Fall 2021 CIS 511

Introduction to the Theory of Computation Jean Gallier
 Homework 4

October 27, 2021; Revised due date: November 12, 2021

Problem B1 (60 pts). (1) Prove that the intersection, $L_{1} \cap L_{2}$, of two regular languages, L_{1} and L_{2}, is regular, using the Myhill-Nerode characterization of regular languages.
(2) Let $h: \Sigma^{*} \rightarrow \Delta^{*}$ be a homomorphism, as defined on page 21 of the notes. For any regular language, $L^{\prime} \subseteq \Delta^{*}$, prove that

$$
h^{-1}\left(L^{\prime}\right)=\left\{w \in \Sigma^{*} \mid h(w) \in L^{\prime}\right\}
$$

is regular, using the Myhill-Nerode characterization of regular languages.
Proceed as follows: Let \simeq^{\prime} be a right-invariant equivalence relation on Δ^{*} of finite index n, such that L^{\prime} is the union of some of the equivalence classes of \simeq^{\prime}. Let \simeq be the relation on Σ^{*} defined by

$$
u \simeq v \quad \text { iff } \quad h(u) \simeq^{\prime} h(v)
$$

Prove that \simeq is a right-invariant equivalence relation of finite index m, with $m \leq n$, and that $h^{-1}\left(L^{\prime}\right)$ is the union of equivalence classes of \simeq.

To prove that that the index of \simeq is at most the index of \simeq^{\prime}, use h to define a function $\widehat{h}:\left(\Sigma^{*} / \simeq\right) \rightarrow\left(\Delta^{*} / \simeq^{\prime}\right)$ from the partition associated with \simeq to the partition associated with \simeq^{\prime}, and prove that \widehat{h} is injective.

Prove that the number of states of any minimal DFA for $h^{-1}\left(L^{\prime}\right)$ is at most the number of states of any minimal DFA for L^{\prime}. Can it be strictly smaller? If so, give an explicit example.

Problem B2 (40 pts). The purpose of this problem is to get a fast algorithm for testing state equivalence in a DFA. Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite automaton. Recall that state equivalence is the equivalence relation \equiv on Q, defined such that,

$$
p \equiv q \quad \text { iff } \quad \forall z \in \Sigma^{*}\left(\delta^{*}(p, z) \in F \quad \text { iff } \quad \delta^{*}(q, z) \in F\right)
$$

and that i-equivalence is the equivalence relation \equiv_{i} on Q, defined such that,

$$
p \equiv_{i} q \quad \text { iff } \quad \forall z \in \Sigma^{*},|z| \leq i\left(\delta^{*}(p, z) \in F \quad \text { iff } \quad \delta^{*}(q, z) \in F\right) .
$$

A relation $S \subseteq Q \times Q$ is a forward closure iff it is an equivalence relation and whenever $(p, q) \in S$, then $(\delta(p, a), \delta(q, a)) \in S$, for all $a \in \Sigma$.

We say that a forward closure S is good iff whenever $(p, q) \in S$, then $\operatorname{good}(p, q)$, where $\operatorname{good}(p, q)$ holds iff either both $p, q \in F$, or both $p, q \notin F$.

Given any relation $R \subseteq Q \times Q$, recall that the smallest equivalence relation R_{\approx} containing R is the relation $\left(R \cup R^{-1}\right)^{*}$ (where $R^{-1}=\{(q, p) \mid(p, q) \in R\}$, and $\left(R \cup R^{-1}\right)^{*}$ is the reflexive and transitive closure of $\left(R \cup R^{-1}\right)$). We define the sequence of relations $R_{i} \subseteq Q \times Q$ as follows:

$$
\begin{aligned}
R_{0} & =R_{\approx} \\
R_{i+1} & =\left(R_{i} \cup\left\{(\delta(p, a), \delta(q, a)) \mid(p, q) \in R_{i}, a \in \Sigma\right\}\right) \approx
\end{aligned}
$$

(1) Prove that $R_{i_{0}+1}=R_{i_{0}}$ for some least i_{0}, and that $R_{i_{0}}$ is the smallest forward closure containing R.

We denote the smallest forward closure $R_{i_{0}}$ containing R as R^{\dagger}, and call it the forward closure of R.
(2) Prove that $p \equiv q$ iff the forward closure R^{\dagger} of the relation $R=\{(p, q)\}$ is good.

Hint. First, prove that if R^{\dagger} is good, then

$$
R^{\dagger} \subseteq \equiv
$$

For this, prove by induction that

$$
R^{\dagger} \subseteq \equiv_{i}
$$

for all $i \geq 0$.
Then, prove that if $p \equiv q$, then

$$
R^{\dagger} \subseteq \equiv
$$

For this, prove that \equiv is an equivalence relation containing $R=\{(p, q)\}$ and that \equiv is forward closed.

Problem B3 (50 pts). Give context-free grammars for the languages

$$
\begin{aligned}
& L_{1}=\left\{x c y \mid x \neq y, x, y \in\{a, b\}^{*}\right\} \\
& L_{2}=\left\{x c y \mid x \neq y^{R}, x, y \in\{a, b\}^{*}\right\} .
\end{aligned}
$$

Hint. Think nondeterministically.
Problem B4 (50 pts). Given a context-free language L and a regular language R, prove that $L \cap R$ is context-free.

Do not use PDA's to solve this problem!
Hint. Without loss of generality, assume that $L=L(G)$, where $G=(V, \Sigma, P, S)$ is in Chomsky normal form, and let $R=L(D)$, for some DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$. Use a kind of cross-product construction as sketched below. Construct a CFG G_{2} whose set of nonterminals is $Q \times N \times Q \cup\left\{S_{0}\right\}$, where S_{0} is a new nonterminal, and whose productions are of the form:

$$
S_{0} \rightarrow\left(q_{0}, S, f\right)
$$

for every $f \in F$;

$$
(p, A, \delta(p, a)) \rightarrow a \quad \text { iff } \quad(A \rightarrow a) \in P
$$

for all $a \in \Sigma$, all $A \in N$, and all $p \in Q$;

$$
(p, A, s) \rightarrow(p, B, q)(q, C, s) \quad \text { iff } \quad(A \rightarrow B C) \in P
$$

for all $p, q, s \in Q$ and all $A, B, C \in N$;

$$
S_{0} \rightarrow \epsilon \quad \text { iff } \quad(S \rightarrow \epsilon) \in P \text { and } q_{0} \in F
$$

Prove that for all $p, q \in Q$, all $A \in N$, all $w \in \Sigma^{+}$, and all $n \geq 1$,

$$
(p, A, q) \underset{l m}{n} G_{G_{2}} w \quad \text { iff } A \xlongequal[l m]{n} w \quad \text { and } \quad \delta^{*}(p, w)=q .
$$

Conclude that $L\left(G_{2}\right)=L \cap R$.

TOTAL: 200 points.

