Spring, 2014 CIS 511

Introduction to the Theory of Computation
Jean Gallier

Homework 4

March 6, 2014; Due March 27, 2014

“A problems” are for practice only, and should not be turned in.

Problem A1l. Given any two context-free languages L, and Ly over the same alphabet X,
prove that Ly U Ly and Ly Ly are also context-free.

Problem A2. Let ¥ and A be some alphabets, and let h: X* — A* be a homomorphism.
Given any language L C >*, recall that

h(L) = {h(w) € A* | we L}.
Prove that if L is context-free, then h(L) is also context-free.
Problem A3. Given any language L C »*, let
LR = {w™ | we L},
the reversal language of L (where w'* denotes the reversal of the string w). Prove that if L
is context-free, then L? is also context-free.

“B problems” must be turned in.

Problem B1 (80 pts). (i) Prove that the conclusion of the pumping lemma holds for the
following language L over {a,b}*, and yet, L is not regular!

L={w | 3In>1,3r; €a™, Jy; € b, 1 <i < n, nisnot prime, w = T1y; -+ TpYn }-
(ii) Consider the following version of the pumping lemma. For any regular language L,
there is some m > 1 so that for every y € ¥*, if |y| = m, then there exist u, z,v € ¥* so that
(1) y = uav;
(2) = # €

(3) For all z € ¥, .
yze L iff wzr'vzel

for all i > 0.



Prove that this pumping lemma holds.

(iii) Prove that the converse of the pumping lemma in (ii) also holds, i.e., if a language
L satisfies the pumping lemma in (ii), then it is regular.

(iv) Consider yet another version of the pumping lemma. For any regular language L,
there is some m > 1 so that for every y € ¥* if |y| > m, then there exist u, z,v € ¥* so that

(1) y = uav;

(2) = #€

(3) For all o, 8 € ¥*, .
auf € L iff aux'f e L

for all + > 0.
Prove that this pumping lemma holds.

(v) Prove that the converse of the pumping lemma in (iv) also holds, i.e., if a language
L satisfies the pumping lemma in (iv), then it is regular.

Problem B2 (80 pts). This problem is based on the method proved correct in Problem
B6 of Homework 3. Also, consult Section 2.6 of the notes.

Given a DFA D = (Q,%,9,qo, F), for any two states p,q € @, a fast algorithm for
computing the forward closure of the relation R = {(p, ¢)}, or detecting a bad pair of states,
can be obtained as follows: An equivalence relation on () is represented by a partition II.
Each equivalence class C' in the partition is represented by a tree structure consisting of
nodes and (parent) pointers, with the pointers from the sons of a node to the node itself.
The root has a null pointer. Each node also maintains a counter keeping track of the number
of nodes in the subtree rooted at that node.

Two functions union and find are defined as follows. Given a state p, find(p,II) finds
the root of the tree containing p as a node (not necessarily a leaf). Given two root nodes
P, q, union(p, q,II) forms a new partition by merging the two trees with roots p and ¢ as
follows: if the counter of p is smaller than that of ¢, then let the root of p point to ¢, else let
the root of ¢ point to p.

In order to speed up the algorithm, using an idea due to Tarjan, we can modify find
as follows: during a call find(p,II), as we follow the path from p to the root r of the tree
containing p, we redirect the parent pointer of every node ¢ on the path from p (including p
itself) to r.

Say that a pair (p,q) is bad iff either both p € F and ¢ ¢ F, or both p ¢ F and ¢ € F.
The function bad is such that bad({(p,q)) = true if (p,q) is bad, and bad({p,q)) = false
otherwise.

For details of this implementation of partitions, see Fundamentals of data structures, by
Horowitz and Sahni, Computer Science press, pp. 248-256.

Then, the algorithm is as follows:



function unif(p, q,11,dd]: flag;
begin
trans := left(dd); ff = right(dd); pq := (p,q); st :== (pq); flag :=1;
k := Length(first(trans));
while st # () A flag # 0 do
= top(st); uu := left(uv); vv := right(uv);

pop( t);
if bad(ff,uv) =1 then flag :=0
else
u:= find(uu,Il); v := find(vv,11);
if u # v then

union(u, v, IT);
for i=1to k do
ul := delta(trans,uu, k — i+ 1); vl := delta(trans,vv, k — i + 1);
wv = (ul,vl); push(st,uv)
endfor
endif
endif
endwhile

end

The initial partition I is the identity relation on @, i.e., it consists of blocks {q} for all
state ¢ € . The algorithm uses a stack st. We are assuming that the DFA dd is specified
by a list of two sublists, the first list, denoted left(dd) in the pseudo-code above, being a
representation of the transition function, and the second one, denoted right(dd), the set
of final states. The transition function itself is a list of lists, where the i-th list represents
the i-th row of the transition table for dd. The function delta is such that delta(trans, i, j)
returns the j-th state in the i-th row of the transition table of dd. For example, we have a
DFA

dd = (((2,3),(2,4),(2,3),(2,5),(2,3),(7,6),(7,8),(7,9), (7,6)), (5,9))

consisting of 9 states labeled 1,...,9, and two final states 5 and 9. Also, the alphabet has
two letters, since every row in the transition table consists of two entries. For example, the
two transitions from state 3 are given by the pair (2, 3), which indicates that §(3,a) = 2 and
5(3,b) = 3.

Implement the above algorithm, and test it at least for the above DFA dd and the pairs
of states (1,6) and (1,7). Pay particular attention to the input and output format. In
particular, ouput the current partition at every round through the while loop. Explain your
data structures.



Please, consult the instructions posted on the web page for CIS511, Homework section,
for instructions on the format for the input and output for this computer program.

Extra Credit (up to 120 pts). Implement your program in such a way that it displays the
simultaneous parallel forward moves in the DFA and the updating of the trees representing
the blocks of the partition. There are programming languages, such as Mathematica, that
have primitives to manipulate and output trees.

Problem B3 (50 pts). Prove that the language
L = {a**? | 4n + 3 is prime}

is not regular.
Hint. First, you will have to prove that there are infinitely many primes of the form 4n + 3.
The list of such primes begins with
3, 7,11, 19, 23, 31, 43,---
Say we already have n + 1 of these primes, denoted by

37 b1, P2,y Pn,

where p; > 3. Consider the number

m = 4pips---pn + 3.

If m = q;---qx is a prime factorization of m, prove that ¢; > 3 for j = 1,...% and that no
g; is equal to any of the p;’s. Prove that one of the ¢;’s must be of the form 4n + 3, which
shows that there is a prime of the form 4n + 3 greater than any of the previous primes of
the same form.

Problem B4 (60 pts). Let D = (Q,%,4,q, F') be a trim DFA. Consider the following
procedure:

(1) Form an NFA, N%, by reversing all the transitions of D, i.e., there is a transition from
p to g on input a € ¥ in N iff §(¢,a) = p in D.

(2) Apply the subset construction to the NFA, N, obtained in (1), taking the start state to
be the set F'. The final states of the DFA obtained by applying the subset construction

to N are all the subsets containing ¢o. Then, trim the resulting DFA, to obtain the
DFA DE.

Observe that L(D®) = L(D)~.

Now, apply the above procedure to D, getting DF, and apply this procedure again, to
get DE. Prove that DE is a minimal DFA for L = L(D).



Hint. First prove that if 5 is the transition function of D%, then for every w € ¥* and for
every state, T C @, of DF,

Sp(T,w) ={q € Q|6 (q,w™) € T}.

Problem B5 (60 pts). An a-transducer (or nondeterministic sequential transducer with
accepting states) is a sextuple M = (K, X, A, X\, qo, F), where K is a finite set of states, X is
a finite input alphabet, A is a finite output alphabet, gy € K is the start (or initial) state,
F C K is the set of accepting (of final) states, and

ANC K XY'xA" XK

is a finite set of quadruples called the transition function of M.

An a-transducer defines a binary relation between ¥* and A*, or equivalently, a function
M:¥* — 227, We can explain what this function is by describing how an a-transducer
makes a sequence of moves from configurations to configurations. The current configuration
of an a-transducer is described by a triple (p, u,v) € K xX*x A* where p is the current state,
u is the remaining input, and v is some ouput produced so far. We define the binary relation
Faron K x 3% x A* as follows: For all p,q € K, u,a € ¥*, 5,v € A*if (p,u,v,q) € A, then

(pa uc, 6) I_M (Q7 Q, B'U)
Let -3, be the transitive and reflexive closure of ;.

The function M : ¥* — 227 is defined such that for every w € ¥*,

M(w) ={y € A" | (qo, w, €) Fy, (f, €, ), f € F}

For every language L C X*| let

M(L) = | M(w).

weL

(a) Let ¥ = A = {a, b}. Construct an a-transducer swapping a’s and b’s (for instance, if
w = abbaa, then y = baabb).

(b) Given an a-transducer M = (K,%, A\, qo, F'), define the new alphabet T as follows:

T ={[p,u,v,q] | (p,u,v,q) € A}.
Let f: T* — ¥* and ¢g: T* — A* be the homomorphisms defined such that

f([p;u,v,q]) =u, and g([p,u,v,q]) =v.
Prove that the language

R = {[QOa Uy, vy, Q1][Q1, Uz, V2, QQ] e [qn—Qv Up—1,Un-1, QTL—l][QH—h Up,, Up, Q’n]
| gi-1,u,vi, ) €T, 1 <i<n, g, € F,n>1}U{e| q € F}



is a regular language.

(c) Prove that

FHL) N R = {[qo, u1, v1, ¢1][q1, u2, V2, G2] * * [Gn—2, Un—1, V1, Gu—1)[Gn1, Uns Vn, Gn]
| [giz1,wisvi,q) €T, wyug-+-u, € L, q, € F,n>1}U{e| g € F, e € L}.

(d) Prove that
M(L) = g(f (L) N ).

If £ is a family of languages closed under intersection with regular languages, homomor-
phic images, and inverse homomorphic images, is £ closed under a-transductions? (Justify
your answer).

If L is a regular language, is M (L) regular? (Justify your answer).

(e) If M is an a-transducer from ¥* to A* prove that for any regular language, L' C A*,
the language M ~1(L') is also regular (see the definition of M ~*(L’) in the class slides).

Problem B6 (40 pts). Consider the language

L ={w € {a,b}" | w has an odd number of a’s or an odd number of b’s}.

(1) Give a DFA for L, with four states.

(2) Use node-elimination to obtain a regular expression denoting L.
Problem B7 (60 pts). Give context-free grammars for the following languages:

(a) Ly = {wew®? | w € {a,b}*} (w? denotes the reversal of w)

(b) L¢ = {a™b" | 1 <m <n <2m}

For any fixed integer K > 2,

L; ={a™" |1 <m<n<Km}

(c) Lg = {a"b" | n > 1} U {a"b* | n > 1}

(d) Ly = {a™b"a™b" | m,n,p > 1} U {a™b*"a?b*™ | m,n,p > 1}

(€) Lio = {wey | |2] = 2[yl, =,y € {a,b}"}

In each case, give a justification of the fact that your grammar generates the desired

language.

TOTAL: 430 + 120 points.



