Fall 2021 CIS 511

Introduction to the Theory of Computation
Jean Gallier

Homework 6
November 26, 2021; Due December 10, 2021

Problem B1 (20 pts). Let A, B,C, D be the following sets:

A= {x e N| g, is constant},

B = {(l‘, y> | Po = gOy},
C={reNlp: = ¢},
D = {x € N| ¢, is undefined for all input},

where a is a given natural number. Prove that the above sets are not computable (not
recursive).

Problem B2 (40 pts). Given any set, X, for any subset, A C X, recall that the charac-
teristic function, x a, of A is the function defined so that

(x):{l ifze A
XA 0 iffzeX—A

(i) Prove that, for any two subsets, A, B C X,

XAnB = XA XB
XAUB = XA T XB — XA " XB-

(ii) Prove that the union and the intersection of any two Diophantine sets A, B C N, is
also Diophantine.

(iii) Prove that the union and the intersection of any two listable sets A, B C N, is also
listable.

(iv) Prove that the union and the intersection of any two computable (recursive) sets,
A, B C N, is also a computable set (a recursive set).

Problem B3 (20 pts). (1) Consider the function rem: N x N — N defined such that if
n > 0, then rem(m,n) = r is the remainder of the division of m by n, namely the unique
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r € N such that r < n and m = ng+r for some ¢ € N, else rem(m,0) = m. Prove that rem
is primitive recursive.

Hint. Use bounded minimization. In your justification, distinguish the cases m < n, m >
n >0, and n = 0.

(2) Prove that there is a diophantine polynomial P(m,n,r, ¢, v) such that
r=rem(m,n+1) iff (3q,v)(P(m,n,r,q,v)=0)
for all m,n,r € N.

Problem B4 (20 pts). Recall that the floor function is defined such that for any nonneg-
ative real number z, the floor |z] of x is the unique natural number m € N such that

m<zx<m-+l.

(1) What is the the function f (from N to N) whose graph {(z,y) € N? | y = f(x)} is
defined by the polynomial

P(z,y,u,v) = (x —9y* —u)* + (z+1+0v— (y+ 1)
Recall that this means that
{(z,y) e N* |y = f(2)} = {(z,y) € N° | Bu,v)(P(z,y,u,v) = 0)}.

See Definition 7.3. What is f(7)?
(2) Prove that the subset S of N defined by the polynomial

P(a,y) =a®> —4y —1

is the set of natural numbers of the form 4k + 1 or 4k + 3, with £ € N.
(3) Prove that S is the set of all nonnegative values taken by the polynomial

Qla,y) = (a+1)(2 — a® + 4y)(a® — 4y) — 1,

with a,y € N. How do you obtain the value 77

Problem B5 (50 pts). Given an undirected graph G = (V, E) and a set C' = {cy,...,¢,}
of p colors, a coloring of G is an assignment of a color from C to each node in V' such
that no two adjacent nodes share the same color, or more precisely such that for every edge
{u,v} € E, the nodes u and v are assigned different colors. A k-coloring of a graph G is
a coloring using at most k-distinct colors. For example, the graph shown in Figure 1 has a
3-coloring (using green, blue, red).



Figure 1: Petersen graph.

The graph coloring problem is to decide whether a graph G is k-colorable for a given
integer k > 1.

(1) Give a polynomial reduction from the graph 3-coloring problem to the
3-satisfiability problem for propositions in CNF.

If |V| = n, create n x 3 propositional variables x;; with the intended meaning that z;;
is true iff node v; is colored with color j. You need to write sets of clauses to assert the
following facts:

1. Every node is colored.
2. No two distinct colors are assigned to the same node.

3. For every edge {v;,v;}, nodes v; and v; cannot be assigned the same color.

Beware that it is possible to assert that every node is assigned one and only one color
using a proposition in disjunctive normal form, but this is not a correct answer; we want a
proposition in conjunctive normal form.

(2) Prove that 2-coloring can be solved deterministically in polynomial time.

Remark: It is known that a graph has a 2-coloring iff its is bipartite, but do not use this
fact to solve B2(2). Only use material covered in the notes for CIS511.



The problem of 3-coloring is actually NP-complete, but this is a bit tricky to prove.

Problem B6 (60 pts). Let A be any p X ¢ matrix with integer coefficients and let b € Z* be
any vector with integer coefficients. The 0-1 integer programming problem is to find whether
a system of p linear equations in ¢ variables

a11T1 + -+ Q19T = by
a1y + -+ Aiqglq = bz
ap1Z1 + -+ Apgq = by

with a;j, b; € Z has any solution x € {0,1}7, that is, with x; € {0,1}. In matrix form, if we
let
11 - Qg by T

apr *+ Opg by Lq
then we write the above system as
Ax =b.
(i) Prove that the 0-1 integer programming problem is in N'P.

(ii) Prove that the restricted 0-1 integer programming problem in which the coefficients of
A are 0 or 1 and all entries in b are equal to 1 is N'P-complete by providing a polynomial-time
reduction from the bounded-tiling problem. Do not try to reduce any other problem
to the 0-1 integer programming problem.

Hint. Given a tiling problem, ((7,V, H), S, 09), create a 0-1-valued variable, x,,,;, such that
Tmnt = 1 iff tile ¢ occurs in position (m,n) in some tiling. Write equations or inequalities
expressing that a tiling exists and then use “slack variables” to convert inequalities to equa-
tions. For example, to express the fact that every position is tiled by a single tile, use the

equation
Z Lmnt = 17
teT

for all m,n with 1 <m < 2s and 1 < n < s. Also, if you have an inequality such as
2£E1 + 3.932 — I3 < 5 (*)

with z1, 29, x3 € Z, then using a new variable vy, taking its values in N, that is, nonnegative
values, we obtain the equation

2%1 + 3.1‘2 — X3+ Y1 = 5, (**)
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and the inequality (x) has solutions with x, 29, x5 € Z iff the equation (**) has a solution
with 1, 29,23 € Z and y; € N. The variable y; is called a slack variable (this terminology
comes from optimization theory, more specifically, linear programming). For the 0-1-integer
programming problem, all variables, including the slack variables, take values in {0, 1}.

Conclude that the 0-1 integer programming problem is N/P-complete.

Problem B7 (20 pts).
(1) Give an example of a Diophantine set which is not computable (recursive).

(2) The family coNP is the set of complements of languages in NP, namely

coNP ={L|L e NP}

(a) Prove that P C NP N coNP.
(b) Observe that L € NP NcoNP iff L € NP and L € N'P.
Prove that if some language L € NP N coNP is N'P-complete, then NP = coNP.

Remark: It is not known whether NP = coN'P, but not likely.

TOTAL: 230 points



