Spring, 2013 CIS 511

Introduction to the Theory of Computation Jean Gallier Homework 6

April 10, 2013; Due April 23, 2013, beginning of class
"A problems" are for practice only, and should not be turned in.
Problem A1. Prove that every context-free language is a recursive set.
Problem A2. Consider the definition of the Kleene T-predicate given in the notes in Definition 5.4.1.
(i) Verify that $T(x, y, z)$ holds iff x codes a RAM program, y is an input, and z codes a halting computation of P_{x} on input y.
(ii) Verify that the Kleene normal form holds:

$$
\varphi_{x}(y)=\operatorname{Res}[\min z(T(x, y, z))] .
$$

"B problems" must be turned in.
Problem B1 (60 pts). A linear context-free grammar is a context-free grammar whose productions are of the form either

$$
\begin{aligned}
& A \longrightarrow u B v, \quad \text { or } \\
& A \longrightarrow u,
\end{aligned}
$$

where A, B are nonterminals and $u, v \in \Sigma^{*}$. A language is linear context-free iff it is generated by some linear context-free grammar.
(a) Prove that every regular language is linear context-free. Prove that if L is a linear context-free language, then for every $a \in \Sigma$, the language $L / a=\left\{w \in \Sigma^{*} \mid w a \in L\right\}$ is also linear context-free.
Hint. Construct a grammar using some new nonterminals, $[A / a]$, and new productions

$$
[A / a] \longrightarrow \alpha, \quad \text { if } \quad A \longrightarrow \alpha a \in P \quad \text { or } \quad A \longrightarrow \alpha a B \in P \quad \text { with } \quad B \xlongequal{+} \epsilon
$$

and

$$
[A / a] \longrightarrow u[B / a], \quad \text { if } \quad A \longrightarrow u B \in P,
$$

(b) Prove that it is undecidable whether a context-free language, L, is linear context-free.

Hint. To prove part (b), you will need the fact that a certain property P is nontrivial, where P is defined so that for every context-free language, $L, P(L)$ holds iff L is linear-context-free. For this, you will need to prove that there is some context-free language that is not linear context-free. We claim that

$$
L=\left\{a^{m} b^{m} c^{n} d^{n} \mid m, n \geq 1\right\}
$$

is such a language, although this is not so easy to prove rigorously. One way to do so is to prove a special pumping lemma for the linear context-free languages (which you may use without proof).

Pumping Lemma for the linear context-free languages:
For every linear context-free grammar, $G=(V, \Sigma, P, S)$, there is some integer, $K \geq 1$, so that, for every $w \in \Sigma^{*}$, if $w \in L(G)$ and $|w| \geq K$, then there is some decomposition, u, v, x, y, z, of w so that
(1) $w=u v x y z$.
(2) $u v^{n} x y^{n} z \in L(G)$, for all $n \geq 0$.
(3) $v \neq \epsilon$ or $y \neq \epsilon$.
(4) $|u v y z| \leq K$.

The new ingredient in this pumping lemma is that $|u v y z| \leq K$. Then, you can use this pumping lemma to prove that $L=\left\{a^{m} b^{m} c^{n} d^{n} \mid m, n \geq 1\right\}$ is not linear context-free.
Problem B2 (40 pts). Given any set, X, for any subset, $A \subseteq X$, recall that the characteristic function, χ_{A}, of A is the function defined so that

$$
\chi_{A}(x)= \begin{cases}1 & \text { iff } x \in A \\ 0 & \text { iff } x \in X-A\end{cases}
$$

(i) Prove that, for any two subsets, $A, B \subseteq X$,

$$
\begin{aligned}
& \chi_{A \cap B}=\chi_{A} \cdot \chi_{B} \\
& \chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A} \cdot \chi_{B} .
\end{aligned}
$$

(ii) Given any $n \geq 2$ subsets, $A_{1}, A_{2}, \ldots, A_{n} \subseteq X$, prove that

$$
\begin{aligned}
& \chi_{A_{1} \cap \cdots \cap A_{n}}=\chi_{A_{1}} \cdots \chi_{A_{n}} \\
& \chi_{A_{1} \cup \cdots \cup A_{n}}=\sum_{\substack{I \subseteq\{1, \ldots, n\} \\
I \neq \emptyset}}(-1)^{|I|-1} \prod_{i \in I} \chi_{A_{i}}
\end{aligned}
$$

(iii) Prove that the union and the intersection of any two r.e sets, $A, B \subseteq \mathbb{N}$, is also an r.e. set. Prove that the union and the intersection of any two recursive sets, $A, B \subseteq \mathbb{N}$, is also a recursive set.

Problem B3 (30 pts). Let $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ be some alphabet and suppose g, h_{1}, \ldots, h_{k} are some total functions, with $g:\left(\Sigma^{*}\right)^{n-1} \rightarrow \Sigma^{*}$, and $h_{i}:\left(\Sigma^{*}\right)^{n+1} \rightarrow \Sigma^{*}$, for $i=1, \ldots, k$. If we write \bar{x} for $\left(x_{2}, \ldots, x_{n}\right)$, for any $y \in \Sigma^{*}$, where $y=a_{i_{1}} \cdots a_{i_{m}}$ (with $a_{i_{j}} \in \Sigma$), define the following sequences, u_{j} and v_{j}, for $j=0, \ldots, m+1$:

$$
\begin{aligned}
u_{0} & =\epsilon \\
u_{1} & =u_{0} a_{i_{1}} \\
& \vdots \\
u_{j} & =u_{j-1} a_{i_{j}} \\
& \vdots \\
u_{m} & =u_{m-1} a_{i_{m}} \\
u_{m+1} & =u_{m} a_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
v_{0} & =g(\bar{x}) \\
v_{1} & =h_{i_{1}}\left(u_{0}, v_{0}, \bar{x}\right) \\
& \vdots \\
v_{j} & =h_{i_{j}}\left(u_{j-1}, v_{j-1}, \bar{x}\right) \\
& \vdots \\
v_{m} & =h_{i_{m}}\left(u_{m-1}, v_{m-1}, \bar{x}\right) \\
v_{m+1} & =h_{i}\left(y, v_{m}, \bar{x}\right) .
\end{aligned}
$$

(i) Prove that

$$
v_{j}=f\left(u_{j}, \bar{x}\right)
$$

for $j=0, \ldots, m+1$, where f is defined by primitive recursion from g and the h_{i} 's, that is

$$
\begin{aligned}
f(\epsilon, \bar{x}) & =g(\bar{x}) \\
f\left(y a_{1}, \bar{x}\right) & =h_{1}(y, f(y, \bar{x}), \bar{x}) \\
& \vdots \\
f\left(y a_{i}, \bar{x}\right) & =h_{i}(y, f(y, \bar{x}), \bar{x}) \\
& \vdots \\
f\left(y a_{k}, \bar{x}\right) & =h_{k}(y, f(y, \bar{x}), \bar{x}),
\end{aligned}
$$

for all $y \in \Sigma^{*}$ and all $\bar{x} \in\left(\Sigma^{*}\right)^{n-1}$. Conclude that f is a total function.
(ii) Use (i) to prove that if g and the h_{i} 's are RAM computable, then the function, f, defined by primitive recursion from g and the h_{i} 's is also RAM computable.

Problem B4 (10 pts). Prove that the function, $f: \Sigma^{*} \rightarrow \Sigma^{*}$, given by

$$
f(w)=a_{1}^{|w|}
$$

is primitive recursive $\left(\Sigma=\left\{a_{1}, \ldots, a_{N}\right\}\right)$.
Problem B5 (30 pts). Ackermann's function A is defined recursively as follows:

$$
\begin{aligned}
A(0, y) & =y+1 \\
A(x+1,0) & =A(x, 1) \\
A(x+1, y+1) & =A(x, A(x+1, y))
\end{aligned}
$$

Prove that

$$
\begin{aligned}
A(0, x) & =x+1 \\
A(1, x) & =x+2 \\
A(2, x) & =2 x+3 \\
A(3, x) & =2^{x+3}-3
\end{aligned}
$$

and

$$
\left.A(4, x)=2^{2 \cdot \cdot^{2^{16}}}\right\} x-3
$$

with $A(4,0)=16-3=13$. Equivalently (and perhaps less confusing)

$$
\left.A(4, x)=2^{22^{2^{2}}}\right\}^{x+3}-3
$$

Problem B6 (20 pts). Prove that the following properties of partial recursive functions are undecidable:
(a) A partial recursive function is a constant function.
(b) Two partial recursive functions φ_{x} and φ_{y} are identical.
(c) A partial recursive function φ_{x} is equal to a given partial recursive function φ_{a}.
(d) A partial recursive function diverges for all input.

Problem B7 (60 pts). Let A be any $p \times q$ matrix with integer coefficients and let $b \in \mathbb{Z}^{p}$ be any vector with integer coefficients. The 0-1 integer programming problem is to find whether the system

$$
A x=b
$$

has any solution, $x \in\{0,1\}^{q}$.
(i) Prove that the 0-1 integer programming problem is in $\mathcal{N P}$.
(ii) Prove that the 0-1 integer programming problem is $\mathcal{N} \mathcal{P}$-complete by providing a polynomial-time reduction from the bounded-tiling problem. Do not try to reduce any other problem to the 0-1 integer programming problem.
Hint. Given a tiling problem, $\left((\mathcal{T}, V, H), \widehat{s}, \sigma_{0}\right)$, create a $0-1$-valued variable, $x_{m n t}$, such that $x_{m n t}=1$ iff tile t occurs in position (m, n) in some tiling. Write equations or inequalities expressing that a tiling exists and then use "slack variables" to convert inequalities to equations. For example, to express the fact that every position is tiled by a single tile, use the equation

$$
\sum_{t \in \mathcal{T}} x_{m n t}=1,
$$

for all m, n with $1 \leq m \leq 2 s$ and $1 \leq n \leq s$.
(iii) Prove that the restricted 0-1 integer programming problem in which the coefficients of A are 0 or 1 and all entries in b are equal to 1 is also $\mathcal{N} \mathcal{P}$-complete.

TOTAL: 250 points.

