
Spring, 2014 CIS 511

Introduction to the Theory of Computation

Jean Gallier

Homework 6

April 15, 2014; Due May 1, 2014

“A problems” are for practice only, and should not be turned in.

Problem A1. Prove that every context-free language is a recursive set.

Problem A2. Consider the definition of the Kleene T -predicate given in the notes in
Definition 5.4.1.

(i) Verify that T (x, y, z) holds iff x codes a RAM program, y is an input, and z codes a
halting computation of Px on input y.

(ii) Verify that the Kleene normal form holds:

ϕx(y) = Res[min z(T (x, y, z))].

“B problems” must be turned in.

Problem B1 (80 pts). In this problem, the fundamental property of LR-parsing (due to
Knuth) is established.

For simplicity, let us consider context-free grammars without ε-rules. Given a reduced
context-free grammar G = (V,Σ, P, S ′) augmented with start production S ′ → S, where S ′

does not appear in any other productions, the set CG of characteristic strings of G is the
following subset of V ∗ (watch out, not Σ∗):

CG = {αβ ∈ V ∗ | S ′ =⇒
rm
∗ αBv =⇒

rm
αβv,

α, β ∈ V ∗, v ∈ Σ∗, B → β ∈ P}.

In words, CG is a certain set of prefixes of sentential forms obtained in rightmost deriva-
tions: those obtained by truncating the part of the sentential form immediately following
the rightmost symbol in the righthand side of the production applied at the last step.

The fundamental property of LR-parsing is that CG is a regular language. A nondetermin-
istic automaton NCG

accepting CG can be constructed according to the method described
in Section 1 of the handout A Survey of LR-Parsing Methods, etc.. Please, review this
construction.

1



(i) Let G be the following grammar:

S ′ → E

E → E + T | T
T → T ∗ F | F
F → (E) | a

with Σ = {+, ∗, (, ), a}.
Give the automaton NCG

for the grammar G.

(ii) Using the standard algorithms, give a deterministic finite automaton equivalent to
NCG

. Do not include the “dead state”.

(iii) You shall now prove that L(NCG
) = CG!

(1) Prove the following claim by induction on the length of rightmost derivations:

Claim 1: For any nonterminal A, for every rightmost derivation

A =⇒
rm
∗ αBv =⇒

rm
αβv,

where v ∈ Σ∗, B ∈ N , and α, β ∈ V ∗, if we denote the first production in the above rightmost
derivation as A → δ, then there is a computation on input αβ from state A → “.”δ to the
final state B → β“.”.

To prove this claim, you will have to show the following (think about it in terms of parse
trees). For any nonterminal A, every rightmost derivation from A is either of the form

(i) A =⇒
rm

δ, for some production A→ δ, in which case A = B and δ = β, or of the form

(ii) A =⇒
rm

λBiρ =⇒
rm
∗ λBiw =⇒

rm
∗ λαiBwiw =⇒

rm
λαiβwiw, with w,wi ∈ Σ∗, A,B,Bi ∈ N ,

λ, ρ, αi, β ∈ V ∗, and where

Bi =⇒
rm
∗ αiBwi =⇒

rm
αiβwi and ρ =⇒

rm
∗ w.

Let Bi → δi be the first production applied in the rightmost derivation from Bi. In the
first case, there is a computation in NCG

from state A → “.”δ to the final state A → δ“.”
(where again, A→ δ = B → β), and in the second case, there is a computation in NCG

from
state A → “.”λBiρ to Bi → “.”δi on input λ, and a computation from state Bi → “.”δi to
the final state B → β“.” on input αiβ.

Conclude that CG is a subset of L(NCG
).

(2) Prove the following claim by induction on the number of ε-transitions in a computation
in NCG

:

Claim 2: For any state A → “.”δ, if there is a computation on input γ to some final
state B → β“.”, then there is some rightmost derivation A =⇒

rm
∗ αBv =⇒

rm
αβv, such that, the

production applied in the first rightmost derivation step is A→ δ, and γ = αβ.

For this, prove the following:

2



(i) Either γ = δ and the computation is from state A→ “.”δ to state A→ δ“.”, or

(ii) δ is of the form λBiρ, γ is of the form λαiβ, and there is a computation on input αiβ
from some state of the form Bi → “.”δi to the final state B → β“.”, and a rightmost
derivation as in Claim 1.

Conclude that L(NCG
) is a subset of CG, thus establishing that CG = L(NCG

).

Problem B2 (30 pts). Let Σ = {a1, . . . , ak} be some alphabet and suppose g, h1, . . . , hk
are some total functions, with g : (Σ∗)n−1 → Σ∗, and hi : (Σ∗)n+1 → Σ∗, for i = 1, . . . , k. If
we write x for (x2, . . . , xn), for any y ∈ Σ∗, where y = ai1 · · · aim (with aij ∈ Σ), define the
following sequences, uj and vj, for j = 0, . . . ,m+ 1:

u0 = ε

u1 = u0ai1
...

uj = uj−1aij
...

um = um−1aim
um+1 = umai

and

v0 = g(x)

v1 = hi1(u0, v0, x)
...

vj = hij(uj−1, vj−1, x)

...

vm = him(um−1, vm−1, x)

vm+1 = hi(y, vm, x).

(i) Prove that
vj = f(uj, x),

for j = 0, . . . ,m+ 1, where f is defined by primitive recursion from g and the hi’s, that is

f(ε, x) = g(x)

f(ya1, x) = h1(y, f(y, x), x)
...

f(yai, x) = hi(y, f(y, x), x)
...

f(yak, x) = hk(y, f(y, x), x),

3



for all y ∈ Σ∗ and all x ∈ (Σ∗)n−1. Conclude that f is a total function.

(ii) Use (i) to prove that if g and the hi’s are RAM computable, then the function, f ,
defined by primitive recursion from g and the hi’s is also RAM computable.

Problem B3 (10 pts). Prove that the function, f : Σ∗ → Σ∗, given by

f(w) = a
|w|
1

is primitive recursive (Σ = {a1, . . . , aN}).

Problem B4 (30 pts). Ackermann’s function A is defined recursively as follows:

A(0, y) = y + 1,

A(x+ 1, 0) = A(x, 1),

A(x+ 1, y + 1) = A(x, A(x+ 1, y)).

Prove that

A(0, x) = x+ 1,

A(1, x) = x+ 2,

A(2, x) = 2x+ 3,

A(3, x) = 2x+3 − 3,

and

A(4, x) = 22·
··
216

}
x − 3,

with A(4, 0) = 16− 3 = 13. Equivalently (and perhaps less confusing)

A(4, x) = 22·
··
22
}

x+3 − 3.

Problem B5 (20 pts). Prove that the following properties of partial recursive functions
are undecidable:

(a) A partial recursive function is a constant function.

(b) Two partial recursive functions ϕx and ϕy are identical.

(c) A partial recursive function ϕx is equal to a given partial recursive function ϕa.

(d) A partial recursive function diverges for all input.

Problem B6 (30 pts). Prove that it is undecidable whether a context-free grammar
generates a regular language.

Problem B7 (50 pts). Let NEXP be the class of languages accepted in time bounded
by 2p(n) by a nondeterministic Turing machine, where p(n) is a polynomial. Consider the

4



problem of tiling a 2s× s rectangle, described in Section 7.5 of the notes (slides on the web),
but only with a single initial tile σ0, and assume that s is given in binary.

(i) Prove that the above tiling problem is NEXP-complete.

(ii) Now, consider the problem of tiling the entire upper half-plane, starting with a single
tile σ0 (of course, the set of tile patterns, T , is finite). More precisely, this problem is said
to have a solution if for every s > 1, there a function σs tiling the 2s× s-rectangle.

Problem B8 (60 pts). Let A be any p×q matrix with integer coefficients and let b ∈ Zp be
any vector with integer coefficients. The 0-1 integer programming problem is to find whether
the system

Ax = b

has any solution, x ∈ {0, 1}q.

(i) Prove that the 0-1 integer programming problem is in NP .

(ii) Prove that the 0-1 integer programming problem is NP-complete by providing a
polynomial-time reduction from the bounded-tiling problem. Do not try to reduce any
other problem to the 0-1 integer programming problem.

Hint . Given a tiling problem, ((T , V,H), ŝ, σ0), create a 0-1-valued variable, xmnt, such that
xmnt = 1 iff tile t occurs in position (m,n) in some tiling. Write equations or inequalities
expressing that a tiling exists and then use “slack variables” to convert inequalities to equa-
tions. For example, to express the fact that every position is tiled by a single tile, use the
equation ∑

t∈T

xmnt = 1,

for all m,n with 1 ≤ m ≤ 2s and 1 ≤ n ≤ s.

(iii) Prove that the restricted 0-1 integer programming problem in which the coefficients
of A are 0 or 1 and all entries in b are equal to 1 is also NP-complete.

TOTAL: 310 points.

5


