is indeed the case; see Suppes [59] (Section 7.3, Theorem 63).

Proposition A.17. For any ordinal α, there is some ordinal β such that for every ordinal
γ ∈ α we have β � ℵγ.

Proposition A.17 implies the following result which, together with the equation ℵ0 = ω,
can be used as a definition of ℵα.

Proposition A.18. If α is a nonzero ordinal, then

ℵα = µβ(∀γ((γ ∈ α) =⇒ (β � ℵγ))).

Proposition A.19. For every ordinal α, the ordinal ℵα is an infinite cardinal.

Proposition A.20. For any two ordinals α, β, if α ∈ β, then ℵα ∈ ℵβ.

Proposition A.20 implies that there is no largest aleph.

Proposition A.21. For any ordinal α, there is no infinite cardinal β such that ℵα ∈ β ∈
ℵα+1.

It can also be shown that every cardinal ℵα is a limit ordinal; see Levy [40]. Finally,
every infinite cardinal arises as some aleph, which means that there is an “enumeration” of
the infinite cardinals by the ordinals.

Theorem A.22. For every infinite cardinal a, there is an ordinal α (necessarily unique by
Proposition A.20) such that a = ℵα.

All the above results do not rely on the axiom of choice. However, the axiom of choice
is needed to show that every set has a cardinal (is in bijection with a cardinal).

Remark: Let us again assume that the axiom of choice holds. Then we can restate the
generalized continuum hypothesis by introducing cardinals known as the beth’s .

Definition A.18. We define by transfinite recursion the cardinals beth α, denoted iα, as
follows: for every ordinal α,

i0 = ℵ0

iα+1 = card(P(iα))

iα =
⋃
β<α

iβ if α is a limit ordinal.
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Observe that
i1 = c,

the cardinality of the continuum. We can show by transfinite induction that

ℵα ≤ iα

for every ordinal α, and the generalized continuum hypothesis is restated as

ℵα = iα

for every ordinal α. The continuum hypothesis is restated as

ℵ1 = i1.

Infinite ordinals beyond ω are very hard to understand. A way to get a better grasp of the
infinite ordinals is to generalize the operations of addition, multiplication, and exponentiation
defined on the natural numbers (the finite ordinals) to infinite ordinals. This is done by
generalizing the familiar recursive definitions to infinite ordinals, and the trick for doing
so is to extends these recursive definitions to limit ordinals. To do this rigorously requires
a form of transfinite recursion. To prove properties of these operations requires transfinite
induction. The operations of addition, multiplication and exponentiation on infinite ordinals
exhibit somewhat unexpected behaviors. For example, addition and multiplication are no
longer commutative. However we now have a tool for describing ordinals beyond ω, for
example, ωω + ω3 · 3 + 1.

A.4 Ordinal Arithmetic

First we need to present two versions of transfinite induction. Let ϕ(α) be a first-order
formula, where the variable α ranges over the ordinals.

Theorem A.23. (Transfinite Induction: First Formulation) If for every ordinal α we have
the implication,

∀β((β ∈ α) =⇒ ϕ(β)) =⇒ ϕ(α), (†)
then ϕ(α) holds for all ordinals α.

Theorem A.23 is actually quite easy to prove. The proof relies on the fact that every
nonempty set of ordinals is well-ordered; see Suppes [59] (Section 7.1, Theorem 1). Theorem
A.23 can be viewed as a generalization of transfinite induction on a well-ordered set. In
practice a more convenient of transfinite induction breaks the induction step (†) into two
cases depending whether or not α is a limit ordinal.

Theorem A.24. (Transfinite Induction: Second Formulation) If for every ordinal α,
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(1) ϕ(0) holds.

(2) For every ordinal α, if ϕ(α) holds, then ϕ(α + 1) holds.

(3) For every limit ordinal γ, if

∀β((β ∈ γ) =⇒ ϕ(β)) (†2)

implies ϕ(γ),

then ϕ(α) holds for all ordinals α.

See Suppes [59] (Section 7.1, Theorem 2). In addition to the usual induction step in (2),
we need a “complete induction step” (Step 3) to deal with limit ordinals.

Next we need a method to define “functions” on the ordinals by transfinite recursion.
Here we have to be a bit careful because the ordinals do not form a set. Still this can be done
but a rigorous justification requires the axiom of replacement. All this is carefully explained
in Suppes [59] (Section 7.1) but this is beyond the scope of our exposition. There are several
versions of transfinite recursion, but the only version we need is the following.

Theorem A.25. (Transfinite Recursion) Let σ(α1, . . . , αn−1) (n ≥ 1) be a term with at most
the free variables α1, . . . , αn−1 defining a function on the ordinals and let µ(α1, . . . , αn) be a
term with at most the free variables α1, . . . , αn defining a function on the ordinals. Then for
any ordinals α1, . . . , αn−1 and any ordinal α 6= 0, there is a unique term τ(α1, . . . , αn−1, α)
such that the following properties hold:

(1) τ(α1, . . . , αn−1, α) is a function β 7→ τ(α1, . . . , αn−1, α)(β) defined for all β ∈ α.

(2) τ(α1, . . . , αn−1, α)(0) = σ(α1, . . . , αn−1).

(3) For every ordinal β with β + 1 ∈ α,

τ(α1, . . . , αn−1, α)(β + 1) = µ(α1, . . . , αn−1, τ(α1, . . . , αn−1, α)(β)).

(4) For every limit ordinal β ∈ α,

τ(α1, . . . , αn−1, α)(β) =
⋃
γ∈β

τ(α1, . . . , αn−1, α)(γ).

Observe that τ(α1, . . . , αn−1, α) is defined for fixed ordinals α1, . . . , αn−1 and α 6= 0, but is
only a function of one argument β ∈ α. This fact is crucial for allowing the use of the axiom
of replacement and in proving that the set whose existence is guaranteed by this axiom is
actually a function. It can also be shown that for any two ordinals η1 and η2, if η1 6= 0 and
η1 ∈ η2, then

τ(α1, . . . , αn−1, η1)(β) = τ(α1, . . . , αn−1, η2)(β) for all β ∈ η1.
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So intuitively τ(α1, . . . , αn−1, α) is the “same function” for all α 6= 0. But the collection of
all ordinals is not a set so we can’t refer to it as a function on all ordinals. For a detailed
exposition with proofs, see Suppes [59] (Section 7.1, Theorems 8-12). We now show how
to use Theorem A.25 to define addition, multiplication, and exponentiation of ordinals.
After each definition, transfinite induction (Second Formulation) is needed to prove various
properties of these operations. Although not very difficult, some of these proofs are quite
involved and we refer the reader to Suppes [59] for details.

We begin with the definition of addition.

Definition A.19. The operation of addition on the ordinals, denoted +, is defined by
transfinite recursion as follows: for any two ordinals α, β we have

(1) α + 0 = α.

(2) α + (β + 1) = (α + β) + 1.

(3) If β is a limit ordinal, then

α + β =
⋃
γ∈β

α + γ.

In Clause (2), there is a slight ambiguity since the symbol + is used with two different
meanings. The occurrence of + between α and (β + 1) is the addition of ordinals, but the
ordinal β+ 1 denotes the successor β+ = β ∪{β} of the ordinal β. To be perfectly clear, (2)
should be written as

α + β+ = (α + β)+.

We will often use the notation β+1 instead of β+, adding parentheses if necessary for clarity.

Here is how Theorem A.25 is used to justify Definition A.19. We let

σ(α1) = α1

µ(α1, α2) = α+
2 ,

and the function τ(α, β+), where in τ(α1, α) we substitute α for α1 and β+ for α, is defined
as a function on β+ by the clauses

(1) τ(α, β+)(0) = σ(α) = α.

(2) For η such that η+ ∈ β+, namely η ∈ β,

τ(α, β+)(η+) = µ(α, τ(α, β+)(η)) = (τ(α, β+)(η))+.

(3) If η ∈ β+ is a limit ordinal, then

τ(α, β+)(η) =
⋃
γ∈η

τ(α, β+)(γ).
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Then by definition
α + β = τ(α, β+)(β).

Observe that Definition A.19 is just the familiar recursive definition of addition on the
natural numbers, except that a new clause is added to deal with limit ordinals. As we will
see, this new clause makes a big difference in the behavior of addition on infinite ordinals.

Actually it is not obvious that Definition A.19 yields an ordinal. Fortunately this is the
case.

Proposition A.26. For any two ordinals α, β, the term α + β is an ordinal.

We will shortly list a number of properties of ordinal addition. As we will see, there are
a few surprises. But first let us figure out a few additions.

Example A.4. Since ω is the set of natural numbers, we can write

ω = {0, 1, 2, . . . , n, . . .},

with 1 = {0}, 2 = {0, 1}, . . . , n+ 1 = {0, 1, . . . , n}, so

ω + 1 = ω+ = ω ∪ {ω} = {0, 1, 2, . . . , n, . . . , ω}.

Then
ω + 2 = (ω + 1)+ = ω + 1 ∪ {ω + 1} = {0, 1, 2, . . . , n, . . . , ω, ω + 1}.

More generally, for any natural number n,

ω + (n+ 1) = (ω + n)+ = ω + n ∪ {ω + n} = {0, 1, 2, . . . , n, . . . , ω, ω + 1, . . . , ω + n}.

So ω + (n + 1) is a “longer” ordinal than ω. Intuitively, after running through a first track
consisting of a copy of ω, we switch to a second track consisting of copies of 0, 1, . . . , n. So
we can figure out what ω + ω is, since

ω + ω =
⋃
n∈ω

ω + n = {0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . .}.

We can think of ω + ω as consisting of two parallel tracks, each consisting of a copy of ω.
After running through the first track, we switch to the second track.

We can now figure out what is (ω + ω) + n, which is left an exercise to the reader. Then
we obtain (ω + ω) + ω, which is

(ω + ω) + ω =
⋃
n∈ω

(ω + ω) + n

= {0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . . ,

ω + ω, (ω + ω) + 1, (ω + ω) + 2, (ω + ω) + 3, . . .}.

This time we have three parallel tracks of ω’s. As we will see later, we can even have ω
tracks of ω’s; this is ω · ω, the product of ω by ω. We can also have much wilder ordinals.
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Let us now figure out what n+ω is, where n is a natural number. We are in for a surprise.

Example A.5. First, we easily check that for any two natural numbers (finite ordinals) m
and n, m+ n as given by Definition A.19 is just the usual sum of m and n. Then

0 + ω =
⋃
n∈ω

0 + n =
⋃
n∈ω

n = ω.

So far, no surprise. Now

1 + ω =
⋃
n∈ω

1 + n =
⋃
n∈ω

n+ 1.

But n+ 1 = {0, . . . , n}, so ⋃
n∈ω

n+ 1 = ω.

Thus we proved that
1 + ω = ω,

which shows that addition of ordinals is not commutative, since

1 + ω = ω 6= ω + 1.

Similarly we easily show that
n+ ω = ω

for all natural number n.

Since
1 + ω = 2 + ω,

we see that contrary to the natural numbers α + γ = β + γ does not imply that α = β.

Now some desirable properties. All proofs are by transfinite induction.

Proposition A.27. For all ordinals α, we have

α + 0 = 0 + α = α.

Although Proposition A.27 is intuitively obvious, a proof by transfinite induction, al-
though simple, takes about half a page since it is necessary to treat separately the three
cases of the induction, and the corresponding three cases of the recursive definition.

Proposition A.28. For all ordinals α, β, we have

α + (β + 1) = (α + β) + 1,

or equivalently
α + β+ = (α + β)+,

As a corollary,
α + 1 = α+.
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Proposition A.29. For all ordinals α, β, γ, if β ∈ γ, then α + β ∈ α + γ.

It should be noted that the implication, if β ∈ γ, then β + α ∈ γ + α, is false. For
example, 1 ∈ 2, but

1 + ω = 2 + ω = ω.

Proposition A.30. For all ordinals α, β, if β 6= 0, then α ∈ α + β.

Proposition A.31. For all ordinals α, β, γ, if α + β = α + γ, then β = γ.

Cancellation from the right is false. For example, 1 +ω = 2 +ω = ω does not imply that
1 = 2.

Proposition A.32. For all ordinals α, β, γ, if α ⊆ β, then α + γ ⊆ β + γ. As a corollary,

β ∈ α + β.

Proposition A.33. For all ordinals α, β, if β is a limit ordinal, then α+β is a limit ordinal.

Proposition A.34. For all ordinals α, β, if α ⊆ β, then there is a unique γ that α+ γ = β.

Proposition A.35. For all ordinals α, β, γ, if β 6= 0, then there is no ordinal γ such that
for all δ < β,

α + δ < γ < α + β.

Proposition A.36. (Associativity of addition) For all ordinals α, β, γ,

α + (β + γ) = (α + β) + γ.

As we already showed, addition is not commutative. For example,

ω = 1 + ω 6= ω + 1.

Next we define multiplication.

Definition A.20. The operation of multiplication on the ordinals, denoted ·, is defined by
transfinite recursion as follows: for any two ordinals α, β we have

(1) α · 0 = 0.

(2) α · (β + 1) = (α · β) + α.

(3) If β is a limit ordinal, then

α · β =
⋃
γ∈β

α · γ.
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We leave it as an exercise to justify Definition A.20 using Theorem A.25.

Clause (2) may be written perhaps more clearly as

α · β+ = (α · β) + α.

Observe that Definition A.20 is just the familiar recursive definition of multiplication on the
natural numbers, except that a new clause is added to deal with limit ordinals. As in the
case of addition, this new clause makes a big difference in the behavior of multiplication on
infinite ordinals.

Proposition A.37. For any two ordinals α, β, the term α · β is an ordinal.

Proposition A.38. For all ordinals α, we have

0 · α = α · 0 = 0.

Proposition A.39. For all ordinals α, we have

1 · α = α · 1 = α.

As in the case of addition let us figure out a few multiplications.

Example A.6. We begin by computing ω · 2. Since 2 = 1+ = 1 + 1, according to Clause (2)
of Definition A.20 , we have

ω · 2 = ω · 1+ = ω · 1 + ω.

Since by Proposition A.38, ω · 1 = ω, we get

ω · 2 = ω + ω.

Similarly, for every natural number n,

ω · (n+ 1) = ω · n+ = ω · n+ ω.

So by induction (and using associativity of addition), for any natural number n ≥ 1, we get

ω · n = ω + · · ·+ ω︸ ︷︷ ︸
n

We can view ω · n as n infinite parallel tracks each in bijection with ω, namely for all n ≥ 1,

ω · n = {0, 1, 2, 3, . . . ,
ω, ω + 1, ω + 2, ω + 3, . . . ,

ω · 2, ω · 2 + 1, ω · 2 + 2, ω · 2 + 3, . . . ,

...

ω · (n− 1), ω · (n− 1) + 1, ω · (n− 1) + 2, ω · (n− 1) + 3, . . . , }.
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If we define the set [n− 1]× ω for n ≥ 1 as

[n− 1]× ω = {(i, p) | 0 ≤ i ≤ n− 1, p ∈ ω},

then we have a bijection from [n − 1] × ω to ω · n, obtained by mapping (i, p) to ω · i + p.
This is an order isomorphism if we define the ordering on [n− 1]× ω as

(i, p) ≤ (j, q) iff


i = j and p = q, or
i < j, or
i = j and p < q .

Example A.7. Let us now compute ω · ω. According to Clause (3) of Definition A.20 , we
have

ω · ω =
⋃
m∈ω

ω ·m.

If we define the usual cartesian product ω × ω as

ω × ω = {(m,n) | m ∈ ω, n ∈ ω}

then we have a bijection from ω×ω to ω ·ω, where (m,n) goes to ω ·m+n. This is an order
isomorphism if we define the ordering on ω × ω as

(m1, n1) ≤ (m2, n2) iff


m1 = m2 and n1 = n2, or
m1 < m2, or
m1 = m2 and n1 < n2 .

This is precisely the total order of Example A.1(4). This ordering is called the left lex-
icographic ordering , usually abbreviated as lexicographic ordering . Observe that we can
visualize ω · ω as an infinite 2-dimensional lattice of integral points (m,n) consisting of
parallel track, where the (m+ 1)th track consists of the points ω ·m+ n.

We will see later that it may be more convenient to consider the bijection (m,n) 7→
ω · n+m. This time we need to use the right lexicographic ordering given by

(m1, n1) ≤ (m2, n2) iff


m1 = m2 and n1 = n2, or
n1 < n2, or
n1 = n2 andm1 < m2 .

In a similar way, we can show that (ω ·ω)·ω is a 3D grid with integral points (m1,m2,m3),
where we use the bijection between ω × ω × ω and (ω · ω) · ω given by (m1,m2,m3) 7→
ω2 ·m3 + ω ·m2 + m1, with the right lexicographic ordering on triples of natural numbers
given by

(p1, p2, p3) ≤ (q1, q2, q3) iff

{
p1 = q1, p2 = q2, p3 = q3 or
∃k, 1 ≤ k ≤ 3, pi = qi, k + 1 ≤ i ≤ 3, and pk < qk.
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The advantage of the right lexicographic ordering is the following. We have the natural
inclusion of ω × ω into ω × ω × ω given by (m1,m2) 7→ (m1,m2, 0), and since

ω2 · 0 + ω ·m2 +m1 = ω ·m2 +m1,

we see that the restriction of the right lexicographic ordering on ω × ω × ω agrees with
the right lexicographic ordering on ω × ω, and we also have (m1,m2, 0) < (n1, n2, n3) for
any n3 > 0. This time the points (m1,m2,m3) belong to a 3D grid consisting of parallel
horizontal layers which are lattices. So the points (m1,m2, 0) are in the first layer, and the
points (m1,m2,m3) with m3 6= 0 belong to the (m3 + 1)th horizontal layer with corner point
ω2 ·m3, which is a copy of the bottom layer, except that ω2 ·m3 + ω ·m2 + m1 belongs to
the (m2 + 1)th track of the m3th horizontal layer.

More generally, we can figure out that the n-fold product (· · · (ω · ω) · · · · · ω) is an n-
dimensional grid with integral points (m1, . . . ,mn), with the right lexicographic ordering on
n-tuples of natural numbers. See Example A.10 for details. This is harder to visualize for
n > 3. This product is also denoted as ωn; it is indeed the result of exponentiating ω, as we
will see later. It is also easy to see that ωn ∈ ωn+1. Thus an unhealthy curiosity leads us to
ask what is ⋃

n∈ω

ωn.

Naturally this is the ordinal ωω, as we will see when we introduce ordinal exponentiation.
This ordinal is even harder to visualize, since it is an infinite dimensional grid!

Example A.8. Let us now compute 2 · ω, Since ω is a limit ordinal we have

2 · ω =
⋃
n∈ω

2 · n =
⋃
n∈ω

2n.

But
2n = {0, 1, 2 . . . , 2n− 1}

for n ≥ 1, and so

2 · ω =
⋃
n∈ω

2n = ω.

In a similar way, for any natural number n ≥ 1, we have

n · ω = ω.

The previous example shows that ordinal multiplication is not commutative, since

ω = 2 · ω 6= ω · 2 = ω + ω.

Here are more properties of ordinal multiplication.

Proposition A.40. For all ordinals α, β, γ, if α 6= 0 and β ∈ γ, then α · β ∈ α · γ. As a
corollary, if α 6= 0 and β 6= 0, then α · β 6= 0.
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Proposition A.41. (Left cancellation) For all ordinals α, β, γ, if α 6= 0 and α · β = α · γ,
then β = γ.

However, right cancellation fails. For example,

ω = 2 · ω = 3 · ω,

yet 2 6= 3.

Proposition A.42. For all ordinals α, β, if α 6= 0 and β is a limit ordinal, then α · β is a
limit ordinal.

Proposition A.43. For all ordinals α, β, if α is a limit ordinal and β 6= 0, then α · β is a
limit ordinal.

Proposition A.44. (Distributivity of multiplication from the left) For all ordinals α, β, γ,

α · (β + γ) = α · β + α · γ.

On the other hand distributivity of multiplication from the right fails. For example,

(1 + 1) · ω = 2 · ω = ω 6= ω + ω = 1 · ω + 1 · ω.

We finish with a nice positive fact.

Proposition A.45. (Associativity of multiplication) For all ordinals α, β, γ,

(α · β) · γ = α · (β · γ).

Finally we define exponentiation.

Definition A.21. The operation of exponentiation on the ordinals, denoted αβ, is defined
by transfinite recursion as follows: for any two ordinals α, β we have

(1) α0 = 1.

(2) αβ+1 = αβ · α.

(3) If β is a limit ordinal and α 6= 0, then

αβ =
⋃
γ∈β

αγ.

(4) If β is a limit ordinal and α = 0, then

αβ = 0.
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We leave it as an exercise to justify Definition A.21 using Theorem A.25.

Clause (2) may be written perhaps more clearly as

α(β+) = αβ · α.

Observe that Definition A.21 is just the familiar recursive definition of exponentiation on
the natural numbers, except that new clauses are added to deal with limit ordinals. As
in the case of multiplication, these new clauses make a big difference in the behavior of
exponentiation on infinite ordinals.

Proposition A.46. For any two ordinals α, β, the term αβ is an ordinal.

Proposition A.47. For any ordinal α, we have α1 = α.

Proposition A.48. For any ordinal β, if β 6= 0, then 0β = 0.

Proposition A.49. For any ordinal α, we have 1α = 1.

Proposition A.50. For any ordinals α, β, γ, we have

αβ+γ = αβ · αγ.

Proposition A.51. For any ordinals α, β, γ, we have

(αβ)γ = αβ·γ.

On the other hand, the identity

(α · β)γ = αγ · βγ

is false in general. We leave it as an exercise to show that

(ω · 2)2 6= ω2 · 22.

To get started, note that

(ω · 2)2 = (ω · 2) · (ω · 2) = (ω · 2) · (ω + ω)

= (ω · 2) · ω + (ω · 2) · ω = ω · (2 · ω) + ω · (2 · ω)

= ω · ω + ω · ω = ω2 · 2.

Proposition A.52. For any ordinals α, β, if 1 ∈ α and β ∈ γ, then αβ ∈ αγ.

Proposition A.53. For any ordinals α, β, if 1 ∈ α and 1 ∈ β, then

α + β ⊆ α · β ⊆ αβ.
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Example A.9. For any ordinal α, let us compute α2. By Clause (2) of Definition A.21 and
Proposition A.47, we have

α2 = α(1+) = α1 · α = α · α.

In general, for any natural number n, we have

αn+1 = α(n+) = αn · α.

By induction and associativity of multiplication, this yields

αn = α · · ·α︸ ︷︷ ︸
n

,

for any natural number n ≥ 1. In particular, if α = ω, we have

ωn+1 = ωn · ω =
⋃
n∈ω

ωn · n.

This shows that ωn ∈ ωn+1.

Example A.10. By Clause (3) of Definition A.21, we have

ωω =
⋃
n∈ω

ωn.

As we mentioned in Example A.7, we can view ωn (n ≥ 1) as the set of n-tuples of natural
numbers (m1, . . . ,mn), under the bijection

(m1, . . . ,mn) 7→ ωn−1 ·mn + ωn−2 ·mn−1 + · · ·+ ω1 ·m2 +m1,

with the right lexicographic ordering given by

(p1, . . . , pn) ≤ (q1, . . . qn) iff

{
pi = qi, 1 ≤ i ≤ n, or
∃k, 1 ≤ k ≤ n, pi = qi, k + 1 ≤ i ≤ n, and pk < qk.

Thus we can view ωω as the set of countably infinite sequences of natural numbers (pi)i∈ω
(with pi ∈ ω) such that there is some n ≥ 0 and pi = 0 for all i ≥ n. Given any two such
sequences (pi)i∈ω and (qi)i∈ω, there is some smallest N ≥ 1 such that pi = 0 and qi = 0 for
all i ≥ N , so we compare (pi)i∈ω and (qi)i∈ω with the right lexicographic ordering on ωN .

There is a better way to describe this ordering due to Dershowitz and Manna, which is to
view the elements of ωω as finite multisets of elements in ω. Indeed, we can view a countably
infinite sequence (pi)i∈ω as above as the finite multiset M of elements of ω consisting of the
i ∈ ω that occur pi > 0 times. If pi = 0, then i is not an element of M .
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A.5 Multisets, Nested Multisets and the Ordinal ε0

Actually, in order to generalize multisets to nested multisets it is more convenient to define
finite multisets as partial functions of finite domain with range N+ = N− {0},

Definition A.22. Given a nonempty set S, a finite multiset M on S is either the empty
set of a finite nonempty set M = {(s1,m1), . . . , (sn,mn)} of pairs (si,mi), with mi > 0 for
i = 1, . . . , n, and where {s1, . . . , sn} is a finite nonempty subset of S called the domain of
M and denoted dom(M). We say that si ∈ S occurs mi times in M . The set of all finite
multisets on S is denoted by M(S).

We usually denote a multiset M = {(s1,m1), . . . , (sn,mn)} as a “set with repetitions,”
that is, as any expression

{s1, . . . , s1, s2, . . . , s2, . . . , sn, . . . , sn}

with m1 + · · · + mn occurences of elements of S, where si occurs mi times for i = 1, . . . , n.
The order of the elements is irrelevant.

Example A.11. Let S = ω. The multiset {3, 3, 4, 0} is one way of representing the official
multiset {(0, 1), (3, 2), (4, 1)}, so 4 occurs once, 3 occurs twice, and 0 occurs once. The
multiset {(0, 1), (3, 2), (4, 1)} corresponds to the ordinal

ω4 · 1 + ω3 · 2 + 1.

As a function from ω to N, the multiset {3, 3, 4, 0} is also represented by the sequence
(1, 0, 0, 2, 1, 0, . . . , 0, . . .). The multiset {2, 2, 3, 4, 0, 0, 1} is one way of representing the official
multiset {(0, 2), (1, 1), (2, 2), (3, 1), (4, 1)}, so 4 occurs once, 3 occurs once, 2 occurs twice, 1
occurs once, and 0 occurs twice. The multiset {(0, 2), (1, 1), (2, 2), (3, 1), (4, 1)}, corresponds
to the ordinal

ω4 · 1 + ω3 · 1 + ω2 · 2 + ω1 · 1 + 2.

As a function from ω to N, the multiset {(0, 2), (1, 1), (2, 2), (3, 1), (4, 1)} is also represented
by the sequence (2, 1, 2, 1, 1, 0, . . . , 0, . . .).

Some operations on multisets are defined below.

Definition A.23. Given any nonempty set S, for any two finite multisets M1,M2 ∈M(S),
we say that M1 is a submultiset of M2, written M1 ⊆M2, if M1 = ∅, or dom(M1) ⊆ dom(M2)
and for any (s,m) ∈ M1, we have (s,m′) ∈ M2 with m ≤ m′. The union M1 ∪M2 of the
multisets M1 and M2 is the multiset defined by

(M1 ∪M2) = {(s,m) | s ∈ dom(M1)− dom(M2), (s,m) ∈M1}
∪ {(s,m) | s ∈ dom(M2)− dom(M1), (s,m) ∈M2}
∪ {(s,m+m′) | s ∈ dom(M1) ∩ dom(M2), (s,m) ∈M1, (s,m′) ∈M2}.
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The difference M1 −M2 of the multisets M1 and M2 is the multiset defined by

M1 −M2 = {(s,m) | s ∈ dom(M1)− dom(M2), (s,m) ∈M1}
∪ {(s,m−m′) | s ∈ dom(M1) ∩ dom(M2), (s,m) ∈M1, (s,m′) ∈M2, m > m′}.

Then the multiset ordering on finite multisets of elements of a partially ordered set (S,≤)
is defined as follows.

Definition A.24. Let (S,≤) be any partially ordered set. For any two finite multisets M1

and M2 ∈ M(S), we have M1 � M2 iff either M1 = M2, or there exist two finite multisets
X, Y ∈M(S), with X 6= ∅ and X ⊆M2, such that

(1) M1 = (M2 −X) ∪ Y .

(2) For every y ∈ dom(Y ), there is some x ∈ dom(X) such that y < x.

Example A.12. Since
(2, 1, 2, 1, 1) < (1, 0, 0, 2, 1)

in the right lexicographic ordering, we have

{2, 2, 3, 4, 0, 0, 1} ≺ {3, 3, 4, 0}.
Indeed, one occurrence of 3 is deleted from the greater multiset, so X = {3}, the elements
in Y = {0, 1, 2, 2} are added to the smaller multiset, and 0, 1, 2 < 3.

The mapping

{(s1,m1), . . . , (sn,mn)} 7→ ωsn ·mn + ωsn−1 ·mn−1 + · · ·+ ωs1 ·m1

with s1 < s2 < · · · < sn and mi > 0 is a bijection from M(ω) to ωω (with ∅ 7→ 0), and
we leave it as an exercise to check that the multiset ordering on M(ω) corresponds to the
well-ordering on ωω defined in terms of the right lexicographic ordering.

More generally, if α is an infinite ordinal, every finite multiset M on α is given by a set
of pairs {(γ1,m1), . . . , (γn,mn)}, with γi ∈ α, mi > 0, and γ1 ∈ γ2 ∈ · · · ∈ γn (with ∅ 7→ 0),
so the map

{(γ1,m1), . . . , (γn,mn)} 7→ ωγn ·mn + ωγn−1 ·mn−1 + · · ·+ ωγ1 ·m1

is a bijection from M(α) to ωα, and the multiset ordering on M(α) corresponds to the
ordering on ωα.

It should be noted that if S = α, since α is totally ordered, Clause (2) of Definition A.24
is equivalent to:

There is some x ∈ dom(X) such that y < x for every y ∈ dom(Y ).

The advantage of Definition A.24 is that it also applies to multisets of elements from
some partially ordered set (S,≤). In this case we do not require S to be totally ordered.
However, we require S to be well-founded .
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Definition A.25. A partially ordered set (S,≤) is well-founded if every nonempty subset Y
of S has a minimal element, which means that there is some z ∈ Y such that for all y ∈ Y ,
if y ≤ z, then y = z.

It is easy to see that if a partially ordered set (S,≤) is well-founded, then there are no
strictly infinite decreasing sequences

· · · < sn+1 < sn < · · · < s2 < s1

of elements si ∈ S. Under the axiom of choice, since every set can be well-ordered (by
Zermelo’s theorem A.16), the above condition is equivalent to the condition of Definition
A.25; see Levy [40] (Proposition 5.3). The analog of transfinite induction (Theorem A.3)
also holds for well-founded sets. The proof is a simple modification of the proof of Theorem
A.2. Dershowitz and Manna proved that if (S,≤) is a well-founded partially ordered set,
then so is the set M(S) of finite multisets under the multiset ordering.

Multisets and multiset orderings play an important role in proving the termination of
programs and sets of rewrite rules used in automated theorem-proving.

Exponentiation can be used to define a very interesting ordinal denoted ε0, which plays
an important role in consistency proofs of the axiomatization of arithmetic on the natural
numbers known as Peano arithmetic; see Takeuti [60]. For any natural number m, define
the ordinals ωn as follows:

ω0 = 1

ωn+1 = ωωn .

So ωn (n ≥ 1) is a stack of exponentials of height n. The ordinals ωn are all limit ordinals
and ωn ∈ ωωn , since

ωn+1 =
⋃
β∈ωn

ωβ.

For example,

ω1 = ω, ω2 = ωω, ω3 = ωω
ω

.

The ordering on ωn can be understood in terms of nested multisets , as shown by Der-
showitz and Manna. Roughly speaking, a nested multiset is either a multiset or a multiset
whose elements are nested multisets.

Definition A.26. Technically, given a nonempty set S, we define M(i)(S) by induction as
follows:

M(0)(S) = S

M(i+1)(S) = S ∪M(M(i)(S)).
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It is easily shown by induction that

M(i)(S) ⊆M(i+1)(S) for all i ≥ 0.

The set of nested multisets on S is

M∗(S) =
⋃
i≥0

M(i)(S).

For example, 3, {1, 1, 2} ∈ M(1)(ω), {5, 5, {1, 2, 2}} ∈ M(2)(ω), and
{5, 5, {1, 2, 2}, {2, 2, {3, 3, 5}, {3, 3, 5}}} ∈ M(3)(ω).

The multiset ordering can be extended to an ordering on nested multisets.

Definition A.27. Let (S,≤) be a nonempty partially ordered set. The relations �i (and
≺i, the strict order associated with �i) on M(i)(S) are defined inductively as follows:

(a) �0 =≤.

(b) For any i ≥ 0, if M1 ∈M(0)(S) = S and M2 ∈M(i+1)(S)− S, then

M1 ≺i+1 M2.

(c) If M1,M2 ∈ M(i+1)(S) − S, then M1 �i+1 M2 iff either M1 = M2, or there exist two
finite nested multisets X, Y ∈M(i+1)(S), with X 6= ∅ and X ⊆M2, such that

(1) M1 = (M2 −X) ∪ Y .

(2) For every y ∈ dom(Y ), there is some x ∈ dom(X) such that y ≺i x.

The relation �∗ on M∗(S) is defined by

�∗ =
⋃
i≥0

�i .

Then it can be shown that if (S,≤) is a well-founded partially ordered set, then so is
M∗(S) under the ordering �∗ of nested multisets.

Example A.13. The reader should check that

{{1, 0, 0}, 5, {{0}, 1, 2}, 0} ≺∗ {{1, 1}, {{0}, 1, 2}, 0}

with X = {1, 1}, Y = {{1, 0, 0}, 5}, and

{{∅, 1, 2}, {5, 5, 2}, 5} ≺∗ {{1, 1}, {{0}, 1, 2}, 0}

with X = {{1, 1}, {{0}, 1, 2}, 0}, Y = {{∅, 1, 2}, {5, 5, 2}, 5}.
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We define the ordinal ε0 as
ε0 =

⋃
n∈ω

ωn.

For S = ω, let ν0 : ω → ω be the identity function, and for i ≥ 0, define inductively the
maps νi+1 : M(i+1)(ω) → ωi+1 such that νi+1(∅) = 0, for any nested multiset M ∈ M(i)(ω)
we have

νi+1(M) = νi(M),

and for any nested multiset M = {(s1,m1), . . . , (sn,mn)} ∈ M(i+1)(ω) −M(i)(ω), where
mj > 0, sj ∈M(i)(ω), and s1 ≺i s2 ≺i · · · ≺i sn, we set

νi+1(M) = ωνi(sn) ·mn + ωνi(sn−1) ·mn−1 + · · ·+ ωνi(s1) ·m1.

Also define ν : M∗(ω)→ ε0 by

ν =
⋃
i≥0

νi.

Example A.14. If M = {{5, 1}, {1, 2, 3}, {1, 2, 3}, 2} ∈ M(2)(ω), we have

ν2(M) = ων1({5,1}) + ων1({1,2,3}) · 2 + ων1(2).

We also have

ν1({5, 1}) = ω5 + ω

ν1({1, 2, 3}) = ω3 + ω2 + ω

ν1(2) = 2,

so we get
ν2(M) = ωω

5+ω + ωω
3+ω2+ω · 2 + ω2.

The maps νi are not quite what we want because they are not injective. The problem is
that the multiset consisting of m copies of 0 and the integer m both map to m. For example,

ν1({0, 0, 0}) = ω0 · 3 = 3 = ν1(3).

This minor problem is easily overcome. Define M+(i)(S) by

M+(i)(S) =M(i)(S)− S,
and M+(S) by

M+(S) =
⋃
i≥1

M+(i)(S) =M∗(S)− S.

Then it can be shown that νi is an order-isomorphism between M+(i)(ω) and ωi (i ≥ 1)
and that ν is an order-isomorphism between M+(ω) and ε0. The ordering on ε0 is hard to
understand, but it can be understood in terms of nested multisets. There are other notation
systems for the ordinals less than ε0; see Takeuti [60]. Amazingly, we also have the equation

ε0 = ωε0 .

We conclude with a result of Cantor which generalizes the representation of the natural
numbers in base b > 1. The proof is by transfinite induction.



A.6. CANTOR NORMAL FORM 561

A.6 Cantor Normal Form

Theorem A.54. (Cantor Normal Form) Let α be any ordinal such that α > 1, which
means that 1 ∈ α. Then for any ordinal β 6= 0, there is some natural number k ≥ 1 and
some unique sequences of ordinals (β1, . . . , βk) with β1 ∈ β2 ∈ · · · ∈ βk, and (µ1, . . . , µk) with
1 ≤ µi ∈ α for i = 1, . . . , k, such that

β = αβk · µk + αβk−1 · µk−1 + · · ·+ αβ1 · µ1.

Furthermore, for any η such that βk ∈ η, we have β ∈ αη.

In most applications we pick α = ω. In this case the µi are natural numbers.

Recall that for β = ε0, we have

ε0 = ωε0 .

Suppose that βk ∈ ε0 in the Cantor normal form of ε0. But then the second property of
Theorem A.54 with η = ε0 would imply that ε0 ∈ ωε0 = ε0, a contradiction. Therefore the
Cantor normal form of ε0 is given by k = 1, β1 = ε0, and µ1 = 1. Thus, unfortunately we
can’t ensure that βk ∈ β in the Cantor normal form for β. However, for every ordinal β ∈ ε0,
it is true that the exponent βk in the Cantor normal form for β has the property that βk ∈ β,
so this fact can be used to develop a notation system for all ordinals β ∈ ε0; see Takeuti [60].
One can go way beyond ε0, namely an ordinal denoted Γ0; see Schütte [54] and Gallier [15].

The Cantor normal form can also be used to compare two ordinals β and γ. The idea is
that the Cantor normal form

β = αβk · µk + αβk−1 · µk−1 + · · ·+ αβ1 · µ1

can be viewed as defining a finite sequence (µ1, . . . , µk) indexed by the increasing powers
αβ1 , . . . , αβk (since β1 ∈ β2 ∈ · · · ∈ βk). If γ is another ordinal given by its normal form

γ = αγ` · δ` + αγ`−1 · δ`−1 + · · ·+ αγ1 · δ1,

then it corresponds to the sequence (δ1, . . . , δ`) indexed by the increasing powers αγ1 , . . . , αγ` ,
with γ1 ∈ γ2 ∈ · · · ∈ γ`. If θ is the smallest of β1 and γ1 and σ is the largest of βk and γ`,
we can construct a finite increasing sequence of length L of powers of α,

αθ1 , · · · , αθL , θ1 ∈ θ2 ∈ · · · ∈ θL,

starting with θ1 = θ and ending with θL = σ, including all the αβi and αγj (a single occurrence
of αβi occurs if βi = γj). Then we can form two sequences of length L, sβ and sγ, where for
j = 1, . . . , L, we have

sβ(j) =

{
βi if θj = βi,

0 otherwise,
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and

sγ(j) =

{
γi if θj = γi,

0 otherwise.

Then we compare sβ and sγ using the right lexicographic ordering. It is also possible to
compare β and γ by scanning simultaneously their normal forms from left to right until the
first “discrepancy” is found; see Levy [40] (Chapter 2, Theorem 2.14).

It is possible to define a notion of ordinal sum which is commutative. This notion known
as natural sum due to Hessenberg (1906) is useful to define systems of ordinal notation; see
Schütte [54] (Chapter VI, Section §16).

Definition A.28. For any two nonzero ordinal α and β, if we write

α = ωγk ·mk + ωγk−1 ·mk−1 + · · ·+ ωγ1 ·m1

β = ωγk · nk + ωγk−1 · nk−1 + · · ·+ ωγ1 · n1,

with γ1 ∈ γ2 ∈ · · · ∈ γk, mi, ni ∈ N, and mi + ni > 0, for i = 1, . . . , k, then we define the
natural sum α#β of α and β as

α#β = ωγk · (mk + nk) + ωγk−1 · (mk−1 + nk−1) + · · ·+ ωγ1 · (m1 + n1).

Since we allow either mi = 0 or ni = 0 (but not both), we can use the same exponents
γ1, . . . , γk in both expansions. We also let

α#0 = 0#α = α.

It can be shown that the natural sum is commutative and associative; see Levy [40]
(Exercise 2.22).
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<, 535
=, 121
A−B, 52, 144
A ≈ B, 541
A ∩B, 52
A ∪B, 52, 142
A ≺ B, 542
A � B, 541
A � B, 542
A ∩B, 144
A ⊂ B, 51, 143
A ⊆ B, 51, 143
A+, 53, 142, 148
M = {(s1,m1), . . . , (sn,mn)}, 556
M [ϕ], 113, 241
M [x := N ], 113
P (τ1, . . . , τn), 122
P [τ/t], 124
P [τ1/t1, . . . , τn/tn], 45, 123
P [u/t], 123, 124
P ≡ Q, 122
P ⇒ Q, 13, 65, 122
P ∧Q, 13, 65, 122
P ∨Q, 13, 65, 122

S, 121
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X, 540
X ∈ Y , 141
[x1 := N1, . . . , xn := Nn], 112, 240
∆, 71
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Γ, 70, 71
Γ, P , 68, 69
Γ, P x, 70
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ℵ0, 540
ℵ1, 541
ℵα, 541, 542
α + 1, 537
α#β, 562
α+, 537
αβ, 553
i1, 544
iPα, 543⋂

, 55, 145⋂
X, 55, 145⋃
X, 55, 145⋃
, 55, 145
∩, 52, 144
·, 549
∗←→β, 114, 243

∪, 52, 142
∅, 51, 142
ε0, 558, 560
≡, 14, 34, 65, 85
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∃, 13, 44, 65, 120, 124
∀tP , 122
∀, 13, 43, 64, 120, 123, 124
⇒, 13, 41, 64, 65, 70, 81, 99
−→β, 113, 242
∈, 50, 140, 141, 149
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∧, 13, 41, 65, 82, 99
≤, 533, 534
�, 534, 535
∨, 13, 41, 65, 82, 99
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ϕ(u) : PS→ BOOL, 102
BOOL, 40, 98
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FS, 121
L, 121
PS, 16, 69, 121
false, 13, 40, 65, 98
true, 13, 40, 65, 98
card(X), 540
pred, 139
a, 540
c, 541
µα(ϕ(α)), 542
N, 37
¬P , 14, 65, 122
¬, 14, 41, 65, 83, 99
6�, 533
ω, 539
ωn, 552
ωn, 558
⊕, 160
A, 144
⊥, 13, 65, 83, 122
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�, 533
�∗, 559

�i, 559
Q, 38
R, 38
∗−→β, 114, 243
+−→β, 114, 243

P1, . . . , Pm → Q1, . . . , Qn, 164
Γ→ P , 79, 84
Γ→ ∆, 164√

2, 38
⊂, 51, 143
⊆, 51, 143
D, 68, 70
D1[D2/x], 106
M(S), 556
M∗(S), 559
M(i)(S), 558
M+(i)(S), 560
M+(S), 560
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P(A), 55, 143
P(a), 541
τ1 = τ2, 122
>, 13, 65, 122, 159
` P , 85
` Γ . M : σ, 110
` Γ→ P , 85
{a, b}, 142
{a}, 142
{x | x /∈ x}, 140
{x ∈ A | P}, 143, 144
a ∈ A, 50, 141
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ab, 40
f(τ1, . . . , τn), 122
n+, 147
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Λ-abstraction, 284
α-conversion, 113, 242

immediate, 242
α-reduction, 242

immediate, 242
β-conversion, 114, 243
β-normal form, 114
β-redex, 244
β-reduction, 113, 242

immediate, 113, 242
∃-elimination, 124
∃-introduction, 124
∀-elimination, 124
∀-introduction, 123
⇒-elimination rule, 68, 70, 81
⇒-introduction rule, 68, 70, 81
λ-abstraction, 108, 237, 284
λ-calculus, 107, 237

pure, 237
simply-typed, 107, 110
untyped, 237

λ-term, 108, 237
β-irreducible, 114
closed, 108, 239, 283
raw, 108
raw simply-typed, 108
simply-typed, 108

∧-elimination rule, 82
∧-introduction rule, 82
∨-elimination rule, 82
∨-introduction rule, 82
¬-elimination rule, 83
¬-introduction rule, 83, 90

¬¬-elimination rule, 91
⊥-elimination rule, 83, 91

absurdity, 13, 65
absurdum, 13, 65
alphabet, 45, 121
And–Elim, 27
And–Intro, 27
Andrews, P., 63, 118
antisymmetric, 533
application, 108, 237, 284
associativity, 35, 54, 61, 97, 144, 156
assumption, 18, 66
asymmetric, 534
atomic propositions, 16, 69
auxiliary lemmas, 19, 37, 72, 98, 107
axiom of choice, 148, 540
axiom of infinity, 147, 148, 154, 539
axiom schema of replacement, 542
axioms, 11, 18, 67, 69, 81, 165

of separation, 143
of set theory, 141

Bernays, P., 140
bound variable, 43, 120
Brouwer, L., 87

Cantor Normal Form, 561
Cantor’s theorem, 541
Cantor, G., 140
capture of variables, 46, 123
cardinal, 540

of a power set, 541
alephs, 542
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beth, 543
number, 147, 540

cardinality, 540
cardinality of the continuum, 541
Church’s theorem, 104, 153
Church, A., 104, 107
classical logic, 85
classical propositional logic, 34
closed, 68
combinator, 239, 283
complement, 144

of a set, 53
completeness, 42, 43, 59, 100, 101, 104, 119,

152
complexity, 11

theory, 115
composite, 16
compound statement, 13, 65
comprehension axioms, 143
computation, 63, 107
conclusion, 18
confluence, 114
congruent, 495
conjunction, 12, 13, 64, 65
consistency, 42, 59, 100, 118, 139, 152
consistent contexts, 78
constant symbols, 44, 121
constructivists, 87
constructivity, 87
context, 78, 79, 109
continuum hypothesis, 544
counterexample, 43, 59, 101, 104, 118, 152
Curry, H., 107
Curry–Howard isomorphism, 107, 153
cut-elimination theorem, 107

de Morgan laws, 30, 34, 59, 60, 94, 145, 152,
154

for quantifiers, 49, 128
decision problem, 104
deduction, 11, 18, 58, 66, 151, 166

tree, 71, 79, 84, 85, 125
definition, 15

derivation, 11
discharged, 68, 71, 79, 84, 151
disjoint sets, 53
disjunction, 12, 13, 64, 65
distributivity, 35, 54, 61, 97, 144, 156
divisor, 15
double-negation

elimination, 91, 152
rule, 88, 151
translation, 132

dynamic logic, 119

eigenvariable, 125
restriction, 153

empty, 51, 142
set, 51, 142, 153
set axiom, 142

Enderton, H., 140, 149
equality predicate, 121
equation, 122
equipollent, 541
equivalence

logical, 14, 34, 65, 85
Equivalence–Intro, 34
even, 15, 135, 154
exclusive or, 160
Exist–Elim, 46
Exist–Intro, 46
extensionality, 51
extensionality axiom, 51, 141

falsity, 13, 65
falsum, 13, 65
finite

tree, 104
finite multiset, 556

domain, 556
first-order, 121

classical logic, 125
formulae, 122
intuitionistic logic, 125
language, 121
logic, 59, 153
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structures, 119
theories, 153
theory, 133
variables, 121

Forall–Elim, 46
Forall–Intro, 46
formula, 45
formulae-as-types principle, 107
foundation axiom, 149
Fraenkel, A., 140
free variable, 44, 120
function

operator, 44, 121
symbols, 44, 121

Gödel’s completeness theorem, 119, 153
Gödel’s incompleteness theorem, 135, 153
Gödel, K., 132
Gallier, J., 43, 64, 101, 117, 119, 122, 133
GB, 140
gcd, 39
generalized continuum hypothesis, 541
Gentzen

sequent, 78, 84, 164
sequent-calculus, 164
system, 151

Gentzen, G., 67, 78, 106, 132, 164
Girard, J.Y., 119, 133
Glivenko, V., 133
Gowers, T., 36, 64, 97

Halmos, P., 140
Hilbert, D., 67, 141
Howard, W., 107
hypotheses, 11, 18, 66

if and only if, 14, 65
iff, 14, 65
implication, 12, 13, 58, 64, 65, 151
Implication–Elim, 18
Implication–Intro, 18
implicational logic, 69
inconsistent, 90

induction, 38, 96
axiom, 134

induction principle, 56, 148
for N, 56, 59, 148, 154

inductive, 56, 147
set, 56, 147, 154

inference rules, 12, 58, 64, 67, 151, 165
for the quantifiers, 123
for the quantifiers in Gentzen-sequent style,

125
infinite

intersections, 55, 145
initial cardina, see cardinal
initial segment, 536
integer, 37
intersection, 52, 144, 153

of sets, 52, 144
intuitionistic logic, 84, 92
intuitionistically

provable, 85, 125
valid, 103

intuitionists, 87
irrational, 38

number, 38

judgement, 110

Kleene, S., 117
Kolmogorov, A., 132
Kripke, 92

models, 92, 93, 101, 102, 119, 152
semantics, 93, 102

Kripke, S., 102

law of the excluded middle, 88, 151
left lexicographic ordering, 551
lexicographic ordering, 551
limit ordinal, 539
linear

logic, 119
logic

classical, 84, 93, 125
intuitionistic, 84, 85, 125
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mathematical, 63
logical

connectives, 12, 64
equivalence, 34, 85
formula, 13, 65
language, 45, 121

mathematical, 11
minimal

logic, 71, 84
modular arithmetic, 495, 496
modus ponens, 18, 36, 68, 71, 81
multiple, 15
multiset, 68, 79, 556

difference, 557
domain, 556
finite, 556
submultiset, 556
union, 556

multiset ordering, 557

natural
deduction, 34, 151
deduction system, 63, 67, 151
numbers, 37, 147, 148, 154, 164

natural sum, 562
negation, 12–14, 64, 65
Negation–Elim, 23
Negation–Intro, 22
nested multiset, 558
nonconstructive proofs, 40, 50, 92, 126
nonlogical symbols, 121
normal form, 93, 107
normalization step, 106
NP-complete, 100
NP-completeness, 152
number

even, 15, 17
odd, 15, 17

odd, 15, 135, 154
Or–Elim, 29
Or–Intro, 29

order isomorphism, 536
ordinal, 537

alephs, 542
axiom of infinity, 539
Burali–Forti paradox, 538
finite, 539
infinite, 539
limit, 539
natural sum, 562
Von Neumann construction, 537

ordinal addition, 546
examples, 547
properties, 548

ordinal exponentiation, 553
examples, 554
properties, 554

ordinal multiplication, 549
examples, 550
properties, 552

PA, 134
pairing axiom, 142
partial order, 533

antisymmetric, 533
reflexive, 533
transitive, 533
well-order, 535

partially ordered set
initial segment, 536
order isomorphism, 536

Peano arithmetic, 121, 134, 153, 162
Peano, G., 134
Peirce’s law, 95, 100, 159
Perp–Elim, 23
polymorphic raw terms, 284
polymorphic type, 282
power of the continuum, see cardinal contin-

uum
power set, 55, 143, 153
power set axiom, 143
Prawitz, D., 67, 107
predicate, 15

symbols, 45, 121
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terms, 45, 121, 122
premise, 18
premises, 11, 18, 58, 66, 68, 151

closed, 68
discharged, 68, 71

prenex-form, 162
prime, 16
principle, 11

of proof by contradiction, 63
of the excluded middle, 88
reasoning, 11

proof, 11, 18, 151, 166
by-contrapositive rule, 58, 96, 152
checkers, 12
classical, 63, 151
constructive, 63, 88, 92, 151
direct, 16
formal, 12, 36, 97
indirect, 16
informal, 12, 36, 97
intuitionistic, 151
mathematical, 11
minimal, 80
nonconstructive, 40, 50, 59, 92, 126, 151,

152
normalization, 78, 101, 106, 107, 153
principles, 63
rules, 12, 64, 67
substitution, 78
system, 12, 64, 67
template, 16
templates, 11, 58
tree, 71, 79, 84, 85, 125

proof–by–cases, 29, 86
proof–by–contradiction, 58, 151

for negated propositions, 26
rule, 23, 83

Proof–By–Contradiction Principle, 23
proof–by–contrapositive, 33

principle, 33
proper

subset, 51, 143

propositional
intuitionistic logic, 85
logic, 58, 151
minimal logic, 85
symbols, 16, 69, 121

propositions, 13, 16, 65, 69
atomic, 16, 69

provability, 66
provable, 85

in classical logic, 125

quantified formulae, 121, 122
quantifier

existential, 44
universal, 43

quantifiers, 12, 43, 64, 120

RAA, 23, 58, 83, 90, 91, 93, 151
rank, 121
rational, 38

number, 38
real, 38

number, 38
redex, 244
reductio ad absurdum rule, 23, 83
reduction step, 106
reflexive, 533
regularity axiom, 149
regularity axioms, 148
relative complement, 52, 144, 153
relatively prime, 39
repeated squaring, 511
replacement axioms, 148, 149
right lexicographic ordering, 551
rules, 11, 70

logical, 11, 151
of logic, 11

Russell’s paradox, 140, 153
Russell, B., 140, 146

SAT, 99
satisfiability, 152

problem, 99, 152
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satisfiable, 99
second-order raw terms, 284
second-order type, 282
semantics, 40, 98

truth-value, 40, 59, 98, 152
sequent, 78

Gentzen, 79
sequents, 151, 164
set, 50, 141

of integers, 14
of natural numbers, 14
of worlds, 102
theory, 139

set theory, 141
first-order theory, 141

simple order, see total order
singleton set, 142
soundness, 42, 59, 100, 104, 118, 152
standard model, 139
statements, 12, 64

atomic, 12, 64
compound, 12, 64

Statman, R., 115
strict partial order, 534

asymmetric, 534
strictly well-order, 535
transitive, 534

strict simple order, see strict total order
strict total order, 534

connected, 534
strictly partially ordered set, 536
strictly totally ordered set, 534
strictly well-order, 535
strong

normalization, 107, 153
strongly normalizing, 114
submultiset, 556
subset, 51, 143

axioms, 143, 153
substitution, 45, 112, 122, 240

safe, 113
sum axiom, see union axiom

Suppes, P., 140

Takeuti, G., 104
tautology, 42, 59, 99, 152
temporal logic, 119
terms, 44, 45, 121, 122
theorem provers, 12, 105
theory, 133

of computation, 104
of equality, 133

total order, 534
strongly connected, 534

totally ordered set, 534
transfinite induction, 536

form 1, 544
form 2, 544

transfinite recursion, 545
transitive, 533, 534

set, 163
transitive set, 537
tree, 68
truth, 13, 40, 65, 66, 98

tables, 40, 41, 59, 98, 99, 152
value, 40, 98

of a proposition, 41, 99
truth-value semantics, 59, 152
Turing machines, 104
Turing, A., 104
type, 107, 282

second order, 282
atomic, 108
base, 108
polymorphic, 282
simple, 108

type abstraction rule, 286
type application rule, 286
type variable, 282

bound, 283
free, 283

type-application, 284
type-assignment, 109
type-checking, 110
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undecidability, 104
of the decision problem, 104, 153
of the halting problem, 104
of the Post correspondence problem, 104

union, 52, 142, 153
of sets, 52, 142

union axiom, 142, 145, 537
unsatisfiability, 152
unsatisfiable, 99

valid, 42, 99
validity, 59, 152

problem, 99, 152
van Dalen, D., 43, 64, 92, 101, 104, 119, 122
variable, 108, 237

bound, 108, 239
capture, 113, 241
free, 108, 239

variables
bound, 59, 153
free, 59, 153

VNB, 140
von Neumann, J., 140, 147, 164

weakening rule, 74
well-founded, 558
well-order, 535
well-ordered set, 535
well-ordering

of N, 57
Zermelo, 540

witness, 126
property, 126

Zermelo, E., 140
Zermelo–Fraenkel set theory, 140, 149, 153
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