Spring, 2014 CIS 511

Introduction to the Theory of Computation Jean Gallier

Homework 5

March 28, 2014; Due April April 15, 2014

"A problems" are for practice only, and should not be turned in.

Problem A1. Prove that the context-free languages are closed under concatenation.

Problem A2. Given a homomorphism $h: \Sigma^* \to \Delta^*$, for any any context-free language $L \subseteq \Delta^*$, prove that h(L) is context-free.

"B problems" must be turned in.

Problem B1 (50 pts). Give context-free grammars for the languages

$$L_1 = \{xcy \mid x \neq y, x, y \in \{a, b\}^*\}$$
$$L_2 = \{xcy \mid x \neq y^R, x, y \in \{a, b\}^*\}.$$

Problem B2 (40 pts). Use the pumping lemma (or Ogden's lemma) to show that the following languages are not context-free:

$$L_{1} = \{a^{m}b^{n}c^{p} \mid 1 \le m < n < p\}$$
$$L_{2} = \{a^{n}b^{n}c^{p} \mid n, p \ge 1, p \ne n\}$$

Hint. For L_1 , consider $a^m b^n c^p$ with m large, and let the a's be distinguished. For L_2 , let k be the integer of Ogden's lemma. Let p = k!, and consider $a^{2p}b^{2p}c^p$, with the c's distinguished.

Problem B3 (50 pts). Given a context-free language L and a regular language R, prove that $L \cap R$ is context-free.

Do not use PDA's to solve this problem!

Hint. Without loss of generality, assume that L = L(G), where $G = (V, \Sigma, P, S)$ is in Chomsky normal form, and let R = L(D), for some DFA $D = (Q, \Sigma, \delta, q_0, F)$. Use a kind of cross-product construction as sketched below. Construct a CFG G_2 whose set of nonterminals is $Q \times N \times Q \cup \{S_0\}$, where S_0 is a new nonterminal, and whose productions are of the form:

$$S_0 \to (q_0, S, f),$$

for every $f \in F$;

$$(p, A, \delta(p, a)) \to a \quad \text{iff} \quad (A \to a) \in P,$$

for all $a \in \Sigma$, all $A \in N$, and all $p \in Q$;

$$(p, A, s) \to (p, B, q)(q, C, s) \quad \text{iff} \quad (A \to BC) \in P,$$

for all $p, q, s \in Q$ and all $A, B, C \in N$;

$$S_0 \to \epsilon$$
 iff $(S \to \epsilon) \in P$ and $q_0 \in F$.

Prove that for all $p, q \in Q$, all $A \in N$, all $w \in \Sigma^+$, and all $n \ge 1$,

$$(p, A, q) \xrightarrow[lm]{n}_{G_2} w$$
 iff $A \xrightarrow[lm]{n}_{G} w$ and $\delta^*(p, w) = q$.

Conclude that $L(G_2) = L \cap R$.

Problem B4 (60 pts). Let $L \subseteq \{a\}^*$ be a context-free language. Prove that L is actually a regular language. Proceed as follows. If L is finite, this is obvious, thus, assume that L is infinite. Let L = L(G), for some CFG G.

(i) Let K > 1 be the constant of the pumping lemma for G, and let r = K!. Prove the following fact: for every $w \in L$, if $|w| \ge K$, then

$$\{wa^{rn} \mid n \ge 0\} \subseteq L.$$

(ii) For every *i* such that $0 \le i < r$, let

$$L_i = \{a^n \mid a^n \in L, n \ge K, n \equiv i \bmod r\}.$$

Clearly,

$$L = \{a^n \mid a^n \in L, n < K\} \cup \bigcup_{i=0}^{r-1} L_i.$$

If $L_i \neq \emptyset$, let z_i be the shortest string in L_i . Prove that

$$L_i = \{ z_i a^{rm} \mid m \ge 0 \}.$$

Conclude that L is regular.

(iii) Prove that it is decidable whether $L_i = \emptyset$.

(iv) Given a context-free language L over $\{a, b\}$, prove that it is decidable whether $\{a\}^* \subseteq L$.

Problem B5 (40 pts). (1) Given the alphabet $\Sigma_2 = \{a, b, \overline{a}, \overline{b}\}$, define the relation \simeq on Σ_2^* as follows: For all $u, v \in \Sigma_2^*$,

$$u \simeq v$$
 iff $\exists x, y \in \Sigma_2^*$, $u = xa\overline{a}y$, $v = xy$ or $u = xbby$, $v = xy$

Let \simeq^* be the reflexive and transitive closure of \simeq , and let $D_2 = \{w \in \Sigma_2^* \mid w \simeq^* \epsilon\}$. Give a context-free grammar for D_2 , and justify your answer.

Note: Strings such as $a\overline{a}b\overline{b}$ and $ab\overline{b}\overline{a}$ are in D_2 .

(2) Given the alphabet $\Sigma_m = \{a_1, \ldots, a_m, \overline{a_1}, \ldots, \overline{a_m}\}$, define the relation \simeq on Σ_m^* as follows: For all $u, v \in \Sigma_m^*$,

$$u \simeq v$$
 iff $\exists x, y \in \Sigma_m^*$, $u = xa_i \overline{a_i} y$, $v = xy$, for some $i, 1 \le i \le m$.

Let \simeq^* be the reflexive and transitive closure of \simeq , and let $D_m = \{w \in \Sigma_m^* \mid w \simeq^* \epsilon\}$. Give a context-free grammar for D_m , and justify your answer (very!) rigorously.

Note: D_m is know as the Dyck set on m letters.

Problem B6 (30 pts). Given any two alphabets Σ, Δ , a substitution is a function $\tau: \Sigma \to 2^{\Delta^*}$ assigning some language $\tau(a) \subseteq \Delta^*$ to every symbol $a \in \Sigma$. A substitution $\tau: \Sigma \to 2^{\Delta^*}$ is extended to a map $\tau: 2^{\Sigma^*} \to 2^{\Delta^*}$ by first extending τ to strings using the following definition

$$\tau(\epsilon) = \{\epsilon\},\$$

$$\tau(ua) = \tau(u)\tau(a)$$

where $u \in \Sigma^*$ and $a \in \Sigma$, and then to languages by letting

$$\tau(L) = \bigcup_{w \in L} \tau(w),$$

for every language $L \subseteq \Sigma^*$.

For example, let $\tau \colon \Sigma \to 2^{\Sigma^*}$ be the substitution defined such that $\tau(a) = \{\epsilon, a\}$ for every $a \in \Sigma$. Explain (in words) what $\tau(L)$ is.

In general, prove that if L is a context-free language and if $\tau(a)$ is a context-free language for every $a \in \Sigma$, then $\tau(L)$ is also a context-free language.

Problem B7 (60 pts). Let $h: \Sigma^* \to \Delta^*$ be a homomorphism, and let $L \subseteq \Delta^*$. Assume that $\epsilon \notin L$.

(i) Define $\Omega, \Gamma \subseteq \Sigma$ as follows:

$$\Omega = \{ a \in \Sigma \mid h(a) \neq \epsilon \},\$$

$$\Gamma = \{ a \in \Sigma \mid h(a) = \epsilon \}$$

Let $\overline{\Omega}$ be the new set of symbols

 $\overline{\Omega} = \{ \overline{a} \mid a \in \Omega \},\$

and let E be a new symbol.

Let τ_1 be the substitution on Δ defined such that

$$\tau_1(a) = (\overline{\Omega} \cup \{E\})^* \{a\} (\overline{\Omega} \cup \{E\})^*,$$

for all $a \in \Delta$, and let

$$R = \left(\{\overline{a}h(a) \mid a \in \Omega\} \cup \{E\}\right)^*$$

and

$$L_2 = \tau_1(L) \cap R.$$

Prove that

$$L_2 \cap \left(\overline{\Omega} \cup \{h(a) \mid a \in \Omega\}\right)^* = \{\overline{a_1}h(a_1)\overline{a_2}h(a_2)\cdots\overline{a_n}h(a_n) \mid h(a_1a_2\cdots a_n) \in L\}.$$

(ii) Let $g: (\Delta \cup \overline{\Omega} \cup \{E\})^* \to (\Sigma \cup \{E\})^*$ be the homomorphism defined such that

$$g(a) = \epsilon \quad \text{if } a \in \Delta$$

$$g(\overline{a}) = a \quad \text{if } a \in \Omega$$

$$g(E) = E,$$

let

$$L_3 = g(L_2),$$

and and let τ_2 be the substitution on $\Sigma \cup \{E\}$ defined such that

$$\tau_2(a) = \{a\} \quad \text{if } a \in \Sigma, \\ \tau_2(E) = \Gamma^+.$$

Observe that for every $w \in L$, if $h^{-1}(w) \neq \emptyset$, then there is some $y \in L_3$ such that h(y) = w, and that every $y \in L_3$ is in $h^{-1}(L)$ after the occurrences of E have been erased.

Let \mathcal{L} be a family of languages that is closed under substitution by regular languages, intersection with regular languages, and union with regular languages. Prove that for every $L \in \mathcal{L}$, if $\epsilon \notin L$, then

$$\tau_2(g(\tau_1(L) \cap R)) = h^{-1}(L).$$

Prove that if $\epsilon \in L$, then

$$h^{-1}(L) = \tau_2(g(\tau_1(L - \{\epsilon\}) \cap R)) \cup \Gamma^*.$$

Conclude that \mathcal{L} is closed under inverse homomorphisms.

(iii) Prove that if L is context-free, then so is

$$h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}.$$

Do not give a proof based on PDA's!

Extra Credit: 80 points. Let $\Sigma = \{a_1, \ldots, a_k\}$ be an alphabet, and assume that Σ is totally ordered in the following way: $a_1 < a_2 < \cdots < a_k$. Recall that the *string embedding* ordering on Σ^* is the smallest partial order \ll satisfying the following two properties:

- (1) (deletion property) $uv \ll uav$, for all $u, v \in \Sigma^*$ and $a \in \Sigma$;
- (2) (monotonicity) $uav \ll ubv$ whenever a < b, for all $u, v \in \Sigma^*$ and $a, b \in \Sigma$.

We say that a language $L \subseteq \Sigma^*$ is closed under string embedding if for all $u, v \in \Sigma^*$, if $v \in L$ and $u \ll v$, then $u \in L$. Prove that if a language L is closed under string embedding, then it is regular.

TOTAL: 330 + 80 points.