Spring, 2013 CIS 511

Introduction to the Theory of Computation
Jean Gallier

Homework 6
April 10, 2013; Due April 23, 2013, beginning of class

“A problems” are for practice only, and should not be turned in.
Problem A1l. Prove that every context-free language is a recursive set.

Problem A2. Consider the definition of the Kleene T-predicate given in the notes in
Definition 5.4.1.

(i) Verify that T'(z,y, z) holds iff x codes a RAM program, y is an input, and z codes a
halting computation of P, on input y.

(ii) Verify that the Kleene normal form holds:

vz (y) = Res[min 2(T'(x, y, 2))].

“B problems” must be turned in.

Problem B1 (60 pts). A linear context-free grammar is a context-free grammar whose
productions are of the form either

A — uBwv, or
A — u,

where A, B are nonterminals and u, v € ¥*. A language is linear context-free iff it is generated
by some linear context-free grammar.

(a) Prove that every regular language is linear context-free. Prove that if L is a linear
context-free language, then for every a € ¥, the language L/a = {w € ¥* | wa € L} is also
linear context-free.

Hint. Construct a grammar using some new nonterminals, [A/a], and new productions

[AJa] — a, if A—aaeP or A— aaBeP with B=5¢

and
[A/a] — u[B/a], if A—uBe€P,

(b) Prove that it is undecidable whether a context-free language, L, is linear context-free.
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Hint. To prove part (b), you will need the fact that a certain property P is nontrivial, where
P is defined so that for every context-free language, L, P(L) holds iff L is linear-context-free.
For this, you will need to prove that there is some context-free language that is not linear
context-free. We claim that

L ={am™v"c"d" | m,n > 1}

is such a language, although this is not so easy to prove rigorously. One way to do so is
to prove a special pumping lemma for the linear context-free languages (which you may use
without proof).

Pumping Lemma for the linear context-free languages:

For every linear context-free grammar, G = (V, %, P,S), there is some integer, K > 1,
so that, for every w € ¥*, if w € L(G) and |w| > K, then there is some decomposition,
u,v,2,Y, 2, of w so that

(1) w = wrye.
(2) wzy"z € L(G), for alln > 0.
(3) v#eory#e.

(4) lwyz| < K.

The new ingredient in this pumping lemma is that |uvyz| < K. Then, you can use this
pumping lemma to prove that L = {a™b™c"d" | m,n > 1} is not linear context-free.

Problem B2 (40 pts). Given any set, X, for any subset, A C X recall that the charac-
teristic function, x4, of A is the function defined so that

(x):{l ifze A
XA 0 iffzeX—A

(i) Prove that, for any two subsets, A, B C X,

XAnB = XA ' XB
XAUB = XA T XB— XA XB-

(ii) Given any n > 2 subsets, Ay, As, ..., A, C X, prove that

XAlm"'mAn = XAl o XAn
XA1U"'UA7L = Z (_1)|[‘_1 H XAZ
IC{1,...,n} el
I#£0



(iii) Prove that the union and the intersection of any two r.e sets, A, B C N, is also an
r.e. set. Prove that the union and the intersection of any two recursive sets, A, B C N, is
also a recursive set.

Problem B3 (30 pts). Let ¥ = {ay,...,ar} be some alphabet and suppose g, hy, ..., hy

are some total functions, with g: (X*)""! — ¥* and h;: (X9)"T — ¥* fori=1,... k. If
we write T for (za,...,z,), for any y € ¥*, where y = a;, - - a;,, (With a;; € X), define the
following sequences, u; and v;, for j =0,...,m + 1:
Ug = €
Uy = Uplyy
u; = uj_laij
Uy = Um—144,,
Um+1 = UGy
and
v = g(T)
vy = hil (U,O, Vo, T)
vj = hi(wj-1,v;-1,7T)
Uy = him(um—lavm—laf)
Um+1 = hz(ya U, f)

(i) Prove that

vj = f(uﬁf)v
for y =0,...,m+ 1, where f is defined by primitive recursion from g and the h;’s, that is
flex) = ¢(T)

flyar,7) = h(y, f(y,T),7)
fyai, @) = hily, f(y,7),T)

f(yak:af) = hkz(ymf(yaf)vf)?



for all y € ¥* and all T € (X*)"~1. Conclude that f is a total function.

(ii) Use (i) to prove that if g and the h;’s are RAM computable, then the function, f,
defined by primitive recursion from g and the h;’s is also RAM computable.

Problem B4 (10 pts). Prove that the function, f: ¥* — ¥*  given by

f(w) = at”
is primitive recursive (X = {aq,...,an}).
Problem B5 (30 pts). Ackermann’s function A is defined recursively as follows:
A0, y) = y+1,

Az +1,0) = Az, 1),
Alx+1,y+1) = Az, A(x +1,y)).

Prove that
A0, z) = x+1,
All,z) = x+42,
A2, z) = 2x+3,
A3, z) = 2713 -3,
and

16
A4, z) =27 }“” -3,
with A(4,0) = 16 — 3 = 13. Equivalently (and perhaps less confusing)

Ald,z) =2 }”3 —3.

Problem B6 (20 pts). Prove that the following properties of partial recursive functions
are undecidable:

(a) A partial recursive function is a constant function.

(b) Two partial recursive functions ¢, and ¢, are identical.

(c) A partial recursive function ¢, is equal to a given partial recursive function (,.
(

d) A partial recursive function diverges for all input.

Problem B7 (60 pts). Let A be any p X ¢ matrix with integer coefficients and let b € Z” be
any vector with integer coefficients. The 0-1 integer programming problem is to find whether
the system

Az =10



has any solution, z € {0, 1}
(i) Prove that the 0-1 integer programming problem is in N'P.

(ii) Prove that the 0-1 integer programming problem is NP-complete by providing a
polynomial-time reduction from the bounded-tiling problem. Do not try to reduce any
other problem to the 0-1 integer programming problem.

Hint. Given a tiling problem, ((7,V, H), s, 0¢), create a 0-1-valued variable, z,,,;, such that
Tt = 1 iff tile ¢ occurs in position (m,n) in some tiling. Write equations or inequalities
expressing that a tiling exists and then use “slack variables” to convert inequalities to equa-
tions. For example, to express the fact that every position is tiled by a single tile, use the

equation
E Tmnt = ]-7
teT

for all m,n with 1 <m <2sand 1 <n <s.

(iii) Prove that the restricted 0-1 integer programming problem in which the coefficients
of A are 0 or 1 and all entries in b are equal to 1 is also N'P-complete.

TOTAL: 250 points.



