
Spring, 2013 CIS 511

Introduction to the Theory of Computation

Jean Gallier

Homework 6

April 10, 2013; Due April 23, 2013, beginning of class

“A problems” are for practice only, and should not be turned in.

Problem A1. Prove that every context-free language is a recursive set.

Problem A2. Consider the definition of the Kleene T -predicate given in the notes in
Definition 5.4.1.

(i) Verify that T (x, y, z) holds iff x codes a RAM program, y is an input, and z codes a
halting computation of Px on input y.

(ii) Verify that the Kleene normal form holds:

ϕx(y) = Res[min z(T (x, y, z))].

“B problems” must be turned in.

Problem B1 (60 pts). A linear context-free grammar is a context-free grammar whose
productions are of the form either

A −→ uBv, or

A −→ u,

where A,B are nonterminals and u, v ∈ Σ∗. A language is linear context-free iff it is generated
by some linear context-free grammar.

(a) Prove that every regular language is linear context-free. Prove that if L is a linear
context-free language, then for every a ∈ Σ, the language L/a = {w ∈ Σ∗ | wa ∈ L} is also
linear context-free.
Hint . Construct a grammar using some new nonterminals, [A/a], and new productions

[A/a] −→ α, if A −→ αa ∈ P or A −→ αaB ∈ P with B
+

=⇒ ε

and
[A/a] −→ u[B/a], if A −→ uB ∈ P,

(b) Prove that it is undecidable whether a context-free language, L, is linear context-free.

1



Hint . To prove part (b), you will need the fact that a certain property P is nontrivial, where
P is defined so that for every context-free language, L, P (L) holds iff L is linear-context-free.
For this, you will need to prove that there is some context-free language that is not linear
context-free. We claim that

L = {ambmcndn | m,n ≥ 1}

is such a language, although this is not so easy to prove rigorously. One way to do so is
to prove a special pumping lemma for the linear context-free languages (which you may use
without proof).

Pumping Lemma for the linear context-free languages :

For every linear context-free grammar, G = (V,Σ, P, S), there is some integer, K ≥ 1,
so that, for every w ∈ Σ∗, if w ∈ L(G) and |w| ≥ K, then there is some decomposition,
u, v, x, y, z, of w so that

(1) w = uvxyz.

(2) uvnxynz ∈ L(G), for all n ≥ 0.

(3) v 6= ε or y 6= ε.

(4) |uvyz| ≤ K.

The new ingredient in this pumping lemma is that |uvyz| ≤ K. Then, you can use this
pumping lemma to prove that L = {ambmcndn | m,n ≥ 1} is not linear context-free.

Problem B2 (40 pts). Given any set, X, for any subset, A ⊆ X, recall that the charac-
teristic function, χA, of A is the function defined so that

χA(x) =
{

1 iff x ∈ A
0 iff x ∈ X − A.

(i) Prove that, for any two subsets, A,B ⊆ X,

χA∩B = χA · χB

χA∪B = χA + χB − χA · χB.

(ii) Given any n ≥ 2 subsets, A1, A2, . . . , An ⊆ X, prove that

χA1∩···∩An = χA1 · · ·χAn

χA1∪···∪An =
∑

I⊆{1,...,n}
I 6=∅

(−1)|I|−1
∏
i∈I

χAi
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(iii) Prove that the union and the intersection of any two r.e sets, A,B ⊆ N, is also an
r.e. set. Prove that the union and the intersection of any two recursive sets, A,B ⊆ N, is
also a recursive set.

Problem B3 (30 pts). Let Σ = {a1, . . . , ak} be some alphabet and suppose g, h1, . . . , hk
are some total functions, with g : (Σ∗)n−1 → Σ∗, and hi : (Σ∗)n+1 → Σ∗, for i = 1, . . . , k. If
we write x for (x2, . . . , xn), for any y ∈ Σ∗, where y = ai1 · · · aim (with aij ∈ Σ), define the
following sequences, uj and vj, for j = 0, . . . ,m+ 1:

u0 = ε

u1 = u0ai1
...

uj = uj−1aij
...

um = um−1aim
um+1 = umai

and

v0 = g(x)

v1 = hi1(u0, v0, x)
...

vj = hij(uj−1, vj−1, x)

...

vm = him(um−1, vm−1, x)

vm+1 = hi(y, vm, x).

(i) Prove that
vj = f(uj, x),

for j = 0, . . . ,m+ 1, where f is defined by primitive recursion from g and the hi’s, that is

f(ε, x) = g(x)

f(ya1, x) = h1(y, f(y, x), x)
...

f(yai, x) = hi(y, f(y, x), x)
...

f(yak, x) = hk(y, f(y, x), x),
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for all y ∈ Σ∗ and all x ∈ (Σ∗)n−1. Conclude that f is a total function.

(ii) Use (i) to prove that if g and the hi’s are RAM computable, then the function, f ,
defined by primitive recursion from g and the hi’s is also RAM computable.

Problem B4 (10 pts). Prove that the function, f : Σ∗ → Σ∗, given by

f(w) = a
|w|
1

is primitive recursive (Σ = {a1, . . . , aN}).

Problem B5 (30 pts). Ackermann’s function A is defined recursively as follows:

A(0, y) = y + 1,

A(x+ 1, 0) = A(x, 1),

A(x+ 1, y + 1) = A(x, A(x+ 1, y)).

Prove that

A(0, x) = x+ 1,

A(1, x) = x+ 2,

A(2, x) = 2x+ 3,

A(3, x) = 2x+3 − 3,

and

A(4, x) = 22·
··
216

}
x − 3,

with A(4, 0) = 16− 3 = 13. Equivalently (and perhaps less confusing)

A(4, x) = 22·
··
22
}

x+3 − 3.

Problem B6 (20 pts). Prove that the following properties of partial recursive functions
are undecidable:

(a) A partial recursive function is a constant function.

(b) Two partial recursive functions ϕx and ϕy are identical.

(c) A partial recursive function ϕx is equal to a given partial recursive function ϕa.

(d) A partial recursive function diverges for all input.

Problem B7 (60 pts). Let A be any p×q matrix with integer coefficients and let b ∈ Zp be
any vector with integer coefficients. The 0-1 integer programming problem is to find whether
the system

Ax = b
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has any solution, x ∈ {0, 1}q.

(i) Prove that the 0-1 integer programming problem is in NP .

(ii) Prove that the 0-1 integer programming problem is NP-complete by providing a
polynomial-time reduction from the bounded-tiling problem. Do not try to reduce any
other problem to the 0-1 integer programming problem.

Hint . Given a tiling problem, ((T , V,H), ŝ, σ0), create a 0-1-valued variable, xmnt, such that
xmnt = 1 iff tile t occurs in position (m,n) in some tiling. Write equations or inequalities
expressing that a tiling exists and then use “slack variables” to convert inequalities to equa-
tions. For example, to express the fact that every position is tiled by a single tile, use the
equation ∑

t∈T

xmnt = 1,

for all m,n with 1 ≤ m ≤ 2s and 1 ≤ n ≤ s.

(iii) Prove that the restricted 0-1 integer programming problem in which the coefficients
of A are 0 or 1 and all entries in b are equal to 1 is also NP-complete.

TOTAL: 250 points.
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