
108 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

3.7 Finite State Automata With Output: Transducers

So far, we have only considered automata that recognize
languages, i.e., automata that do not produce any output
on any input (except “accept” or “reject”).

It is interesting and useful to consider input/output finite
state machines. Such automata are called transducers .
They compute functions or relations. First, we define a
deterministic kind of transducer.

Definition 3.12.A general sequential machine (gsm)
is a sextuple M = (Q,Σ,∆, δ,λ, q0), where

(1) Q is a finite set of states ,

(2) Σ is a finite input alphabet ,

(3) ∆ is a finite output alphabet ,

(4) δ : Q× Σ→ Q is the transition function ,

(5) λ : Q× Σ→ ∆∗ is the output function and

(6) q0 is the initial (or start) state.

3.7. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 109

If λ(p, a) ̸= ϵ, for all p ∈ Q and all a ∈ Σ, then M is
nonerasing . If λ(p, a) ∈ ∆ for all p ∈ Q and all a ∈ Σ,
we say thatM is a complete sequential machine (csm).

An example of a gsm for which Σ = {a, b} and ∆ =
{0, 1, 2} is shown in Figure 3.11. For example aab is
converted to 102001.

0 1

2

a/00

b/01

a/10

b/11

a/20

b/21

Figure 3.11: Example of a gsm

110 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

In order to define how a gsm works, we extend the transi-
tion and the output functions. We define δ∗ : Q×Σ∗ → Q
and λ∗ : Q × Σ∗ → ∆∗ recursively as follows: For all
p ∈ Q, all u ∈ Σ∗ and all a ∈ Σ

δ∗(p, ϵ) = p

δ∗(p, ua) = δ(δ∗(p, u), a)

λ∗(p, ϵ) = ϵ

λ∗(p, ua) = λ∗(p, u)λ(δ∗(p, u), a).

For any w ∈ Σ∗, we let

M(w) = λ∗(q0, w)

and for any L ⊆ Σ∗ and L′ ⊆ ∆∗, let

M(L) = {λ∗(q0, w) | w ∈ L}

and

M−1(L′) = {w ∈ Σ∗ | λ∗(q0, w) ∈ L′}.

3.7. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 111

Note that if M is a csm, then |M(w)| = |w| for all w ∈
Σ∗. Also, a homomorphism is a special kind of gsm—it
can be realized by a gsm with one state.

We can use gsm’s and csm’s to compute certain kinds of
functions.

Definition 3.13. A function f : Σ∗ → ∆∗ is a gsm
(resp. csm) mapping iff there is a gsm (resp. csm) M so
that M(w) = f(w), for all w ∈ Σ∗.

Remark: Ginsburg and Rose (1966) characterized gsm
mappings as follows:

A function f : Σ∗ → ∆∗ is a gsm mapping iff

(a) f preserves prefixes, i.e., f(x) is a prefix of f(xy);

(b) There is an integer, m, such that for all w ∈ Σ∗ and
all a ∈ Σ, we have |f(wa)|− |f(w)| ≤ m;

(c) f(ϵ) = ϵ;

(d) For every regular language, R ⊆ ∆∗, the language
f−1(R) = {w ∈ Σ∗ | f(w) ∈ R} is regular.

112 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

A function f : Σ∗ → ∆∗ is a csm mapping iff f satisfies
(a) and (d), and for all w ∈ Σ∗, |f(w)| = |w|.

The following proposition is left as a homework problem.

Proposition 3.2.The family of regular languages (over
an alphabet Σ) is closed under both gsm and inverse
gsm mappings.

We can generalize the gsm model so that

(1) the device is nondeterministic,

(2) the device has a set of accepting states,

(3) transitions are allowed to occur without new input
being processed,

(4) transitions are defined for input strings instead of in-
dividual letters.

Here is the definition of such a model, the a-transducer .
A much more powerful model of transducer will be inves-
tigated later: the Turing machine.

3.7. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 113

Definition 3.14. An a-transducer (or nondetermin-
istic sequential transducer with accepting states) is a
sextuple M = (K,Σ,∆,λ, q0, F), where

(1) K is a finite set of states ,

(2) Σ is a finite input alphabet ,

(3) ∆ is a finite output alphabet ,

(4) q0 ∈ K is the start (or initial) state,

(5) F ⊆ K is the set of accepting (of final) states and

(6) λ ⊆ K × Σ∗ × ∆∗ × K is a finite set of quadruples
called the transition function of M .

If λ ⊆ K × Σ∗ ×∆+ ×K, then M is ϵ-free

Clearly, a gsm is a special kind of a-transducer.

An a-transducer defines a binary relation between Σ∗ and
∆∗, or equivalently, a function M : Σ∗ → 2∆

∗
.

114 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

We can explain what this function is by describing how
an a-transducer makes a sequence of moves from config-
urations to configurations.

The current configuration of an a-transducer is described
by a triple

(p, u, v) ∈ K × Σ∗ ×∆∗,

where p is the current state, u is the remaining input, and
v is some ouput produced so far.

We define the binary relation ⊢M on K × Σ∗ × ∆∗ as
follows: For all p, q ∈ K, u,α ∈ Σ∗, β, v ∈ ∆∗, if
(p, u, v, q) ∈ λ, then

(p, uα, β) ⊢M (q, α, βv).

Let ⊢∗M be the transitive and reflexive closure of ⊢M .

3.7. FINITE STATE AUTOMATA WITH OUTPUT: TRANSDUCERS 115

The function M : Σ∗ → 2∆
∗
is defined such that for every

w ∈ Σ∗,

M(w) = {y ∈ ∆∗ | (q0, w, ϵ) ⊢
∗
M (f, ϵ, y), f ∈ F}.

For any language L ⊆ Σ∗ let

M(L) =
⋃

w∈L

M(w).

For any y ∈ ∆∗, let

M−1(y) = {w ∈ Σ∗ | y ∈M(w)}

and for any language L′ ⊆ ∆∗, let

M−1(L′) =
⋃

y∈L′

M−1(y).

116 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

Remark: Notice that if w ∈M−1(L′), then there exists
some y ∈ L′ such that w ∈M−1(y), i.e.,
y ∈M(w). This does not imply that M(w) ⊆ L′, only
that M(w) ∩ L′ ̸= ∅.

One should realize that for any L′ ⊆ ∆∗ and any a-
transducer, M , there is some a-transducer, M ′, (from ∆∗

to 2Σ
∗
) so that M ′(L′) = M−1(L′).

The following proposition is left as a homework problem:

Proposition 3.3.The family of regular languages (over
an alphabet Σ) is closed under both a-transductions
and inverse a-transductions.

3.8. AN APPLICATION OF NFA’S: TEXT SEARCH 117

3.8 An Application of NFA’s: Text Search

A common problem in the age of the Web (and on-line
text repositories) is the following:

Given a set of words, called the keywords , find all the
documents that contain one (or all) of those words.

Search engines are a popular example of this process.
Search engines use inverted indexes (for each word ap-
pearing on the Web, a list of all the places where that
word occurs is stored).

However, there are applications that are unsuited for in-
verted indexes, but are good for automaton-based tech-
niques.

Some text-processing programs, such as advanced forms
of the UNIX grep command (such as egrep or fgrep)
are based on automaton-based techniques.

The characteristics that make an application suitable for
searches that use automata are:

118 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

(1) The repository on which the search is conducted is
rapidly changing.

(2) The documents to be searched cannot be catalogued.
For example, Amazon.com creates pages “on the fly”
in response to queries.

We can use an NFA to find occurrences of a set of key-
words in a text. This NFA signals by entering a final state
that it has seen one of the keywords. The form of such
an NFA is special.

(1) There is a start state, q0, with a transition to itself on
every input symbol from the alphabet, Σ.

(2) For each keyword, w = w1 · · ·wk (with wi ∈ Σ),

there are k states, q(w)1 , . . . , q(w)k , and there is a tran-

sition from q0 to q(w)1 on input w1, a transition from

q(w)1 to q(w)2 on input w2, and so on, until a transi-

tion from q(w)k−1 to q(w)k on input wk. The state q(w)k
is an accepting state and indicates that the keyword
w = w1 · · ·wk has been found.

3.8. AN APPLICATION OF NFA’S: TEXT SEARCH 119

The NFA constructed above can then be converted to a
DFA using the subset construction.

Here is an example where Σ = {a, b} and the set of
keywords is

{aba, ab, ba}.

0

qaba1 qaba2 qaba3

qab1 qab2

qba1 qba2

a

b a

a b

b

a

a, b

Figure 3.12: NFA for the keywords aba, ab, ba.

Applying the subset construction to the NFA, we obtain
the DFA whose transition table is:

120 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

a b

0 0 1 2

1 0, qaba1 , qab1 1 3

2 0, qba1 4 2

3 0, qba1 , q
aba
2 , qab2 5 2

4 0, qaba1 , qab1 , q
ba
2 1 3

5 0, qaba1 , qab1 , q
ba
2 , q

aba
3 1 3

The final states are: 3, 4, 5.

0

1

2

3

4

5

a

b

b

a

ba

a

ba

b

a

b

Figure 3.13: DFA for the keywords aba, ab, ba.

3.8. AN APPLICATION OF NFA’S: TEXT SEARCH 121

The good news news is that, due to the very special struc-
ture of the NFA, the number of states of the correspond-
ing DFA is at most the number of states of the original
NFA!

We find that the states of the DFA are (check it yourself!):

(1) The set {q0}, associated with the start state q0 of the
NFA.

(2) For any state p ̸= q0 of the NFA reached from q0 along
a path corresponding to a string u = u1 · · · um, the
set consisting of:

(a) q0
(b) p

(c) The set of all states q of the NFA reachable from q0
by following a path whose symbols form a nonempty
suffix of u, i.e., a string of the form
ujuj+1 · · · um.

As a consequence, we get an efficient (w.r.t. time and
space) method to recognize a set of keywords. In fact,
this DFA recognizes leftmost occurrences of keywords in
a text (we can stop as soon as we enter a final state).

122 CHAPTER 3. DFA’S, NFA’S, REGULAR LANGUAGES

