Spring, 2025 CIS 5110

Introduction to the Theory of Computation Jean Gallier

Homework 3

February 27, 2025; Due March 27, 2025

Problem B1 (80 pts). (i) Prove that the conclusion of the pumping lemma holds for the following language L over $\{a, b\}^*$, and yet, L is **not** regular!

 $L = \{ w \mid \exists n \ge 1, \exists x_i \in a^+, \exists y_i \in b^+, 1 \le i \le n, n \text{ is not prime}, w = x_1 y_1 \cdots x_n y_n \}.$

(ii) Consider the following version of the pumping lemma. For any regular language L, there is some $m \ge 1$ so that for every $y \in \Sigma^*$, if |y| = m, then there exist $u, x, v \in \Sigma^*$ so that

- (1) y = uxv;
- (2) $x \neq \epsilon$;
- (3) For all $z \in \Sigma^*$,

 $yz \in L$ iff $ux^i vz \in L$

for all $i \geq 0$.

Prove that this pumping lemma holds.

(iii) Prove that the converse of the pumping lemma in (ii) also holds, i.e., if a language L satisfies the pumping lemma in (ii), then it is regular.

(iv) Consider yet another version of the pumping lemma. For any regular language L, there is some $m \ge 1$ so that for every $y \in \Sigma^*$, if $|y| \ge m$, then there exist $u, x, v \in \Sigma^*$ so that

- (1) y = uxv;
- (2) $x \neq \epsilon;$
- (3) For all $\alpha, \beta \in \Sigma^*$,

 $\alpha u \beta \in L$ iff $\alpha u x^i \beta \in L$

for all $i \ge 0$.

Prove that this pumping lemma holds.

(v) Prove that the converse of the pumping lemma in (iv) also holds, i.e., if a language L satisfies the pumping lemma in (iv), then it is regular.

Problem B2 (60 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Define the relations \approx and \sim on Σ^* as follows:

$$x \approx y$$
 if and only if, for all $p \in Q$,
 $\delta^*(p, x) \in F$ iff $\delta^*(p, y) \in F$,

and

 $x \sim y$ if and only if, for all $p \in Q$, $\delta^*(p, x) = \delta^*(p, y)$.

(1) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^* is *left invariant* iff uRv implies that wuRwv for all $w \in \Sigma^*$, and R is *left and right invariant* iff uRv implies that xuyRxvy for all $x, y \in \Sigma^*$.)

(2) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^n equivalence classes and that \sim has at most n^n equivalence classes.

Hint. In the case of \approx , consider the function $f: \Sigma^* \to 2^Q$ given by

$$f(u) = \{ p \in Q \mid \delta^*(p, u) \in F \}, \quad u \in \Sigma^*,$$

and show that $x \approx y$ iff f(x) = f(y). In the case of \sim , let Q^Q be the set of all functions from Q to Q and consider the function $g: \Sigma^* \to Q^Q$ defined such that g(u) is the function given by

$$g(u)(p) = \delta^*(p, u), \quad u \in \Sigma^*, \ p \in Q,$$

and show that $x \sim y$ iff g(x) = g(y).

(3) Given any language $L \subseteq \Sigma^*$, define the relations λ_L and μ_L on Σ^* as follows:

$$u \lambda_L v$$
 iff, for all $z \in \Sigma^*$, $zu \in L$ iff $zv \in L$,

and

$$u \mu_L v$$
 iff, for all $x, y \in \Sigma^*$, $xuy \in L$ iff $xvy \in L$.

Prove that λ_L is left-invariant, and that μ_L is left and right-invariant. Prove that if L is regular, then both λ_L and μ_L have a finite number of equivalence classes.

Hint: Show that the number of classes of λ_L is at most the number of classes of \approx , and that the number of classes of μ_L is at most the number of classes of \sim .

Problem B3 (100 pts). Which of the following languages are regular? Justify each answer.

- (1) $L_1 = \{wcw \mid w \in \{a, b\}^*\}$. (here $\Sigma = \{a, b, c\}$). (2) $L_2 = \{xy \mid x, y \in \{a, b\}^* \text{ and } |x| = |y|\}$. (here $\Sigma = \{a, b\}$) (3) $L_3 = \{a^n \mid n \text{ is a prime number}\}$. (here $\Sigma = \{a\}$). (4) $L_4 = \{a^m b^n \mid gcd(m, n) = 23\}$. (here $\Sigma = \{a, b\}$).
- (5) Consider the language

$$L_5 = \{a^{4n+3} \mid 4n+3 \text{ is prime}\}.$$

Assuming that L_5 is infinite, prove that L_5 is not regular.

(6) Let $F_n = 2^{2^n} + 1$, for any integer $n \ge 0$, and let

$$L_6 = \{ a^{F_n} \mid n \ge 0 \}$$

Here $\Sigma = \{a\}.$

Extra Credit (from 10 up to 10^{100} pts). Find explicitly what F_0, F_1, F_2, F_3 are, and check that they are prime. What about F_4 and F_5 ?

Is the language

$$L_7 = \{a^{F_n} \mid n \ge 0, \ F_n \text{ is prime}\}$$

regular?

Extra Credit (20 pts). Prove that there are infinitely many primes of the form 4n + 3.

The list of such primes begins with

 $3, 7, 11, 19, 23, 31, 43, \cdots$

Say we already have n + 1 of these primes, denoted by

$$3, p_1, p_2, \cdots, p_n,$$

where $p_i > 3$. Consider the number

$$m = 4p_1p_2\cdots p_n + 3.$$

If $m = q_1 \cdots q_k$ is a prime factorization of m, prove that $q_j > 3$ for $j = 1, \ldots k$ and that no q_j is equal to any of the p_i 's. Prove that one of the q_j 's must be of the form 4n + 3, which shows that there is a prime of the form 4n + 3 greater than any of the previous primes of the same form. **Problem B4 (70 pts).** Let L be any regular language over some alphabet Σ . Define the languages

$$L^{\infty} = \bigcup_{k \ge 1} \{ w^k \mid w \in L \},$$

$$L^{1/\infty} = \{ w \mid w^k \in L, \text{ for all } k \ge 1 \}, \text{ and }$$

$$\sqrt{L} = \{ w \mid w^k \in L, \text{ for some } k \ge 1 \}.$$

Also, for any natural number $k \ge 1$, let

$$L^{(k)} = \{ w^k \mid w \in L \},\$$

and

$$L^{(1/k)} = \{ w \mid w^k \in L \}.$$

(a) Prove that $L^{(1/3)}$ is regular. What about $L^{(3)}$?

(b) Let $k \ge 1$ be any natural number. Prove that there are only finitely many languages of the form $L^{(1/k)} = \{w \mid w^k \in L\}$ and that they are all regular. (In fact, if L is accepted by a DFA with n states, there are at most 2^{n^n} languages of the form $L^{(1/k)}$).

(c) Is $L^{1/\infty}$ regular or not? Is \sqrt{L} regular or not? What about L^{∞} ?

TOTAL: 310 + 40 points.