Fall 2021 CIS 511

Introduction to the Theory of Computation Jean Gallier Homework 6

November 26, 2021; Due December 10, 2021

Problem B1 (20 pts). Let A, B, C, D be the following sets:

$$
\begin{aligned}
& A=\left\{x \in \mathbb{N} \mid \varphi_{x} \text { is constant }\right\} \\
& B=\left\{\langle x, y\rangle \mid \varphi_{x}=\varphi_{y}\right\} \\
& C=\left\{x \in \mathbb{N} \mid \varphi_{x}=\varphi_{a}\right\} \\
& D=\left\{x \in \mathbb{N} \mid \varphi_{x} \text { is undefined for all input }\right\}
\end{aligned}
$$

where a is a given natural number. Prove that the above sets are not computable (not recursive).

Problem B2 (40 pts). Given any set, X, for any subset, $A \subseteq X$, recall that the characteristic function, χ_{A}, of A is the function defined so that

$$
\chi_{A}(x)= \begin{cases}1 & \text { iff } x \in A \\ 0 & \text { iff } x \in X-A\end{cases}
$$

(i) Prove that, for any two subsets, $A, B \subseteq X$,

$$
\begin{aligned}
& \chi_{A \cap B}=\chi_{A} \cdot \chi_{B} \\
& \chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A} \cdot \chi_{B} .
\end{aligned}
$$

(ii) Prove that the union and the intersection of any two Diophantine sets $A, B \subseteq \mathbb{N}$, is also Diophantine.
(iii) Prove that the union and the intersection of any two listable sets $A, B \subseteq \mathbb{N}$, is also listable.
(iv) Prove that the union and the intersection of any two computable (recursive) sets, $A, B \subseteq \mathbb{N}$, is also a computable set (a recursive set).

Problem B3 (20 pts). (1) Consider the function rem: $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined such that if $n>0$, then $\operatorname{rem}(m, n)=r$ is the remainder of the division of m by n, namely the unique
$r \in \mathbb{N}$ such that $r<n$ and $m=n q+r$ for some $q \in \mathbb{N}$, else $\operatorname{rem}(m, 0)=m$. Prove that rem is primitive recursive.
Hint. Use bounded minimization. In your justification, distinguish the cases $m<n, m \geq$ $n>0$, and $n=0$.
(2) Prove that there is a diophantine polynomial $P(m, n, r, q, v)$ such that

$$
r=\operatorname{rem}(m, n+1) \quad \text { iff } \quad(\exists q, v)(P(m, n, r, q, v)=0)
$$

for all $m, n, r \in \mathbb{N}$.
Problem B4 (20 pts). Recall that the floor function is defined such that for any nonnegative real number x, the floor $\lfloor x\rfloor$ of x is the unique natural number $m \in \mathbb{N}$ such that

$$
m \leq x<m+1
$$

(1) What is the the function f (from \mathbb{N} to \mathbb{N}) whose graph $\left\{(x, y) \in \mathbb{N}^{2} \mid y=f(x)\right\}$ is defined by the polynomial

$$
P(x, y, u, v)=\left(x-y^{2}-u\right)^{2}+\left(x+1+v-(y+1)^{2}\right)^{2} .
$$

Recall that this means that

$$
\left\{(x, y) \in \mathbb{N}^{2} \mid y=f(x)\right\}=\left\{(x, y) \in \mathbb{N}^{2} \mid(\exists u, v)(P(x, y, u, v)=0)\right\}
$$

See Definition 7.3. What is $f(7)$?
(2) Prove that the subset S of \mathbb{N} defined by the polynomial

$$
P(a, y)=a^{2}-4 y-1
$$

is the set of natural numbers of the form $4 k+1$ or $4 k+3$, with $k \in \mathbb{N}$.
(3) Prove that S is the set of all nonnegative values taken by the polynomial

$$
Q(a, y)=(a+1)\left(2-a^{2}+4 y\right)\left(a^{2}-4 y\right)-1,
$$

with $a, y \in \mathbb{N}$. How do you obtain the value 7 ?
Problem B5 (50 pts). Given an undirected graph $G=(V, E)$ and a set $C=\left\{c_{1}, \ldots, c_{p}\right\}$ of p colors, a coloring of G is an assignment of a color from C to each node in V such that no two adjacent nodes share the same color, or more precisely such that for every edge $\{u, v\} \in E$, the nodes u and v are assigned different colors. A k-coloring of a graph G is a coloring using at most k-distinct colors. For example, the graph shown in Figure 1 has a 3 -coloring (using green, blue, red).

Figure 1: Petersen graph.

The graph coloring problem is to decide whether a graph G is k-colorable for a given integer $k \geq 1$.
(1) Give a polynomial reduction from the graph 3-coloring problem to the 3-satisfiability problem for propositions in CNF.

If $|V|=n$, create $n \times 3$ propositional variables $x_{i j}$ with the intended meaning that $x_{i j}$ is true iff node v_{i} is colored with color j. You need to write sets of clauses to assert the following facts:

1. Every node is colored.
2. No two distinct colors are assigned to the same node.
3. For every edge $\left\{v_{i}, v_{j}\right\}$, nodes v_{i} and v_{j} cannot be assigned the same color.

Beware that it is possible to assert that every node is assigned one and only one color using a proposition in disjunctive normal form, but this is not a correct answer; we want a proposition in conjunctive normal form.
(2) Prove that 2-coloring can be solved deterministically in polynomial time.

Remark: It is known that a graph has a 2-coloring iff its is bipartite, but do not use this fact to solve B2(2). Only use material covered in the notes for CIS511.

The problem of 3 -coloring is actually $\mathcal{N} \mathcal{P}$-complete, but this is a bit tricky to prove.
Problem B6 (60 pts). Let A be any $p \times q$ matrix with integer coefficients and let $b \in \mathbb{Z}^{p}$ be any vector with integer coefficients. The 0-1 integer programming problem is to find whether a system of p linear equations in q variables

$$
\begin{array}{cc}
a_{11} x_{1}+\cdots+a_{1 q} x_{q}= & b_{1} \\
\vdots & \vdots \\
a_{i 1} x_{1}+\cdots+a_{i q} x_{q}= & b_{i} \\
\vdots & \vdots \\
a_{p 1} x_{1}+\cdots+a_{p q} x_{q}= & b_{p}
\end{array}
$$

with $a_{i j}, b_{i} \in \mathbb{Z}$ has any solution $x \in\{0,1\}^{q}$, that is, with $x_{i} \in\{0,1\}$. In matrix form, if we let

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 q} \\
\vdots & \ddots & \vdots \\
a_{p 1} & \cdots & a_{p q}
\end{array}\right), \quad b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{p}
\end{array}\right), \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{q}
\end{array}\right),
$$

then we write the above system as

$$
A x=b .
$$

(i) Prove that the 0-1 integer programming problem is in $\mathcal{N P}$.
(ii) Prove that the restricted 0-1 integer programming problem in which the coefficients of A are 0 or 1 and all entries in b are equal to 1 is $\mathcal{N} \mathcal{P}$-complete by providing a polynomial-time reduction from the bounded-tiling problem. Do not try to reduce any other problem to the 0-1 integer programming problem.
Hint. Given a tiling problem, $\left((\mathcal{T}, V, H), \widehat{s}, \sigma_{0}\right)$, create a 0 -1-valued variable, $x_{m n t}$, such that $x_{m n t}=1$ iff tile t occurs in position (m, n) in some tiling. Write equations or inequalities expressing that a tiling exists and then use "slack variables" to convert inequalities to equations. For example, to express the fact that every position is tiled by a single tile, use the equation

$$
\sum_{t \in \mathcal{T}} x_{m n t}=1,
$$

for all m, n with $1 \leq m \leq 2 s$ and $1 \leq n \leq s$. Also, if you have an inequality such as

$$
\begin{equation*}
2 x_{1}+3 x_{2}-x_{3} \leq 5 \tag{*}
\end{equation*}
$$

with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$, then using a new variable y_{1} taking its values in \mathbb{N}, that is, nonnegative values, we obtain the equation

$$
\begin{equation*}
2 x_{1}+3 x_{2}-x_{3}+y_{1}=5, \tag{**}
\end{equation*}
$$

and the inequality $(*)$ has solutions with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ iff the equation $(* *)$ has a solution with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ and $y_{1} \in \mathbb{N}$. The variable y_{1} is called a slack variable (this terminology comes from optimization theory, more specifically, linear programming). For the 0-1-integer programming problem, all variables, including the slack variables, take values in $\{0,1\}$.

Conclude that the 0-1 integer programming problem is $\mathcal{N} \mathcal{P}$-complete.

Problem B7 (20 pts).

(1) Give an example of a Diophantine set which is not computable (recursive).
(2) The family $\cos \mathcal{N}$ is the set of complements of languages in $\mathcal{N} \mathcal{P}$, namely

$$
\operatorname{coN} \mathcal{N}=\{\bar{L} \mid L \in \mathcal{N} \mathcal{P}\}
$$

(a) Prove that $\mathcal{P} \subseteq \mathcal{N P} \cap \operatorname{coN} \mathcal{P}$.
(b) Observe that $L \in \mathcal{N} \mathcal{P} \cap \operatorname{coN} \mathcal{P}$ iff $L \in \mathcal{N} \mathcal{P}$ and $\bar{L} \in \mathcal{N} \mathcal{P}$.

Prove that if some language $L \in \mathcal{N} \mathcal{P} \cap \cos \mathcal{N}$ is $\mathcal{N} \mathcal{P}$-complete, then $\mathcal{N} \mathcal{P}=\operatorname{coN} \mathcal{P}$.

Remark: It is not known whether $\mathcal{N} \mathcal{P}=\operatorname{coN} \mathcal{P}$, but not likely.
TOTAL: 230 points

